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Forces and Relaxation

* For this lecture: Classical nuclei, quantum-mechanical electrons
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* Simple example: Hzt molecule

* More complicated: Potential Energy surface in solids

* In practice: DFT to solve the underlying QM problem

* In practice: Forces within DFT

* Context: Problems and Applications



Multiple Nuclei: What causes Forces?

* Simplest system with multiple nuclei is the Ho* ion

* Two nuclet (protons), one electron

* Exact solution: from Schrodinger
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Hquation 1n 3D

H = (Tel+‘7ab+‘7a+%)

* Here: approach the problem in several steps

* First step: 1D and well potentials
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Multiple Nuclei: Introduction

1D Arbitrary Potential Well
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1D Arbitrary Potential Well




Multiple Nuclei: Introduction

* Here: approach the problem in several steps
* First step: 1D and well potentials

1D Arbitrary Potential Well 1D Arbitrary Potential Well
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* Second step: 1D and Coulomb potentials

http://quells.github.io/QuantumWells/arbitrary_well.html
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Multiple Nuclei: What causes Forces?

* QM: Solution from Schrodinger equation:
Hy = By
Hg(r)yr(r) = ERYR(r)

* Thought experiment for H, molecule:




Multiple Nuclei: Hz* 1on

* what we plot here:

Hiy = Ev

ﬁR(r)wR(r) = Er{r(r)
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Analytical example: Lennard Jones Potential
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Multiple Nuclei: What causes Forces?

- total energy can be viewed as sum of an attractive term and a
repulsive term

E, = Repulsive energy

Repulsion——> +

E = Net energy

Potential Energy, E(r)
(-
1

E, = Attractive energy

- <«—— Attraction

(c) Kasap



Bonding in Solids: Forces

» Force follows from energy: F'(R) = —VE(R)

* Equilibrium separation:

Bond length Ry

* Energy at that length:
Bonding energy

- this overall picture
works also for solids

* We can even use it to
derive thermal
expansion and bulk
modulus

* (strong) directional
dependence possible:
Potential energy surface
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Bonding in Solids: Quantum Mechanics

* More complicated for solids, but the concept of a “potential
energy surface” holds; solve:

Hr (r)yr(r) = Eryr(r)

Example of a potential energy surtface:

\ o @ r

§ P 1 - 6 variables: Bond lengths
L ndVAREN e and angles, hence a 6D
S e Ke Roe potential energy surface
) * Only 2 variables shown
» Pronounced directional

» Forces from gradient! dependence visible
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Forces and Relaxation

* In practice: DFT to solve the underlying QM problem

* In practice: Forces within DFT

* Context: Problems and Applications

Write ) Solve Schrodinger ) Plot Er, Compute Force
Write Kohn-Sham
Equations

Solve KS Equations for
12

different R: Eg, n(r)



Forces in DFT: Hellmann-Feynman Theorem

* Still need to actually compute the forces, here within DFT

Fr=-V; (‘I’olHel\I’0> — —VE(R)

* Finite-difference method costly and inaccurate

* Instead: Analytical evaluation:

Vi (Yo|He|W¥o) =
(Uo|ViHe|Yo) + (VYo |He Vo) + (Vo|He|V¥0)
* Hellmann-Feynman theorem says:

F?FT = — (Ug|VIH|Yp)

... 1f wave function 1s an exact eigenfunction
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Forces in DFT: Forces on atoms

* DFT total energy: Fiot = Eiin + Eloc + Enloc + FEyec + Egs

OFw _ 0By OB, | 0P

8RI,S - 8RI,S | BRI,S 8RI,5

* Evaluate derivatives analytically; leads to expressions in terms
of electron density+plane-wave coetticients (see Marx, Hutter)

* These are implemented in DFT codes

* Use this to “relax’ atomic positions, 1.e. move until F=0

* Unit cell unchanged here (no
change 1n shape and size)

* Update positions of the atoms in
the cell using, e.g., gradient descent

* Tip: Relaxation can be slow (Plot forces, change stepsize)
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Forces in DFT: Forces on cells, Stress tensor

* If simulation cell is changed (in shape or size), electronic
internal stress tensor is required:

= aEtot —
11 = Z 8hus h = [ala a, 33]

* Using total energy from prev1ous slide:

8Etot o 8Ekin | OF loc | OF nloc | 8Exc | 8EES

Ohyy  Ohyy =~ Ol Ohyy  Ohyy Ol

* Also do these analytically; again expressions in density and
plane-wave basis set (see Marx+Hutter for explicit equations)

* Implemented in DFT codes; with these, cell shape and cell
volume can be relaxed (until external stress=0)

* Tip: Larger plane-wave cutoff required to achieve convergence
(larger than your previous test of total-energy convergence)
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Problems: LLocal Minima

* Potential-energy surface
can be complicated

* Many local minima, only
one global minimum

e “Relaxation” to find \ |
the global minimum \ A 4

N - X < < N\ N\ N\

(c) https://medium.com/@ellie.arbab/maths-of-word-to-vec-8af5d9c263f2
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* Gradient descent
approach can get stuck in
local minimum

* Tips: (1) Change step size,
(11) Smart schemes to

determine descent direction
(BFGS), (111) Break symmetry

16 (c) https://mriguestions.com/back-propagation.html



Problems: Symmetry Breaking

* Problem: Ground-state geometry 1s not necessarily “obvious”
* Caution: It does not have to fit a primitive (or simple) unit cell
* Example: Surface reconstruction:

® | QO 0 0 0 0 olo o 0 00 00 00 00
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Lw-L Normal relaxation

ikipedia Reconstructed surface

* Example: Defect atomic geometties:

Neutral aluminum interstitial geometry in
AlOs3; Energies differ by more than 1 eV
(c) J. Phys.: Cond. Mat. 35, 334002 (2023)

octahedral trigonal split-interstitial

* Tip: Try different unit cell sizes (even for bulk!) and distort/

break the ideal symmetry (e.g. Voronoi method)
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Problems: Pulay Forces
* Started with: V;(¥g|He|¥o) =

(Uo|ViHe|Yo) + (ViVo|He| Vo) + (Vo|He|V Vo)
* Hellmann-Feynman theorem:
Fit = — (Ug|VHe|¥o)
... true 1f wave function 1s an exact eigenfunction

* Also true for variational wave functions, 1f complete basis 1s
used, which 1s rarely the case

* Expand Slater determinant into basis functions

¢; = Z Civ fz/(r; {RI})

v

* For the variation ot the wave function, the gradient yields:

Vig; = Z (Vici) fu(r;{Rr}) + Zcz‘u (Vifu(r;{Rr1}))

e Allows to write: F; = FIFT 4 pIBS | piNSC
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Problems: Pulay Forces

F; = FIFT Fec

* Pulay force vanishes exactly if origin-less basis (e.g. plane waves)
are used and the number of basis functions is kept fixed (careful
when the volume of your cell changes!)

* For other basis sets: Pulay needs to be included explicitly

* Non-selfconsistency error can be made small by achieving high

selt consistency ‘ < ¢O‘ ¢O>‘2 — g

Hn;| |¢piy1) = E |diy1)

\<¢i+1\¢¢+1>\2 — Ti4-1

* Tip: Pulay corrections (likely already implemented or not needed

(plane waves)); high accuracy criterion for selt-consistency
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Applications: Ab-Initio Molecular dynamics

* Disclaimer: Details by Sara Bonella, Monday at 11 am

* Basic idea: Let’s do statistical mechanics (Tie > 0 K)! (Instead
of relaxing/finding minimum energy configuration)

e Come up with initial conditions and propagate ' = ma

* Molecular Dynamics:
* Compute force F
* Move ions/nuclei according to F=ma (using e.g. Verlet
scheme for Newton’s equations of motion)
* Repeat

* Classical MD: Use classical (analytical or ML) potentials for F
* Ab-initio MD: Find DFT ground state at each step and

compute I (as done on previous slides)

20



Applications: Ehrenfest dynamics

* Ab-initio MD: Find DFT ground state at each step and
compute I

* Ehrenfest dynamics: Force does not need to be computed
from an electronic ground state!

* [f you have a time-dependent electron density n(t), e.g. from
time-dependent DFT, you can use Hellmann-Feynman
theorem and proceed as discussed on previous slide

*n(t) 1s not a ground state, but an excited-state density

* Applications include, for instance, radiation damage problems

AIMD  Nuclei Electronic structure
BO MR;(t) = —Vimingg ) {(¥o |He| ¥o)} 0= —Hep; + > Aijo;
E MR (t) = =V (¥g |He| o) ihWy(t) = H. U,

21 (c) Marx, Hutter
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Applications: Phonons

* Disclaimer: Details by Cyrus Dreyer, Friday at 8.30 am

GO
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FIG. 1. Supercell geometries used in our simulations for 7'=0
K (left) and for 7=300 K (right), where 10 configurations are
superimposed for visualization.
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e Harmonic force constants:

* Harmonic eigenfrequencies are eigenvalues of dynamic matrix:

1 0% Fxs

DIa,Jﬁ —

* Predict phonon frequencies!
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Forces and Relaxation

* Simple example: Hot molecule

e More complicated: Potential Enerov surface in solids
p gy

* In practice: DFT to solve the underlying QM problem

* In practice: Forces within DFT
* Context: Problems and Applications
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Multiple Nuclei: Introduction

1D Arbitrary Potential Well




