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* Projects summary: Electronic excitations in materials
- Plasmons in Dirac materials

- Excitons in compressed helium

« Challenge: Advanced questions on DFT

- What Is the exact Kohn-Sham gap in silicon?

- Can we make the LDA In principle “exact™?



Part 1: Electronic excitations in materials



Theoretical spectroscopy

 Many materials properties and functionalities are due to
electronic excitations (e.g. color, solar cells, ...
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Theoretical spectroscopy

 Many materials properties and functionalities are due to
electronic excitations (e.g. color, solar cells, ...)

« Spectroscopy experiments measure excitation spectra
(e.g. absorption, inelastic scattering of electrons/photons)

ALBA synchrotron Hall of SOLEIL . ID32@ESRF
GALAXIES@SOLEIL



Theoretical spectroscopy

 Many materials properties and functionalities are due to
electronic excitations (e.g. color, solar cells, ...)

« Spectroscopy experiments measure excitation spectra
(e.g. absorption, inelastic scattering of electrons/photons)

* Theoretical spectroscopy: calculate, interpret and predict

Your next equation? Mare Nostrum @ BSC



Theoretical spectroscopy

Many materials properties and functionalities are due to
electronic excitations (e.g. color, solar cells, ...)

Spectroscopy experiments measure excitation spectra
(e.g. absorption, inelastic scattering of electrons/photons)

Theoretical spectroscopy: calculate, interpret and predict

|dentification of elementary excitations is challenging.
Collective excitations result from the Coulomb interaction.



Theoretical spectroscopy

Many materials properties and functionalities are due to
electronic excitations (e.g. color, solar cells, ...)

Spectroscopy experiments measure excitation spectra
(e.g. absorption, inelastic scattering of electrons/photons)

Theoretical spectroscopy: calculate, interpret and predict

|dentification of elementary excitations is challenging.
Collective excitations result from the Coulomb interaction.

Here excitations of the electronic charge.
Plasmons & excitons.



Plasmons: collective charge excitations

A two-level atom...
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Plasmons: collective charge excitations

A two-level atom...
...gets excited
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Plasmons: collective charge excitations

A two-level atom...
...gets excited

+
40_



Plasmons: collective charge excitations

Excitation ~ “dipole”




Plasmons: collective charge excitations

Extended system : many atoms, many dipoles



Plasmons: collective charge excitations

Extended system : many atoms, many dipoles

Coulomb Iinteraction gives rise
to collective oscillations = plasmons
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Plasmons: collective charge excitations

Extended system : many atoms, many dipoles

Coulomb Iinteraction gives rise
to collective oscillations = plasmons




Plasmons: collective charge excitations

Measurable! By means of electron energy loss
spectroscopy (EELS) or Inelastic X-ray scattering (IXS)

Peaks in loss function spectra

—Ime_l(q, LU)

They can be calculated within linear response:
- Time-dependent density-functional theory (TDDFT)
- Green'’s function theory (MBPT)



Plasmons: collective charge excitations

* Useful!
Plasmonics = nanostructured optoelectronic devices

Stefan Alexander Maier

NEEE )
Nicolas Bonod Editors

Plasmonics

From Basics to Advanced Topics

Plasmonics

Fundamentals and Applications




Plasmons In Dirac materials
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Plasmons In Dirac materials

 We have studied!

Fundamental concepts of DFT, linear response, TDDFT,
Green’s function theory, GW approximation, ...

coursera I What do you want to learn? ﬂ

Introduction to Linear Response

Browse > Physical Science and Engineering > Physics and Astronomy

Density Functional Theory

*owohkd 40 155ratings | fp 97% LS

matteo.gatti

Introduction to TDDFT in extended systems
| Francesco Sottile +1 more instructor

Introduction to Green’s functions
Enroll for Free
Starts Jun 8 matteo Part 1

12,097 already enrolled

Matteo Gatti
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Plasmons In Dirac materials

 \We have studied!

Fundamental concepts of DFT, linear response, TDDFT,
Green’s function theory, GW approximation, ...

* We have discussed! More than 60 online meetings

between June ‘21 and October ‘22
& Drive

Training Network > 2021-2022 > Videos Download all =
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Plasmons In Dirac materials

 \We have studied!

Fundamental concepts of DFT, linear response, TDDFT,
Green’s function theory, GW approximation, ...

* We have discussed! More than 60 online meetings
between June ‘21 and October ‘22

* We have carried out a research project together.
Yambo simulations on Marconil00@CINECA
(mostly 32 cpus, up to 96 cpus).
Many thanks to EAIFR-ICTP, I. Girotto, N. Spallanzani




Plasmons In Dirac materials

We have studied!
Fundamental concepts of DFT, linear response, TDDFT,
Green’s function theory, GW approximation, ...

We have discussed! More than 60 online meetings
between June ‘21 and October ‘22

We have carried out a research project together
Yambo simulations on Marconil00@CINECA

(mostly 32 cpus, up to 96 cpus).

Many thanks to EAIFR-ICTP, I. Girotto, N. Spallanzani

Joint article in preparation...



Plasmons In Dirac materials

We have studied!
Fundamental concepts of DFT, linear response, TDDFT,
Green’s function theory, GW approximation, ...

We have discussed! More than 60 online meetings
bet

We A lot of work.
var — And... a lot of fun!
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Mal., ... _ _ .. ..
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Joint article in preparation...



2D Dirac materials: graphene

Dirac cone
|deal graphene

Graphene sheet



3D Dirac materials: alkall pnictides

Dirac topology near the Fermi level also in 3D materials

Li, NaM (M=N,Bi) “%QQ NS VNN
M Li (Na 2\ /\\/ \’\/\V/Q_/
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Band structure of Na,Bi

Z. Wang, et al., Phys. Rev. 85, 195320 (2012); Z. K. Liu, et al., Science 343, 864 (2014);
L. Jin, et al., Phys. Chem. Chem. Phys. 22, 5847 (2020)



3D Dirac materials: alkall pnictides
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Plasmons In 3D Dirac materials
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Plasmons in 3D Dirac materials

wavevector g along z (rlu)
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* Plasmons are not dispersing (unusual behavior).
* Important to take into account whole band structure (not only Dirac cone)



ECOLE

POLY TECHNIOUE

* Fatema: excitons in compressed helium
“Eurotech” Marie-Curie postdoc (since January 2023)

* Maram: plasmons in cubic antimony
“Faculty of the Future” fellowship - Schlumberger foundation
(since September 2023)



Excitons: interacting electron-hole pairs

Electron-hole pair

+
4®_



Excitons: interacting electron-hole pairs

Interacting
Electron-hole pair

+
4®_



Excitons: interacting electron-hole pairs

Interacting
Electron-hole pair
Embedded in a dielectric medium

Screened Coulomb
interaction

+



Excitons In compressed helium

1.5

0.9t

N O

_Ime_l(qa w)

without e-h |

Energy (eV)



Part 2. Research questions on DFT

(...with 1 cpu only!)



Together with:

Ayoub Aouina Lucia Reining

(Algeria - France —» Germany)

And Palaiseau Theoretical Spectroscopy group & friends



DFT . A"multiverse” theory

HY = Ev
U =U(ry,..,ry)

All observables

Real
world



DFT . A“multiverse” theory

HV = EV
KIJ p— KIJ(I‘L ---griV)

All observables

Kohn-Sham
Vie(r) ?

Real Auxiliary
world n(r) world

Observable of interest



DFT . A“multiverse” theory

HVY = EW Homogeneous
T — 0 ) Kohn-Sham electron gas
= r.....ryn D I I
All observables Vae(r) n" V.

Real Auxiliary Model
world n(r) world world

Observable of interest



DFT . A"multiverse” theory

HVY = EW Homogeneous
T — 0 ) Kohn-Sham electron gas
= r.....ryn D I I
All observables Vae(r) n" V.

Real Auxiliary Model
world n(r) world world
Observable of interest Connector

Fyeln] = / dr n(r)e" (n = n(r)) Vee(r) = V(0" = n(r))




* Big advantage 1: It is easler to use the model to
approximate the effective potential of the auxiliary system
rather than approximating the real system directly.



* Big advantage 1: It is easler to use the model to
approximate the effective potential of the auxiliary system
rather than approximating the real system directly.

* Big advantage 2: Difficult calculation has been done once
for all in the model and the results have been shared.

D. M. Ceperley and B. J. Alder Phys. Rev. Lett. 45, 566 (1980)



* Big advantage 1: It is easler to use the model to
approximate the effective potential of the auxiliary system
rather than approximating the real system directly.

* Big advantage 2: Difficult calculation has been done once
for all in the model and the results have been shared.

* Note: our first target is n(r).
Other question is E=E[n].



Error in the density vs. Error in the energy functional:

week ending

PRL 111, 073003 (2013) PHYSICAL REVIEW LETTERS 16 AUGUST 2013

Understanding and Reducing Errors in Density Functional Calculations

Min-Cheol Kim and Eunji Sim™

Department of Chemistry and Institute of Nano-Bio Molecular Assemblies,
Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul 120-749, Korea

Kieron Burke
Department of Chemistry, University of California, Irvine, California 92697, USA
(Received 12 December 2012; published 15 August 2013)

We decompose the energy error of any variational density functional theory calculation into a
contribution due to the approximate functional and that due to the approximate density. Typically, the
functional error dominates, but in many interesting situations the density-driven error dominates.
Examples range from calculations of electron affinities to preferred geometries of ions and radicals in
solution. In these abnormal cases, the error in density functional theory can be greatly reduced by using a
more accurate density. A small orbital gap often indicates a substantial density-driven error.



Approximations are biased towards “good” energies
sacrificing “good” densities

Density functional theory is
straying from the path toward
the exact functional

Michael G. Medvedev,"”***{ Ivan S. Bushmarinov,'*+ Jianwei Sun,*{
John P. Perdew,”+ Konstantin A. Lyssenko'f

The theorems at the core of density functional theory (DFT) state that the energy of

a many-electron system in its ground state is fully defined by its electron density
distribution. This connection is made via the exact functional for the energy, which
minimizes at the exact density. For years, DFT development focused on energies, implicitly
assuming that functionals producing better energies become better approximations of
the exact functional. We examined the other side of the coin: the energy-minimizing
electron densities for atomic species, as produced by 128 historical and modern DFT
functionals. We found that these densities became closer to the exact ones, reflecting
theoretical advances, until the early 2000s, when this trend was reversed by unconstrained
functionals sacrificing physical rigor for the flexibility of empirical fitting.

Medvedev et al., Science 355, 49-52 (2017)



Density: DFT approximations vs. accurate QMC

Bulk silicon

Difference (%)
dn

DO - @(110) T ®a

Siyuan Chen, et al. PRB 103, 075138 (2021).



* Big advantage 1: It is easler to use the model to
approximate the effective potential of the auxiliary system
rather than approximating the real system directly.

* Big advantage 2: Difficult calculation has been done once
for all in the model and the results have been shared.

* Note: our first target is n(r).
Other question is E=E[n].



Big advantage 1: It is easler to use the model to
approximate the effective potential of the auxiliary system
rather than approximating the real system directly.

Big advantage 2: Difficult calculation has been done once
for all in the model and the results have been shared.

Note: our first target is n(r).
Other question is E=E][n].

More generally: the auxiliary system is not supposed to
directly yield other observables of interest.

0 = O[W] # Oldys

The density functional is often unknown:
O =0 n] 2?7?77



Question 1: What Is the “exact” Kohn-Sham gap
In a solid?



Ordinary Kohn-Sham problem

Vie(r) ——»  n(r)

Inverse Kohn-Sham problem
-?'1.(1‘) _> V;{:(P)

...from accurate QMC density



Vxc potential: DFT approximations vs. accurate QMC

Bulk silicon Ateach r: n(r), v _(r)
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Vxc potential: DFT approximations vs. accurate QMC
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Non locality and environment dependence
A. Aouina, M. Gatti, S. Chen, S. Zhang, and L. Reining, PRB 107, 195123 (2023)



Vxc potential: DFT approximations vs. accurate QMC
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Kohn-Sham band gaps:
DFT approximations vs. accurate QMC

Si NaCl
indirect  direct at I'|direct at I
> QMC derived| 0.69 2.72 5.25
PBE 0.66 2.60 5.08
LDA 0.49 2.55 4.59
Exp. 1.17 [85]  3.05[8T] 8.5[86]
3.40[85]

A. Aouina et al, PRB 107 (2023)

See also: R. W. Godby, M. Schiltter, and L. J. Sham, Phys. Rev. Lett. 56, 2415 (1986)



Kohn-Sham band gaps:
DFT approximations vs. accurate QMC

Si NaCl
indirect  direct at I'|direct at I
> QMC derived| 0.69 2.72 5.25
PBE 0.66 2.60 5.08
LDA 0.49 2.55 4.59
Exp. 1.17 [85]  3.05[8T] 8.5[86]
3.40[85]

A. Aouina et al, PRB 107 (2023)

See also: R. W. Godby, M. Schiltter, and L. J. Sham, Phys. Rev. Lett. 56, 2415 (1986)

We shouldn’t blame the LDA or PBE...

Note: Several common DFT approximations (hybrids, SCAN, LDA+U,...)
don’t use a local multiplicative Kohn-Sham potential — band gap can be
larger (“Generalised Kohn-Sham” with non-local potential)



Question 1b: Can the KS gap agree with experiment?



error on density (%)

Modified Becke Johnson MGGA:
Tuned for “Good gaps” (e.g. 3.09 eV at '), but bad density!
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Bulk silicon: error with respect to QMC






DFT . A"multiverse” theory

HVY = EW Homogeneous
T — 0 ) Kohn-Sham electron gas
= r.....ryn D I I
All observables Vae(r) n" V.

Real Auxiliary Model
world n(r) world world
Observable of interest Connector

Fyeln] = / dr n(r)e" (n = n(r)) Vee(r) = V(0" = n(r))




DFT : A successful tale of 3 worlds

HY = EWV Homogeneous
I — ) Kohn-Sham electron gas
— I'1y-s N P, h h
All observables Vae(r) n" V.

LDA
Real Auxiliary Model

world n(r) world "= n(r) world

Observable of interest Connector

Generalize??? Exactify???




The connector theory

Kohn-sham Vi (r, [n]) I\(/IHOICEI?EI-) VX}E (nh)



The connector theory

Kohn-sham Vi (r, [n]) '\(/:322) V}g’: (?’Lh)

n' 7 ch(r: [nD — Vx}f: (nh) (if share same values)



The connector theory

Kohn-Sham V. (r, [TZD '\(/IHOE?;I) V}jz (nh)

"T?sh ? ch(ra [nD — Vxhé (nh) (if share same values)

nh — (Vx}f: ) —1 {ch (I‘, [n} ) } — nff [n] (if inversion possible)



The connector theory

Kohn-Sham V. (r, [TZD '\(/IHOE?;I) V}jz (nh)

"T?sh ? ch(ra [nD — Vxhé (nh) (if share same values)

nh — (Vx}f: ) —1 {ch (I‘, [n} ) } — nff [n] (if inversion possible)

Connector

h

r

(e [n]) —— Vi

XC



The connector theory

Kohn-sham Vi (r, [n]) l\(/ll?lgg) V}g’: (?’Lh’)

"T?sh ? ch(ra [nD — VX}:’; (nh) (if share same values)
h
r

[n] (if inversion possible)

n" = (Vo) {Vae(r, [n])} = n

Connector So far nothing gained!

=V (ny[n]) —» Vi



The connector theory

Kohn-Sham V. (r, [TZD I\(/Il?lgg) V}jz (nh)

T?sh ? ch(ra [nD — Vxhé (nh) (if share same values)
h
r

[n] (if inversion possible)

n" = (Vo) {Vae(r, [n])} = n

Connector nh[n} — (V}fzjappmx)_1{chjappmx (ra [TZD}

r

Vi(nyn]) —— Vi




Exchange-correlation potential

Kohn-Sham  Vi.(r. [n}) HEG VX% (nh’)

DA nen] =n(r)  Vi(n(r))

h h —1
nr [n} — (ch,approx) {ch,approx (r? [’TZD}
Connector

inf: (nf} [n}) Non-local density functional!




Exchange-correlation potential

Kohn-Sham  Vi.(r. [n}) HEG VX% (nh’)

DA nen] =n(r)  Vi(n(r))

h h —1
nr [n} — (ch,approx) {ch,approx (r? [’TZD}
Connector

inf: (nf} [n}) Non-local density functional!

Why advantageous???



The connector theory

Direct approximation

ch,approx

Good if approximation is good

Bad = » Good

Approximation



The connector theory

Direct approximation Connector approximation

Vie.approx Vxhé { Vx%;;prox [ch;appmx} }

Error canceling!

Good if approximation is good

Bad = » Good

Approximation



The connector theory

Direct approximation Connector approximation

Vie,approx Vxhé { Vx};’,ggprox [ch;appmx} }

Error canceling!

Good
A Good if approximation is good
(even if model is bad)
Model _ _
Good if model is good
Y (even if approximation is bad)
Bad

Bad = » Good

Approximation



The connector theory

Direct approximation Connector approximation

Vie,approx Vxhé { Vx};’,ggprox [ch;appmx} }

Error canceling!

Good
A Good if approximation is good
(even if model is bad)
Model _ _
Good if model is good
Y (even if approximation is bad)
Bad

Calculate
once and forever!

Bad = » Good

Approximation An ecological approach!!!



Exchange-correlation potential

Simple approximation : Linearization around homogeneous density

Kohn-Sham Vie(r, [n]) = Vie(n) + /dr’fxcﬂr —1'|;n)(n(r") — n)

HEG  Vi(n") = V() + fl(m)(n" — )

1

Connector  ni[n] =

/dr’f-xcur —r'|;n)n(r’)

LDA  nl'[n] =n(r)

fxc known from M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B 57, 14569 (1998)



Exchange-correlation potential

Simple approximation : Linearization around homogeneous density

Kohn-Sham Vie(r, [n]) = Vie(n) + /dr’fxcﬂr —1'|;n)(n(r") — n)

HEG  VA(n) m VA (a) + f() (n" — )
Connector  ni[n] = ! /drffxcur —r'|;n)n(r’)
' f:?c(ﬁ) |

LDA  nl'[n] =n(r)

Test on inhomogeneous system: n(r) = Acos(a-r) + B

fxc known from M. Corradini, R. Del Sole, G. Onida, and M. Palummo, Phys. Rev. B 57, 14569 (1998)



Slowly varying density:

Connector ~ LDA

i 1]

rlao]

Vee(ne[n])

vio[Ha]
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Rapidly varying density:

Connector ~ Mean density

i 1]

0.030 ¢z
0.025-

0.020

“& mm===_ Connector

e




Charge density of Silicon
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Siyuan Chen, et al. PRB 103, 075138 (2021).



Charge density of Silicon
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Charge density of Silicon

Approximakiom

Error bar
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Vxc potential: DFT approximations vs. accurate QMC

-0.1

inverted QMC 20t it
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Kohn-Sham band gaps:
DFT approximations vs. accurate QMC

Uxc KS gap Si (ev) | KS gap Na(Cl
AFQMC 0.82 5.25
PBE 0.80 5.08
Connector 0.86 4.87
LDA 0.63 4.59




[ 4

1ty of NaCl

N) |

Charge den

PBE

PBEQ
— Connector

(%) @ouaialig




Charge density of NaCl
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The connector theory

Very general strategy of approximation

Choose:

* A quantity of interest (an observable, a potential, ...)
 Amodel (HEG, inhomogeneous model, ...)

* An approximation (linearization, ...)
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To know more:

* M. Vanzini, A. Aouina, M. Panholzer, M. Gatti & L. Reining,
np] Computational Materials 8, 98 (2022).

* A. Aouina, PhD thesis (Ecole Polytechnique, 2022)



Many thanks!



. 0002
g 0.001
g
E’ 0.000
& —0.001
A =0.002
—0.003
5k
8
E -5
£ -10 center of Si-S1 bond
A
-15
=20
@ (001) @ (110) : @ (111)
o~ B : : AFQMC ||
Mé" MEre 'l -} -= LDA
had = PBE
8 0.02 == PBEsol
= E
O = B3LYP
B 0.01 o
& 000 :
N W
. —o.01}" f ' '
n(r) IN bUIk NaCI Na Cl Na Cl Na Cl Na
151-(b) I\ /\l f.’\ \
g (AT AV i1/ AN
\
5 s, ! '\ -7 i\ oo\
3 " " 1= i~ h oA )
= R i\ A K" ! Uy ) '
5 0 < : j, | / | / J
—5L
@ (001) @ (110) @ (111)

Siyuan Chen, et al. PRB 103, 075138 (2021).



