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Kohn-Sham equations

Self-consistent solution[
−∇2

2
+ VKS[n](r)

]
ψi(r) = ϵiψi(r)

VKS[n](r) = Vext(r) + VH[n](r) + Vxc[n](r)

n(r) =
∑

i

fi |ψi(r)|2

We assume fixed ions. We will omit possible spin polarization (or spinors).

Need boundary conditions.
Actually most often energy minimization (with orthonormality constraint on ψi ):

E =
∑

i

fi⟨ψi |T + Vext|ψi⟩+ EHxc[n]
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Periodic crystals

Bloch theorem

ψi(r) −→

ψnk(r) =
1√

NΩ0
eikrunk(r)

Properties:
Periodic part: unk(r + Rj) = unk(r)
ψnk(r + Rj) = eikRjψnk(r)
Born-von Karman cyclic boundary conditions : supercell NjRj with N = N1N2N3
ψnk(r + NjRj) = ψnk(r) (+ gradient)
(in the thermodynamic limit: N → ∞)
normalisation in the primitive unit cell: 1

Ω0

∫
Ω0

dr u∗
nk(r)unk(r) = 1
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Brillouin zone sampling

Uniform grid of k points

n(r) =
1

Nk

Nk∑
k

∑
n

fnk|ψnk(r)|2

Equally spaced in reciprocal space.

kn1n2n3 =
3∑

i=1

2ni − Ni − 1
2Ni

bi with ni = 1,2, . . . ,Ni

Choice of divisions: space the grid in a way that is approximately commensurate with
lengths of reciprocal lattice basis vectors bi (note: inverse of lengths in real space).
Other possibilities: tetrahedron method; (historical) special points (Chadi & Cohen;
Baldereschi)

H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5188 (1976).
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Brillouin zone sampling

Irreducible Brillouin zone
Only k points in the Irreducible Brillouin zone are actually needed. The other k points
are reconstructed using crystal symmetries.
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Brillouin zone sampling

Monkhorst-Pack shifted grids

k point grids are generally offset from the Γ point ("shifted" grid) to reduce the number
of points in the Irreducible Brillouin zone.
Choice of the shift is done according to the crystal symmetry.



Brillouin zone sampling

How many k points are needed?

Convergence!

Caution: metals
Need improved sampling (smearing) with quickly varying functions.
Example:

n(r) =
1

Nk

Nk∑
nk

fnk|ψnk(r)|2

In a metal the occupations fnk have a sharp discontinuity across the Fermi surface.
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Kohn-Sham equations

Self-consistent solution[
−∇2

2
+ VKS[n](r)

]
ψnk(r) = ϵnkψnk(r)

VKS[n](r) = Vext(r) + VH[n](r) + Vxc[n](r)

n(r) =
1

Nk

Nk∑
nk

fnk|ψnk(r)|2

Direct solution on a grid of points in real space.
Choice of a finite basis set.



Kohn-Sham equations in a basis

Orthonormal basis set

If {ϕα} is an orthonormal basis set:

ψi(r) =
∑
α

cα
i ϕ

α(r)

HKSψi(r) = ϵiψi(r) −→
∑
β

Hαβ
KS cβ

i = ϵicα
i

with matrixelements Hαβ
KS = ⟨ϕα|HKS|ϕβ⟩.

Solution: diagonalisation to obtain eigenvalues and eigenvectors
(...needs a discrete+finite basis).
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Plane waves

Plane wave expansion

The periodic part of the Bloch wavefunction can be expanded in a discrete basis of
plane waves:

unk(r) =
∑

G

eiGrunk(G)

where G are reciprocal lattice vectors.
The plane waves eiGr have the periodicity of the real lattice: eiGRj = 1 and form a
complete basis.
The coefficients unk(G) are the Fourier transform of unk(r):

unk(G) =
1
Ω0

∫
Ω0

dr eiGrunk(r)

The Bloch wavefunctions are then:

ψnk(r) =
1√

NΩ0

∑
G

ei(k+G)runk(G)



Plane waves

Basis truncation
The sum

ψnk(r) =
1√

NΩ0

∑
G

ei(k+G)runk(G)

is still infinite.

In practice, the high G components, i.e., for large |k + G|, are
small.
The expansion can be then truncated according to:

|k + G|2

2
< Ecut

with Ecut (kinetic) energy cutoff. It defines a plane-wave sphere.
Note that the number of plane waves NPW is discontinuous with
Ecut (and depends on the unit cell volume).
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Plane waves

How many G vectors are needed? Or, better: how large Ecut ?

Convergence!

Caution: Pseudopotential needed!

Details in real space are described if their length scale is larger than (approximately)
the inverse of largest |G| (Nyquist sampling theorem).
Problem: huge number of plane waves needed for localised features (core orbitals
and fast oscillations of valence electrons close to nucleus).
Solution: pseudopotentials and smooth pseudowavefunctions.
The cutoff Ecut generally depends on the pseudopotential.
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Non-periodic materials

Supercells

One cannot use a finite basis set for finite (or non-periodic) systems.
Periodic boundary conditions are needed for plane waves.

Solution: One can use supercells, introducing an artificial periodicity.
Set the finite system in a box big enough to avoid interaction between replicas.
Similarly for point defects in bulk. Care with charged systems!
Semi-infinite material (e.g. surface): slab geometry. Need to converge also slab
thickness.
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Life with plane waves

The charge density

Calculation of the density requires products of the kind:
u∗

nk(r)unk(r).
In Fourier space:

u∗
nk(r)unk(r) =

(∑
G

e−iGru∗
nk(G)

)(∑
G′

eiG′runk(G′)

)
=
∑
GG′

ei(G′−G)r [u∗
nk(G)unk(G′)]

Coefficients are non-zero for |k + G| inside the sphere, and
|k + G′| also inside the sphere.
However, G′ − G can be outside the sphere.
The sphere for n(G) has a doubled radius.
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Life with plane waves

The potential

Calculation of the action of the Kohn-Sham potential:

VKSψnk −→
∑
G′

VKS(G − G′)unk(G′)

Note: convolution theorem of Fourier transform (product ↔ convolution)
Again max(|G − G′|) = 2max(|G|).
The kinetic energy cutoff for charge density and potentials is four times the cutoff for
wavefunctions (i.e., with 8NPW):

|G|2

2
< 4Ecut



Fast Fourier Transform (FFT)

Between real and reciprocal spaces

n(r) =
∑

G∈sphere2

eiGrn(G)

Discrete Fourier transform: N2 scaling.

Fast Fourier Transform (FFT) algorithm:
much more efficient N logN scaling.
FFT grid in real space (Nr > NPW).

n(G) =
1
Nr

Nr∑
ri

eiGri n(ri)
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Life with plane waves

The Hartree potential

VH(r) =
∫

dr′
n(r′)
|r − r′|

−→ ∇2VH(r) = −4πn(r) −→ VH(G) =
4π
G2 n(G)

The divergent G = 0 component is set to 0 (compensation with ionic potential Vext).
Its value VH(G) is easy to compute in reciprocal space.
Its action VH(r)ψi(r) is easy to compute in real space.
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Life with plane waves

FFT allows one to switch between real and reciprocal spaces.



Life with plane waves

Operators in plane waves

Kinetic operator:

⟨k + G| − ∇2

2
|k + G′⟩ = |k + G|2

2
δG,G′

Local potential:

⟨k + G|VKS(r)|k + G′⟩ =
∫

dr eiGr
∑
G′′

eiG′′rVKS(G′′)eiG′r = VKS(G − G′)



Life with plane waves

The Kohn-Sham equations∑
G′

[
|k + G|2

2
δG,G′ + VKS(G − G′)

]
unk(G′) = ϵnkunk(G)

Diagonal in k. Easy parallelisation over k.
Note that, in general, pseudopotentials are non-local operators in real space:
Vext(r) → Vext(r, r′). Therefore, Vext(G − G′) → Vext(k,G,G′)



Life with plane waves

The Kohn-Sham equations∑
G′

[
|k + G|2

2
δG,G′ + VKS(G − G′)

]
unk(G′) = ϵnkunk(G)

Diagonal in k. Easy parallelisation over k.
Note that, in general, pseudopotentials are non-local operators in real space:
Vext(r) → Vext(r, r′). Therefore, Vext(G − G′) → Vext(k,G,G′)



Plane waves: advantages/disadvantages

Plane-wave basis
Simple. Plane-wave expansion is equivalent to interpolate functions in terms of
sinus/cosinus that have lattice periodicity. Many analytic expressions. Best choice for
theory and code developments.
Systematic. Plane waves are eigenvectors of the kinetic energy operator (i.e., an
orthonormal set). Easy to use: only one convergence parameter.
Efficient. FFT algorithm allows one to switch seamlessly between real and reciprocal
spaces.
Agnostic (blind). Same for all states and delocalised everywhere. The precision is
the same everywhere, independently of the atomic positions. Easy for calculation of
forces and molecular dynamics (ionic displacements). However, no adaptation to
different physical situations: many basis functions are needed for localised states.
Needs periodic boundary conditions. Supercells are required for non-periodic
systems.
Needs pseudopotentials. They always come with approximations ("pseudization").



Summary

How to solve Kohn-Sham equations in a computer?

Representation of all quantities in finite and discrete bases and grids.
Converge carefully each quantity of interest.
Here we have discussed two fundamental convergence parameters: grid of k points
and energy cutoff Ecut (i.e., number of plane waves G).
Basis set is not a religious faith....

Image credits: X. Gonze, P. Giannozzi, ...
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Many thanks

...and have fun!



Many thanks ...and have fun!


