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Dynamics of a set of degrees of freedom that depends on parameters/variables that must 

satisfy specific conditions 

Key application here adiabatic dynamics

The general problem
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V (R, s)

Find the set of s that 
satisfies the condition

Move R with force computed with s at the solution set



First principles MD: Electrons (ground state) and nuclei

Ground state energy as a functional of the electronic density 
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Hartree and exchange–correlation energies, respectively. ECoul(R) is
the classical Coulomb energy of the ions and Eext[R, n] is the interac-
tion energy between the electrons and the ions. In MD simulations,
the density is typically represented in the planewave basis,

n(r) =�
G

ñGeiG⋅r , (2)

where G = 2π
L (i, j, k), with L the size of the cubic box and i, j, k inte-

gers. This expansion is truncated with ñG = 0 if any component of
the wavevector is larger than a cutoff, �Gl� > Gc, l = x, y or z. Since
the density in real space n(r) is by definition a real function, the
Fourier coefficients ñG (typically complex quantities) satisfy the rela-
tionship ñ−G = ñ�G. Once the Fourier representation is adopted, the
ground state energy becomes a function of the ionic positions and
the expansion coefficients.

First-principles OFDFT molecular dynamics relies on the
Born–Oppenheimer approximation: The forces on the ions are com-
puted at each time step as the gradient of the ground state energy
with respect to the ionic positions, with the energy computed at an
electronic density that minimizes its value. In the plane-wave rep-
resentation of the density, this minimum condition is equivalent to
imposing that the derivatives of the ground state energy with respect
to the coefficients of the Fourier expansion are null. In taking these
derivatives, we have the choice to adopt as independent variables
the real and imaginary parts of ñG or to consider instead ñG and
ñ�G. Indeed, the definition of the complex derivatives (also known as
Wirtinger derivatives),

@E
@ñ�G

= 1
2
� @E
@Re[ñG] + i

@E
@Im[ñG]�,

@E
@ñG

= 1
2
� @E
@Re[ñG] − i

@E
@Im[ñG]�,

(3)

(where Re[ñG] and Im[ñG] are the real and imaginary parts of ñG)
ensures the equivalence of these choices. In the following, we adopt
ñG and ñ�G as independent variables. Furthermore, from now on, all
Fourier coefficients are taken in the interval G ∈ [0, Gmax], a short-
hand notation to indicate that wavevectors span one-half space (we
denote by NG the number of such vectors). With these choices, the
Born–Oppenheimer conditions become

σGα(R, ñ, ñG0) = @E(R, ñ, ñG0)
@ñ�Gα

= 0 for α ∈ [1, NG];
σ�Gα(R, ñ, ñG0) = @E(R, ñ, ñG0)

@ñGα

= 0 for α ∈ [0, NG].
(4)

In the equation above, we have introduced, for future convenience,
the vector

ñ = {ñG1 , . . . , ñGNG
, ñ�G1 , . . . , ñ�GNG

}, (5)

which contains the 2NG Fourier coefficients other than the one cor-
responding to G0 = (0, 0, 0). This latter coefficient is associated with
the additional condition that the total number of electrons, Nel,
must be conserved along the dynamics. In the plane-wave basis, this
condition is expressed as

ñG0 � = N el, (6)

where � is the volume of the simulation box.
The MaZe evolution for OFDFT first-principles dynamics is

obtained by promoting the coefficients ñGα and ñ�Gα to the role
of dynamical variables. The evolution equations, obtained from a
Lagrangian formulation of the dynamics of the ions and these addi-
tional variables, are then complemented with the conditions in
Eqs. (4) and (6), which are interpreted as constraints. In the fol-
lowing, we impose the conservation of the number of electrons by
enforcing Eq. (6) and the minimum condition on ñG0 as an initial
condition. We then exclude this quantity from the set of auxiliary
dynamical variables and consider it as a constant in the simula-
tions. To simplify the notation, we also drop the explicit indication
of the dependence of the ground state energy and of the constraints
on ñG0.

To proceed, we assign (temporarily) a finite (scalar) inertia, �,
to the additional variables ñ, and define the following Lagrangian for
the system

L = 1
2

N�
I

MIṘ2
I + �

2
˙̃n� ⋅ ˙̃n − E(R, ñ). (7)

The scalar product of two complex vectors, a, b ∈ CN is defined

as a� ⋅ b = N∑
i=1

a�i bi. We then introduce the vector of the 2NG

constraints,

σ = {σG1 , . . . , σGNG
, σ�G1 , . . . , σ�GNG

}, (8)

and the 2NG Lagrange multipliers,

λ = {λG1 , . . . , λGNG
, λ�G1 , . . . , λ�GNG

}, (9)

in order to form the constrained Lagrangian given by

L = L + σ� ⋅ λ. (10)

Note that, at variance with typical situations in molecular
dynamics, the constraints and the Lagrange multipliers are, in
general, complex quantities, making it necessary to generalize stan-
dard algorithms for their treatment. The prescribed form for the
Lagrangian respects two important properties. The constraint term,
in fact, can be rewritten as

σ� ⋅ λ = Re�@E
@ñ
� ⋅ Re(λ) + Im�@E

@ñ
� ⋅ Im(λ), (11)

where we have introduced the vector of derivatives,

@E
@ñ
= �������

@E
@ñG1

, . . . ,
@E

@ñGNG

,
@E
@ñ�G1

, . . . ,
@E

@ñ�GNG

�������. (12)

Equation (11) shows that the scalar product of the constraints and
Lagrange multipliers is real and, therefore, so is the constrained
Lagrangian, Eq. (7). Furthermore, the expression verifies, once more,
the equivalence of choosing ñGα and ñ�Gα or the real and imaginary
parts of the density coefficients as independent variables. Indeed,
with the latter choice, the equation indicates that, as expected and
consistently, the constraints
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MIṘ2
I + �

2
˙̃n� ⋅ ˙̃n − E(R, ñ). (7)
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@E
@Re[ñGα] = 0,

@E
@Im[ñGα] = 0 (13)

would be satisfied, via the—real—Lagrange multipliers Re(λGα) and
Im(λGα).

The constrained evolution equations for the MaZe OFDFT
system are then given by

MIR̈I = −∇RI E(R, ñ) + (∇RI σ
�) ⋅ λ,

� ¨̃n = −@E(R, ñ)
@ñ� + @σ�

@ñ� ⋅ λ (14)

≡ @E(R, ñ)
@ñ� + Σ† ⋅ λ,

where we have introduced the matrix Σ† ≡ @σ�
@ñ � , which is the

Hermitian conjugate of

{Σ}α,β = {Σ}�NG+α,NG+β = @σGα

@ñGβ

,

{Σ}α,NG+β = {Σ}�NG+α,β = @σGα

@ñ�Gβ

.
(15)

The evolution equations for the additional variables can be rear-
ranged by first observing that the vector derivative of the energy with
respect to the expansion coefficients is the null vector since it corre-
sponds to the constraints. Dividing the evolution equation for the
additional variables by the inertia, we obtain

MIR̈I = −∇RI E(R, ñ) + (∇RI σ
�) ⋅ λ,

¨̃n = 1
�

Σ† ⋅ λ.
(16)

The key step in the MaZe approach follows by considering the limit
�→ 0 for the second equation above and imposing that this limit
is taken keeping the accelerations of ñ finite. This implies that, for
every component of the vector of the Lagrange multipliers, the ratio
γGβ = lim�→0

λGβ
� must remain finite, entailing that the Lagrange mul-

tipliers are proportional to �. In the limit of zero mass for the
auxiliary variables, then, the constraint forces acting on the ionic
degrees of freedom vanish and the system becomes

MIR̈I = −∇RI E(R, ñ),
¨̃n = Σ† ⋅ γ (17)

with γ = lim�→0
λ
� .

Equation (17) defines the MaZe dynamics for OFDFT. Some
important properties must be noted. First, since the Lagrange mul-
tipliers λ go to zero with the auxiliary mass �, the evolution of
physical variables is not affected by the constraint forces. Second,
the evolution of ñ, controlled only by the constraint forces, satisfies
by construction the minimum conditions at all times. These condi-
tions are thus automatically fulfilled in the first expression of Eq. (17)
also, which is then fully equivalent to Born–Oppenheimer dynam-
ics. This implies that, by rigorously enforcing the Mass-Zero limit

for the auxiliary variables, MaZe provides an evolution that leads to
the exact adiabatic dynamics for the physical variables. This has the
important consequence that the probability density sampled from
the dynamical system for ions is exactly the one typically associ-
ated with Born–Oppenheimer dynamics.2,22 MaZe is then free of
sampling errors typically encountered in schemes with finite val-
ues of the auxiliary variables’ mass. From the point of view of the
algorithm, the first equation can be integrated via any standard MD
algorithm (e.g., Verlet) with a time step determined only by the force
acting on the ions. At each time step, the Lagrange multipliers γ,
which appear as unknown, time-dependent parameters, must also
be determined. This is done by adopting the SHAKE strategy.20,21

In Sec. III, details of the algorithm for OFDFT MaZe dynamics are
provided.

III. MaZe ALGORITHM FOR ORBITAL-FREE DFT
The numerical integration of the dynamical system in Eq. (17)

proceeds as follows: The evolution of ionic degrees of freedom is per-
formed via standard classical MD algorithms. Here, we discuss the
case of Verlet propagation, but there is no difficulty in adopting, for
example, the velocity version of the scheme. Thus,

RI(t + δt) = 2RI(t) − RI(t − δt) − δt2

MI
∇RI E(R(t), ñ(t)), (18)

Where δt is the time step of the simulation. This algorithm requires,
at each step, the computation of forces acting on the ions after
advancement of their positions. These forces,

FI(t + δt) = −∇RI E(R(t + δt), ñ(t + δt)), (19)

depend both on the advanced ionic coordinates and on the values of
ñ(t + δt). The latter can be formally obtained as

ñ(t + δt; γ) = 2ñ(t) − ñ(t − δt) + δt2Σ(t)† ⋅ γ
= ñ P + Σ(t)† ⋅ γ̃. (20)

In the second line above, we have implicitly defined ñ P = 2ñ(t)− ñ(t − δt), to be called later the “provisional” value of the coef-
ficient, and we have scaled the Lagrange multipliers—as usually
done in SHAKE—by the square of the time step, so γ̃ = δt2γ. The
updated density coefficients depend on the set of Lagrange multipli-
ers, which are at this stage unknown. Following the SHAKE strategy,
the multipliers are determined by imposing that the constraints

σ(R(t + δt), ñ(t + δt; γ̃)) = 0 (21)

are satisfied at the positions predicted by the MD algorithm. Equa-
tion (21) is, in general, a system of nonlinear equations to be solved
for the Lagrange multipliers. The solution of this nonlinear system
is obtained via an adapted iterative Newton–Raphson (NR) scheme
in which the values of the Lagrange multipliers at iteration κ + 1 are
given by

γ̃ κ+1 = γ̃ κ − ωJ−1(ñ κ)σ�R(t + δt), ñ κ�. (22)
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Electronic state 
adapts 
instantaeously to 
nuclear positions: 
Born-Oppenheimer 
approximation

Plane waves 
representation of 
electronic density



Polarizable force fields

Shell model: dipole polarization. Total charge is shared between a core (representing 

the nucleus) and a massless shell (representing the electronic charge density).

V(r, ⇢)
Shells adapt instantaneously to the positions of the cores 

and satisfy

r⇢hV(r,⇢) = 0 h = 1 . . . N

General idea: mimic  changes in the electronic density by introducing 
auxiliary dofs that embody different effects.

⇢⇤ ⌘ {⇢h(r)}Nh=1

mir̈i = �rriV(r, ⇢)|⇢=⇢⇤

Ions (cores) move according to

Solve for shells positions



Direct minimization: Born Oppenheimer dynamics for dummies

Solve by (non-linear) minimization 
methods, e.g. non-linear conjugate 
gradient 

Use, e.g. velocity Verlet, to solve numerically 
This of equations for R (only!)

Use these as input
 in potential 

Born-Oppenheimer dynamics: pros and cons
correct dynamics and samping if minimization fully converged

typically non-linear problem expensive to converge 
incomplete convergence results in pathologies for the dynamics

lack of time-reversibility
bad energy conservation



Car-Parrinello for Dummies: 

Extend system to include “fast” variables and let the dynamics realise adiabatic separation

Lagrangian mechanics provides a convenient framework

Evolution equations are obtained from 



Car-Parrinello for Dummies: 

Extend system to include “fast” variables and let the dynamics realise adiabatic separation

Use algorithm, e.g. velocity Verlet, to solve numerically this

coupled set of equations

Pros and cons 
extended dynamical system brings several nice properties
time-reversible

small mass associated to fast variables 
small time step necessary
incomplete adiabatic separation

incorrect physical dofs sampling
bias in dynamical properties



MaZe: “Best of both worlds” (?)

Theory 

Algorithm

Two applications

 First priciple MD 

 Polarizable systems



Extend system to include “fast” variables and interpret minimum condition as a set 

of holonomic constraints

J.P. Ryckaert, A. Bellemans, and G. Ciccotti Mol. Phys, 44, 979 (1986)

A. Coretti, S. Bonella, and G. Ciccotti J. Chem. Phys. Comm., 149, 191102 (2018)

Lagrangian mechanics provides again a convenient framework



Into the MaZe: Evolution equations for the full system 

Mass-Zero (MaZe!) limit 

for auxiliary variables
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µ ! 0 and

A. Coretti, S. Bonella, and G. Ciccotti J. Chem. Phys. Comm., 149, 191102 (2018)



Standard integration algorithm, e.g. Verlet

+ SHAKE to determine the Lagrange multipliers

The algorithm

Solve by (adapted) Newton-Raphson



MaZe properties

Explicit evolution equations for slow  and fast variables 

from a consistent dynamical framework

Full adiabatic separation à Exact sampling of Born-

Oppenheimer probability for the physical degrees of 

freedom
Symplectic algorithm :

SHAKE enables to satisfy the constraint “exactly” at an affordable cost,

fully time-reversible, 

no reduction of cores time-step,        

extremely stable for very long times

Involves the hessian of the potential…but always applied to something! 

Gi(t) =
P3N

h=1 �h(t)r⇢i�h(r(t),⇢(t))

�h ⌘ r⇢hV (r,⇢) = 0 h = 1 . . . N
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ω = 0.35 and ω = 0.21 is set in the standard SHAKE algorithm when
the TFvW and Perrot kinetic energy functionals are used, respec-
tively. For the LCG-SHAKE algorithm, ω = 1 proved the best choice
in all tests performed. The panels in the figure show that, for the
functional considered and irrespective of the solid (upper panel)
or liquid (lower) state of the system, both algorithms converge in
a relatively small number of iterations. Furthermore, LCG-SHAKE
clearly outperforms standard SHAKE when the Perrot functional is
adopted. However, the apparent advantage of standard SHAKE for
the TFvW functional is limited to the number of iterations. In fact,
comparing the efficiency of the two algorithms in terms of average
wall time to solution, Fig. 3, we see that the algorithms (both very
efficient) have relatively similar performances for the TFvW calcula-
tions, while LCG-SHAKE is faster than standard SHAKE for Perrot,
most notably in the case of liquid simulations.

We conclude this survey of the numerical properties of MaZe
by demonstrating, for the more efficient LCG-SHAKE, the linear
scaling of the computational cost with respect to the system size.
For this particular benchmark, ten simulation steps of a system of
solid sodium modeled with the TFvW kinetic energy functional have
been performed for a number of particles ranging from N = 2000
to N = 500 094, and the average wall time per time step has been
reported in Fig. 4 as a function of the number of particles in the
simulation, showing very good linear scaling.

Accuracy and reliability of the LCG-SHAKE MaZe method in
performing physically realistic simulations are now shown on a sys-
tem of liquid sodium modeled through the Perrot kinetic energy
functional. Two sets of simulations are presented in the following, in
the NVE and NVT ensemble. The temperature of the system is the
same for both sets of simulations, T = 434 K. In all cases, the calcu-
lation of the coefficients of density in reciprocal space is performed
using MaZe together with the LCG-SHAKE algorithm, where the
provisional value of the additional dofs is computed through a
standard Verlet algorithm.

We begin by considering the radial distribution function of the
system, shown in Fig. 5. The red curve shows the result obtained
for an NVE run of duration 100 ps. The position and height of
the two peaks are in agreement with previous numerical studies51

FIG. 3. Average wall time per time step comparison between standard SHAKE
and LCG-SHAKE algorithms for different kinetic energy functionals and different
thermodynamic states.

FIG. 4. Performance scaling of a system of solid sodium with TFvW kinetic energy
functional with respect to the number of particles for the LCG-SHAKE algorithm.

performed at the same temperature and are compatible with experi-
mental results52,53 obtained at Texp = 373 K. The green and purple
curves, on the other hand, report NVT results for two different
values of the friction coefficient ν obtained from 50 ps long simula-
tions. As expected, within noise, this static property is independent
of the choice of friction and identical to the NVE output. Figure 6
shows the velocity autocorrelation function obtained from the con-
stant energy run. Both the characteristics of this curve and the
diffusion coefficient obtained by integrating the result over time
(shown as the red curve in Fig. 7) are in very good agreement with
previous numerical results.54 In particular, our computed value of
the NVE diffusion coefficient is equal to 5.37 ± 0.16 cm2s−1, which
agrees with the numerical results reported in Ref. 51 and with the
experimental results reported in Ref. 55 for the temperature of
T = 434 K at which the simulations are performed. Figure 7 also
shows the value of diffusion coefficients computed in NVT simula-
tions with different values of friction coefficients. In this case, the

FIG. 5. Comparison between radial distribution functions from NVT runs performed
using the algorithm in Ref. 50 for a Langevin thermostat for different values of
friction parameters ν. The NVE result is obtained from a 100 ps simulation of
N = 128 particles of sodium at T = 434 K. Plots for the other values of ν
are obtained from 50 ps NVT simulations of N = 128 particles of sodium at
T∗ = 434 K.
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FIG. 6. Normalized velocity autocorrelation function for a 100 ps NVE simulation of
N = 128 particles of liquid sodium at T = 434 K.

result naturally depends on the choice of ν, but we observe that,
again as expected, it approaches the reference NVE for small friction,
further illustrating the reliability of our canonical MaZe.

In the NVT ensemble, the number of iterations to converge the
calculation of the electronic density is also affected by the choice
of ν. In Fig. 8, the path to convergence for a typical run is shown
for two different values of the friction coefficient—ν = 10−3a.u., in
purple, and ν = 10−5a.u., in green—and compared with the NVE
result, in red. The trends in Fig. 8 indicate that the increase in num-
ber of iterations necessary to solve the equation of the constraints
with increasing ν is mainly due to a difference in the value of the
maximum component of the constraints at the start of the iterative
loop. Since the thermostat only affects the dynamics of the physi-
cal degrees of freedom, this depends on the fact that the provisional
value of the electronic coefficients used to initialize the SHAKE rou-
tine at each time step is a less accurate first guess for higher values
of the ionic friction. Indeed, once the initial penalty associated with
the violation of the constraint at zero iteration is absorbed, typically

FIG. 7. Comparison between diffusion coefficients from NVT runs for different val-
ues of the friction parameter ν. The NVE result is obtained from a 100 ps simulation
of N = 128 particles of Na at T = 434 K. The plots for the other values of ν are
obtained from 50 ps NVT simulations of N = 128 particles of Na at T∗ = 434 K.

FIG. 8. Total number of iterations to reach convergence for NVT simulation with
LCG-SHAKE for different values of the friction parameter ν. The horizontal (parallel
to the x-axis) segments represent the number of linear CG iterations used to solve
the linearized equation of the constraints as the values on the y-axis refer to the
Newton–Raphson iterations. Results are obtained for a typical minimization path
along a simulation.

in one Newton–Raphson step, the speed of convergence becomes
comparable with that of NVE. Furthermore, even for large values of
ν, the total number of iterations to convergence remains relatively
small.

We conclude this section by benchmarking LCG-SHAKE
MaZe against standard Born–Oppenheimer dynamics based on
nonlinear conjugate gradient (NLCG) minimization.56 Tests are
particularly focused on the time-reversibility properties of the algo-
rithms and relative efficiency of the two approaches. Note, however,
that for Born–Oppenheimer dynamics, we have used a simple text-
book implementation of the NLCG algorithm. The initial density for
NLCG is taken at each time step to be the final density of the last time
step, thus no extrapolation was performed. Similarly, no precondi-
tioning of the NLCG was used. The comparison is performed on a
set of simulations of N = 16 particles of liquid sodium (L = 8.68 Å)
using the Perrot kinetic energy functional.29,44 A small number
of particles have been chosen to ensure that possible numerical
errors arising in the simulations are mainly due to the propagation
algorithm and not due to the computation of forces. Time reversibil-
ity of the algorithms is tested as follows: Starting from the same
initial configuration, a T = 10 ps simulation is performed using
either nonlinear conjugate gradient Born–Oppenheimer or MaZe
to enforce the minimum energy condition (forward trajectory). The
velocities of the final configuration of the forward runs are then
reversed and a new 10 ps simulation is performed (backward tra-
jectory). Along the forward and backward trajectories, positions of
the particles are recorded every 10 fs. Average root mean square
displacements (RMSDs) normalized to the length of the simulation
box,

RMSD(t) = 1
NL

N�
i=1

�
�r+i (T − t) − r−i (t)�2, (40)

are computed for corresponding configurations along backward
and forward trajectories for the two algorithms. The convergence
threshold of the minimum condition is set to a very stringent value
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FIG. 10. Test of energy-conservation properties of MaZe (LCG-SHAKE, curves
with red symbols) with respect to standard Born–Oppenheimer alternatives, where
the minimization of the energy functional is performed with standard nonlinear
conjugate gradient (NLCG, curves with blue symbols) techniques with different
convergence thresholds. An intermediate threshold of 10−5 for MaZe is also pre-
sented (red line open triangles) to prove the stability and energy conservation
of the algorithm for intermediate tolerances. The total energy on the y-axis is
shifted by the value at the beginning of the simulation. Results are for the forward
trajectories only.

comparable average times per time step along the simulation, the
tolerance of the nonlinear conjugate gradient has to be relaxed by
nine orders of magnitude compared to the lowest tolerance achieved
with LCG-SHAKE. NLCG runs at low convergence, however, lead
to dramatic effects and, in particular, the algorithm suffers an essen-
tially complete loss of time reversibility as shown in Fig. 9, where
the blue open circles show that the average distance between time-
reversed configurations quickly reaches the box dimensions. We also
report in Fig. 9 the RMSD for an LCG-SHAKE run with intermedi-
ate tolerance, corresponding to only one NR iteration per time step.
It can be seen that such a trajectory is stable, with an RMSD that
parallels the RMSD with the lowest tolerance.

Essentially identical results are obtained for energy conserva-
tion in the different runs. Figure 10 shows the MaZe (red curve
with open squares) and NLCG (blue curve with open squares) ener-
gies obtained with the same time step. Moreover, in this case, when
the same stringent convergence threshold is imposed, the results for
the two algorithms are superimposed. However, a significant drift
in the ionic energy appears as shown (blue curve with open cir-
cles) when the convergence in NLCG is relaxed to match the timings
of MaZe.

V. CONCLUSIONS
This work generalizes previous results for OFDFT first-

principles dynamics using the MaZe approach in two important
ways. First, a detailed derivation of the evolution equations has
been presented, highlighting, in particular, the consequences of the
complex nature of Lagrange multipliers associated with the evo-
lution of the coefficients of expansion of the electronic density in
the plane-wave basis. The OFDFT MaZe dynamical system can be

integrated combining standard MD algorithms for the evolution
of ions with the SHAKE method to enforce the minimum con-
dition on the electronic degrees of freedom. Efficient implemen-
tation of the constraints for generic forms of the kinetic and
exchange–correlation functionals, however, is highly nontrivial. We
have shown how to achieve linear scaling in the standard implemen-
tation of SHAKE for GGA functionals and introduced an original
approach that enables � log � scaling of the method for arbitrary
forms of the kinetic and exchange–correlation functional, including
nonlocal expressions where standard SHAKE fails. The accuracy and
efficiency of both algorithms have been demonstrated via simula-
tions of a challenging benchmark system, solid and liquid sodium.
Use of the MaZe approach beyond constant energy simulations
has also been illustrated, presenting results for NVT simulations of
the same system. An in-depth comparison of OFDFT MaZe with
alternative state-of-the-art approaches, in particular XL-BOMD and
advanced implementations of NLCG Born–Oppenheimer dynamics
including preconditioning and smart initialization, will be per-
formed in the future studies. Here, we make a few general pre-
liminary comments. Numerically, when compared to the original
Car–Parrinello dynamics, MaZe has the advantage of enabling the
use of a time step consistent with the ion dynamics instead of
the shorter time steps typically used in Car–Parrinello MD. It also
enforces full adiabatic separation via the limit of zero mass for the
auxiliary variables. Together with the fact that SHAKE efficiently
converges the minimum condition essentially to numerical preci-
sion, this prevents energy drifts and avoids the need for thermostats
to stabilize the dynamics. Even though the overall approach is dif-
ferent, MaZe shares some similarities with the recent XL-BOMD
method, such as the presence of a limit of the fictitious mass going
to zero. However, in XL-BOMD an extra dissipation of the dynam-
ics of the electronic dofs is needed in practice and the accuracy of
propagating the electronic dofs still remains dependent on the inte-
gration time step δt in XL-BOMD, going as δt−2.57 MaZe also avoids
the numerical cost of computing the kernel involved in XL-BOMD.
The advantage over Car–Parrinello and XL-BOMD comes at the
nontrivial cost of the computation of Lagrange multipliers. The cal-
culations presented in this work, however, show that this numerical
cost can be controlled and remains quasilinear with respect to the
system size. The developments presented in this paper, and the
remarkable efficiency of the algorithms introduced, then open the
way to applications of MaZe to more realistic OFDFT models of
condensed-phase systems and set the stage for a future extension of
the approach to Kohn–Sham based DFT.
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ω = 0.35 and ω = 0.21 is set in the standard SHAKE algorithm when
the TFvW and Perrot kinetic energy functionals are used, respec-
tively. For the LCG-SHAKE algorithm, ω = 1 proved the best choice
in all tests performed. The panels in the figure show that, for the
functional considered and irrespective of the solid (upper panel)
or liquid (lower) state of the system, both algorithms converge in
a relatively small number of iterations. Furthermore, LCG-SHAKE
clearly outperforms standard SHAKE when the Perrot functional is
adopted. However, the apparent advantage of standard SHAKE for
the TFvW functional is limited to the number of iterations. In fact,
comparing the efficiency of the two algorithms in terms of average
wall time to solution, Fig. 3, we see that the algorithms (both very
efficient) have relatively similar performances for the TFvW calcula-
tions, while LCG-SHAKE is faster than standard SHAKE for Perrot,
most notably in the case of liquid simulations.

We conclude this survey of the numerical properties of MaZe
by demonstrating, for the more efficient LCG-SHAKE, the linear
scaling of the computational cost with respect to the system size.
For this particular benchmark, ten simulation steps of a system of
solid sodium modeled with the TFvW kinetic energy functional have
been performed for a number of particles ranging from N = 2000
to N = 500 094, and the average wall time per time step has been
reported in Fig. 4 as a function of the number of particles in the
simulation, showing very good linear scaling.

Accuracy and reliability of the LCG-SHAKE MaZe method in
performing physically realistic simulations are now shown on a sys-
tem of liquid sodium modeled through the Perrot kinetic energy
functional. Two sets of simulations are presented in the following, in
the NVE and NVT ensemble. The temperature of the system is the
same for both sets of simulations, T = 434 K. In all cases, the calcu-
lation of the coefficients of density in reciprocal space is performed
using MaZe together with the LCG-SHAKE algorithm, where the
provisional value of the additional dofs is computed through a
standard Verlet algorithm.

We begin by considering the radial distribution function of the
system, shown in Fig. 5. The red curve shows the result obtained
for an NVE run of duration 100 ps. The position and height of
the two peaks are in agreement with previous numerical studies51

FIG. 3. Average wall time per time step comparison between standard SHAKE
and LCG-SHAKE algorithms for different kinetic energy functionals and different
thermodynamic states.

FIG. 4. Performance scaling of a system of solid sodium with TFvW kinetic energy
functional with respect to the number of particles for the LCG-SHAKE algorithm.

performed at the same temperature and are compatible with experi-
mental results52,53 obtained at Texp = 373 K. The green and purple
curves, on the other hand, report NVT results for two different
values of the friction coefficient ν obtained from 50 ps long simula-
tions. As expected, within noise, this static property is independent
of the choice of friction and identical to the NVE output. Figure 6
shows the velocity autocorrelation function obtained from the con-
stant energy run. Both the characteristics of this curve and the
diffusion coefficient obtained by integrating the result over time
(shown as the red curve in Fig. 7) are in very good agreement with
previous numerical results.54 In particular, our computed value of
the NVE diffusion coefficient is equal to 5.37 ± 0.16 cm2s−1, which
agrees with the numerical results reported in Ref. 51 and with the
experimental results reported in Ref. 55 for the temperature of
T = 434 K at which the simulations are performed. Figure 7 also
shows the value of diffusion coefficients computed in NVT simula-
tions with different values of friction coefficients. In this case, the

FIG. 5. Comparison between radial distribution functions from NVT runs performed
using the algorithm in Ref. 50 for a Langevin thermostat for different values of
friction parameters ν. The NVE result is obtained from a 100 ps simulation of
N = 128 particles of sodium at T = 434 K. Plots for the other values of ν
are obtained from 50 ps NVT simulations of N = 128 particles of sodium at
T∗ = 434 K.
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Charge transport properties in superionic conductors….

�↵� =
1

kBT⌦
lim

T !1

Z T

0
d⌧ < J↵(⌧)J�(0) >

Collective properties, difficult statistical convergence, very long trajectories needed



….In the presence of an external magnetic field
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Shell model NaCl in external magnetic field
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1. Lightness: Mass scale separation enables adiabatic approximation MaZe takes the full limit

2. Quickness: Method seems faster (more efficient) than alternatives

3. Exactitude: Formal properties of the algorithm translate in more stable numerical 

evolution and efficiency
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5. Multiplicity: General idea can be applied to different problems

1. First principles MD
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