Tim Cohen - ICTP Lectures 2023
The Standard Model of Particle Physics
Who am I?
What is the Standard Model (SM)?
All known particles and their interactions Unpack the name:

- "Standard": It is so extraordinary, no name could do it justice \Rightarrow use a dull word
- "Model": SM is an Effective Field Theory
- "Particle Physics": Quantum mechanics
(states live in Hilbert space + Symmetries are unitary transformations $)+$ special relativity
(locality $\left.+E=m c^{2}\right) \Rightarrow$ unique framework Quantum Field Theory \Rightarrow Microscopic description in terms of "fundamental particles" described by states in Foch space (Hilbert space $w /$ any number of particles)

Purpose of quantum fields $\hat{\phi}(x)$ is to make locality manifest.

- Central tension of QFT:
states transform in infinite dimensional unitary representation of Poincare group; fields transform in finite dimensional representation.
Ex: Vector field $A^{M}(x)$ (four degrees of freedom) for theories of photons $\mid p, h= \pm)$ (two dofs)

Model Building
Rules of the game

- Specify global Symmetry group (t Poincaré)
- Specify particle/field content (with charges/ representations)
- Write all allowed terms in the Lagrangian \mathcal{Z} up to mass dimension 4.
- Introduce gauge bosons ("gauge global sym") by adding gauge boson kinetic term $\mathcal{L}>-\frac{1}{4} F_{\mu \nu} F^{\mu \nu}$ and promote $\partial_{\mu} \rightarrow D_{\mu}=\partial_{\mu}-i e A_{\mu}$

Dimensional analysis in QFT
"Natural units"
Want to describe processes with

1) Small numbers of particles (quanta) $\Rightarrow \hbar$
2) moving very fast $\Rightarrow c$
\Rightarrow System of units with $\hbar=1$ and $c=1$
$[\hbar]=$ Energy \times time $\Rightarrow \hbar=1 \Rightarrow$ Energy 2 1/time
$[c]=$ length/time $\Rightarrow c=1 \Rightarrow$ length \sim time
\Rightarrow Energy $21 /$ length (Typically use GeV m moran)
High energy \Leftrightarrow short distance
"LHC is world's largest microscope"
Apply to QFT: 安 $=\int P \varphi \exp (i S[\varphi] / \hbar)$

$$
\begin{aligned}
& \Rightarrow {\left[S^{\prime}\right]=1 \cdot S=\int d^{4} \times \mathcal{Z} \Rightarrow[z]=4 } \\
& \mathcal{Z}_{\varphi}>\frac{1}{2}\left(\partial_{\mu} \varphi\right)^{2} \Rightarrow[\varphi]=1 \\
& \mathcal{Z}_{4}>i \overline{4} \ngtr 4 \Rightarrow[4]=3 / 2 \\
& \mathcal{Z}_{A}>-\frac{1}{4}\left(\partial_{\mu} A_{v}-\partial_{v} A_{\mu}\right)^{2} \Rightarrow\left[A_{\mu}\right]=1 \\
& \Rightarrow \mathcal{L}>a \varphi^{3}+\lambda \varphi^{4}+2 \varphi^{5} \Rightarrow[a]=1,[\lambda]=0, \\
& {[N]=-1 }
\end{aligned}
$$

Implications: Scattering cross section

$$
\left.\sigma \sim \frac{1}{E^{2}}\left[\left(\frac{a}{E}\right)^{n}, \lambda^{m}\right)(2 a E)^{b}, \cdots\right]
$$

$\Rightarrow q^{3}$ important at low energy: relevant Q^{4} important at all energy: marginal/ φ^{5} important at high energy: irrelevant General lesson: only sensitive to relevant and marginal interactions at low energies. These are the "renormalizable" theories. Including irrelevant interactions $\Rightarrow E F T s$.

Chiral fermion couplings
Dirac fermion Ψ can be decomposed into a pair of Weyl fermions ψ_{L} and ψ_{R} :

$$
\Psi=\binom{\psi_{L}}{\psi_{R}} \quad \omega / \quad P_{L} \Psi=\binom{\psi_{L}}{0} \quad, \quad P_{R} \Psi=\binom{0}{\psi_{R}}
$$

and $P_{L / R}=\frac{1}{2}\left(\mathbb{1} \mp \gamma^{5}\right)$
The Electroweak gauge bosons $W^{t /-}$ mid Z° couple to ψ_{c} and ψ_{R} differently.

Running Couplings and Dimensional Transmutation
One should interpret coupling "constants"
as scale dependent, where the running is determined
by the renormalization group: $\mu \frac{d g}{d \mu}=\beta(g)$

In both cases, a new dimensionful scale emerges.

Spontaneous Symmetry Breaking
Note $2 \partial+\mu^{2}|H|^{2}-\lambda|H|^{4}$

$$
\Rightarrow V \supset-\mu^{2}|H|^{2}+\lambda|H|^{4}
$$

Linear vs. non-linear realization of $C B$
Specialize to complex scalar field theory $u / U(1)=S 0(2)$ symmetry

$$
Z=\left|\partial_{\mu} \varphi\right|^{2}+\mu^{2}|\varphi|^{2}-\frac{\lambda}{4}|\varphi|^{4}
$$

has global sym: $\varphi \rightarrow e^{i \alpha} \varphi$ when $\langle\varphi\rangle=0$
Minimize $V(\varphi) \Rightarrow\left|\varphi_{0}\right|^{2}=\frac{2 \mu^{2}}{\lambda}$
$\Rightarrow \infty$ family of equavelent varuna $\omega /\left\langle\Omega_{\theta}\right| \varphi\left|\Omega_{\theta}\right\rangle=\sqrt{\frac{2 \mu^{2}}{\lambda}} e^{i \theta}$
Pick one w/ v real and positive: $\frac{v}{\sqrt{2}}=\sqrt{\frac{z_{\mu}^{2}}{\lambda}}\binom{$ Note v us. $v / \sqrt{2}}{$ Convention }

- Linear realization: expand $\varphi=v+\frac{1}{\sqrt{2}}\left(\varphi_{R}+i \varphi_{I}\right)$

$$
\Rightarrow V=\mu^{2} \varphi_{R}^{2}+\frac{\sqrt{\lambda \mu^{2}}}{2} \varphi_{R}\left(\varphi_{R}^{2}+\varphi_{I}^{2}\right)+\frac{\lambda}{16}\left(\varphi_{R}^{2}+\varphi_{I}^{2}\right)^{2}
$$

\Rightarrow Massless $\varphi_{I} \Rightarrow U(1)$ broken to nothing $\Rightarrow 1$ Goldstone boson.
\Rightarrow Massive $\varphi_{R} w / m_{\varphi_{R}}=Z \mu$

- Non-linear realization: expand $\varphi=\frac{1}{\sqrt{2}}(v+\sigma(x)) \exp (i \pi(x) / F)$

$$
\Rightarrow Z=\frac{1}{2}(\partial \mu \sigma)^{2}+\left(v+\frac{1}{\sqrt{2}} \sigma(x)\right)^{2} \frac{1}{F^{2}}(\partial \mu \pi)^{2}-\left(-\frac{v^{2}}{4}+\mu^{2} \sigma^{2}+\frac{1}{2} \sqrt{\lambda} \mu \sigma^{3}+\frac{1}{16} \lambda \sigma^{4}\right)
$$

Setting $F=V \Rightarrow$ Canonical norm for π.
Related to linear version vie field redef. Now identify
$m_{\pi}=0 \Rightarrow$ Goldstone $+m_{\sigma}=Z_{\mu}$ is radial mode
Note: Seeming paradox with $\varphi_{I} \varphi_{I} \rightarrow \varphi_{I} \varphi_{I}$ I see H / W.

Non- linear realization makes manifest that $\pi \rightarrow \pi+F \theta$ is sym. 7 This is a "shift symmetry". All Goldstones have shift sym. This is another signature of spontaneous sym breaking.

Hogs mechanism (Abelian (ie. $4(1))$)
Next, gange the $U(1)$ symmetry:

$$
\mathcal{L}=-\frac{1}{4} F_{\mu \nu}^{2}+\left(\partial_{\mu} \varphi^{*}-i e A_{\mu} \varphi\right)\left(\partial_{\mu} \varphi+i e A_{\mu} \varphi\right)+\mu^{2}|\varphi|^{2}-\frac{\lambda}{4}|\varphi|^{4}
$$

minimize $V(\emptyset) \Rightarrow|\langle\varphi\rangle|=\frac{v}{v_{2}}=\sqrt{\frac{2 \mu^{2}}{\lambda}}$

$$
\begin{aligned}
\Rightarrow & \varphi(x)=\left(\frac{v+\sigma(x)}{\sqrt{2}}\right) \exp (i \pi(x) / v) \quad(\operatorname{set} F=v) \\
\Rightarrow Z= & -\frac{1}{4} F_{\mu v}^{2}+\left(\frac{v+\sigma}{\sqrt{2}}\right)^{2}\left[-i \frac{\partial_{\mu} \pi}{v}+\frac{\partial_{\mu} \sigma}{v+\sigma}-i e A_{\mu}\right]\left[i \frac{\partial_{\mu} \pi}{v}+\frac{\partial_{\mu} \sigma}{v+\sigma}+i e A_{\mu}\right] \\
& -\left(-\frac{\mu^{4}}{\lambda}+\mu^{2} \sigma^{2}+\frac{1}{2} \sqrt{\lambda} \mu^{2} \sigma^{3}+\frac{1}{16} \lambda \sigma^{4}\right)
\end{aligned}
$$

Terms involving only $A_{\mu}: Z_{A}=-\frac{1}{4} F_{\mu v}^{2}+\frac{1}{2} e^{2} v^{2} A_{\mu}^{2} \Rightarrow m_{A}=e v$
Note: $m_{\sigma}=2 \mu$ and $m_{\pi}=0$. σ is the "Highs boson"
Simplify things by taking $m_{\sigma} \rightarrow \infty \quad v / v$ fixed $\Rightarrow \sigma$ decouples from low energy physics

$$
Z=-\frac{1}{4} F_{\mu \nu}^{2}+\frac{1}{2} m_{A}^{2}\left(A_{\mu}+\frac{1}{m_{A}} \partial_{\mu} \pi\right)^{2}
$$

Performing gauge transform

$$
A_{\mu}(x) \rightarrow A_{\mu}(x)+\frac{1}{e} \partial_{\mu} \alpha(x) \quad \text { and } \quad \pi(x) \rightarrow \pi(x)-v \alpha
$$

So can pick gauge where $\pi(x)=0$ "unitary gange"
More generally, recall that in Lorentz gauge $(\xi=0)$

$$
\mu \sim \sim v=\frac{-i}{p^{2}+i \varepsilon}\left(g^{\mu v}-\frac{p^{\mu} p^{v}}{p^{2}}\right)
$$

If we treat $Z \nu-\frac{1}{2} m_{A}^{2} A_{\mu}^{2}$ as vertex $\mu v e v=i m_{A}^{2} g \mu^{\nu v}$
The π propagator as $\cdots-=\frac{i}{p^{2}}$ (massless Goldstone) and cross-term $\mu M \sim--p=i m_{A}\left(-i p_{\mu}\right)$

Then w $\sim \sim \sim \sim+\sim a+\sim-\cdots \sim+\cdots$

$$
\begin{aligned}
& =\frac{-i}{p^{2}+i \varepsilon}\left(g^{\mu \nu}-\frac{p \mu p^{v}}{p^{2}}\right)+i m_{A}^{2} g^{\mu \nu}+m_{A} p^{\mu} \frac{i}{p^{2}} m_{A} p^{v}+\ldots \\
& \text { sun all } m_{A} \text { dep diags } \\
& \downarrow=i m_{A}^{2}\left(g^{\mu \nu}-\frac{p^{\mu} p^{v}}{p^{2}}\right) \\
& =\frac{-i}{p^{2}-m_{A}^{2}+i \varepsilon}\left(g^{\mu \nu}-\frac{p p^{v}}{p^{2}}\right)
\end{aligned}
$$

is massive prop in Lorentz gauge.
This is how gauge boson eats Goldstone to become massive. Connection to superconductivity!

The SM Lagrangian
Gauge bosons:
B^{μ} (hypercharge), $W^{\mu \mu}$ (weak), $G^{a \mu}$ (gluons)

$$
\begin{aligned}
& \quad u\left(1_{y} \quad{\operatorname{SU}(2)_{L}, a=1,2,3} \quad \operatorname{SU}(3)_{c}, a=1, \ldots, 8\right. \\
& Z>-\frac{1}{4} B_{\mu \nu} B^{\mu v}-\frac{1}{2} \operatorname{tr} W^{\mu \nu} W_{\mu \nu}-\frac{1}{2} \operatorname{tr} G^{\mu \nu} g_{\mu v}
\end{aligned}
$$

Hings boson:
$H^{a}(a=1,2)$ SU(2) doublet with hyperclerge $Y_{n}=1 / 2$

$$
\begin{gathered}
\mathcal{L} \supset\left|\left(\partial_{\mu}-i g W_{\mu}^{a} \tau^{a}-i g^{\prime} Y_{H} B_{\mu}\right) H\right|^{2}+\mu^{2} H^{\dagger} H-\lambda\left(H^{H} H\right)^{2} \\
\text { Fermions: } \quad \text { su(3), su(2), sign }
\end{gathered}
$$

Fermions:

$$
\begin{aligned}
& Q=\binom{u_{L}}{d L} \in\left(\begin{array}{l}
k \\
3
\end{array} 2_{1 / 6}^{k}\right)^{u(1)_{y}} \\
& u_{R} \in\left(\overline{3}, I_{2 / 3}\right), \quad d_{R} \in(\overline{3}, 1-1 / 3) \\
& L_{L}=\binom{v_{L}}{e_{L}} \in\left(1,2_{-1 / 2}\right), e_{R} \in(1,1-1) \\
& \mathcal{L} \supset \sum_{4}\left(i \bar{\psi} \gamma \wedge P_{L} D_{\mu} 4+i \overline{4} \gamma^{\mu} P_{R} D_{\mu} 4\right) \quad \begin{array}{l}
* \text { No } \\
\text { right hanged } \\
\text { iss masseles }
\end{array} \\
& D_{\mu}=\partial_{\mu}-i g^{\prime} \underline{L} B_{\mu}-i g W_{\mu}^{a} \tau^{a}-i g_{s} G_{\mu}^{a} t^{a}
\end{aligned}
$$ depending on the representation/chorge

and the "Yukawa couplings"

$$
\begin{aligned}
& \mathcal{L}>-y_{h} Q_{L} H^{c} u_{R}-y_{d} Q_{L} H d_{R}-y_{c} L_{L} H e_{R} \\
& \left(H^{c}\right)_{\alpha} \equiv \sum_{\alpha \beta}\left(H^{*}\right)^{\beta} \quad \sum_{\alpha \beta}=\left(\begin{array}{rr}
0 & +1 \\
-1 & 0
\end{array}\right)
\end{aligned}
$$

Really there are 3 families, so the Yukawa Couplings are matrices.
Note $[g]=\left[g^{\prime}\right]=\left[g_{s}\right]=\left[y_{u, d, e}\right]=[\lambda]=0$ while $\left[\mu^{2}\right]=2$
$\Rightarrow S M$ only has one dimensionful scale!
But this scale appears in front of $|H|^{2}$
\Rightarrow No symmetry that is compatible with
The Standard Model fields can forbid This term
\Rightarrow Expect it to recieve contributions from all heavy scales. This is the hierarchy problem.

Electroweak Theory
Start with just $S U(2)$ gauge bosons
Algebra $\left[\tau^{a}, \tau^{b}\right]=i \varepsilon^{a b c} \tau^{c}$
w/ $a=1,2,3+\varepsilon^{123}=1, \varepsilon^{132}=-1, \ldots$
Generators in fundamental (doublet) rep:

$$
\tau^{a}=\frac{\sigma^{a}}{2} \omega / \sigma^{1}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \sigma^{2}=\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \sigma^{3}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

3 generators $\Rightarrow 3$ gauge fields $W_{\mu}=W_{\mu}^{a} \tau^{9}$
Explicitly

$$
W_{\mu}=\frac{1}{2}\left(\begin{array}{cc}
W_{\mu}^{3} & W_{\mu}^{\prime}-i W_{\mu}^{2} \\
W_{\mu}^{\prime}+i w_{\mu}^{2} & W_{\mu}^{3}
\end{array}\right)
$$

Su(2) gauge transformation $\Omega(x)=\exp \left(i \alpha^{a}(x) \tau^{a}\right)$

$$
\Rightarrow W_{\mu} \rightarrow \Omega W_{\mu} \Omega^{-1}+i \Omega \partial_{\mu} \Omega^{-1}
$$

Take $\alpha^{\prime}=\alpha^{2}=0$ isolates $U(1)$ subgroup of $S G(2)$ (will be part of $U(1)_{\text {EM }}$)
For $\alpha^{3}=$ infinitesimal constant

$$
\begin{aligned}
\Rightarrow W_{\mu} \rightarrow e^{i \alpha^{3} \tau^{3}} W_{\mu} e^{-i \alpha^{3} \tau^{3}} & \simeq W_{\mu}+i \alpha^{3}\left[\tau^{3}, \omega_{\mu}\right] \\
& =W_{\mu}+i \alpha^{3}\left(\begin{array}{cc}
0 & W_{\mu}^{\prime}-i w_{\mu}^{2} \\
-\left(\omega_{\mu}^{\prime}+i v_{\mu}^{2}\right) & 0
\end{array}\right)
\end{aligned}
$$

So $\omega_{\mu}^{\prime} \pm i \omega_{\mu}^{2}=\sqrt{2} \omega_{\mu}^{\mp}$ transforms under this $u(1)\lfloor 12$ with charge ∓ 1 while $W_{\mu}{ }^{3}$ is neutral
Expected since $U(1)$ generator τ^{2} does not commute with other generators.

Now let's couple these gauge bosons to matter Introduce Dirac fermion in fundamental rep of su(2), a "doublet":

$$
\Psi=\binom{\psi_{1}}{\psi_{2}} \quad \omega / \Psi \rightarrow e^{i \alpha^{a} \tau^{a}} \psi
$$

Lagrangian w/ global SU(z) symmetry:

$$
\begin{aligned}
Z & =\bar{\psi}_{i} i \gamma \psi-m \bar{\psi} \psi \\
& =\bar{\psi}_{1} i \gamma \psi_{1}-m \bar{\psi}_{1} \psi_{1}+\bar{\psi}_{2} i \gamma \psi_{2}-m \bar{\psi}_{2} \psi_{2}
\end{aligned}
$$

Note $m_{1}=m_{2}=m$ required by $S u(2)$
Introduce gauge boson interactions $\partial_{\mu} \rightarrow D_{\mu}$ $\omega / D_{\mu}=\partial_{\mu}-i g \omega_{\mu}^{a} \tau^{a}$

$$
\begin{aligned}
\Rightarrow \mathcal{Z}_{\text {int }} & =g \Psi \gamma^{\mu} \tau^{a} \psi W_{\mu}^{a} \\
& =g\left(\tau^{a}\right)_{I}^{J} \bar{\Psi}^{I} \gamma^{\mu} \Psi_{J} W_{\mu}^{a} \\
\Rightarrow & \sum_{i, \mu}^{a^{\mu}}=i g\left(\tau^{a}\right)_{I}^{J} \gamma^{\mu}
\end{aligned}
$$

T non-Abelian "charge"
Rewrite in terms of $w^{+/-}+w^{3}$
Note $\tau_{3}\binom{\psi_{1}}{\psi_{2}}=\frac{1}{2}\binom{+\psi_{1}}{-\psi_{2}}$

$$
\begin{aligned}
& \Rightarrow \mathcal{L}_{\text {int }}=\frac{9}{2} \bar{\psi}_{1} W^{3} \psi_{1}-\frac{9}{2} \bar{\psi}_{2} W^{3} \psi_{2} \\
& +\frac{9}{\sqrt{2}} \bar{\psi}_{1}, x+\psi_{z}+\frac{9}{\sqrt{2}} \bar{\psi}_{2} \not p-\psi_{1} \\
& \overbrace{4_{1}}^{\left\{_{\psi_{1}}^{w^{3}}=\frac{i g}{2} \gamma^{\mu}\right.} \\
& \left\{\begin{array}{c}
w_{2}^{w^{3}}=-\frac{i}{2} g \gamma \mu \\
\psi_{2}
\end{array}\right.
\end{aligned}
$$

These play a role in $\gamma+z$ interactions.

These are "charged current" interactions.
SM Wigs Mechanism
Now lets extend the model to understand The full $\operatorname{Su}^{\chi^{\text {we .4 }}(2)_{L}} \times U^{z^{\text {Hyperchurge }}(1)_{\underline{Y}}} \rightarrow U(1)_{\text {EM }}$ Structure Focus on bosonic sector: $3 W_{\mu}^{a}$ gauge bosons, one B_{μ} gauge boson, an $S u(2)$ doublet with $Y=1 / 2$ Higgs field $H=\binom{H_{1}}{H_{2}}$.

Assume Higgs potential takes wine bottle shape

$$
V=\lambda\left(|H|^{2}-\frac{\mu^{2}}{2 \lambda}\right)^{2} \Rightarrow \sqrt{\left|\left\langle H_{1}\right\rangle\right|^{2}+\left|\left\langle H_{2}\right\rangle\right|^{2}}=\frac{\mu}{\sqrt{2 \lambda}}=\frac{V}{\sqrt{2}} \neq 0
$$

Choose to expand Theory around vacuum

$$
\langle H\rangle=\binom{0}{v / \sqrt{2}}
$$

Note that the $u(1)<\operatorname{Su}(2)$ acts non-trivally 15 on $(H) \quad\left(\tau^{3}=\left(\begin{array}{cc}1 / 2 & 0 \\ 0 & -1 / 2\end{array}\right)\right)$
However, the combination $Q=\frac{d^{3}}{T^{3}}+\underline{Y}^{2} \quad \begin{gathered}\text { Hypercharge } \\ \text { gives }\end{gathered}$

$$
Q(H)=\left(\begin{array}{cc}
1 / 2+1 / 2 & 0 \\
0 & 1 / 2-1 / 2
\end{array}\right)\binom{0}{v / \sqrt{2}}=0
$$

\Rightarrow Identify Q with electric charge such that vacuum is neutral. This corresponds to The unbroken $G(1)_{E M}$
Also, note $Y=0$ for W^{μ}, so we have $Q\left(w^{+/-}\right)= \pm 1$ and $Q\left(w^{3}\right)=0$

The $U(1)_{E M}$ gauge transformation is

$$
\begin{aligned}
& \Omega_{Q}=\exp \left(i \alpha^{3} \tau^{3}+i \alpha_{r} / \tau \mathbb{I}\right)=\exp \left(i \alpha_{Q} Q\right) \\
\Rightarrow & W_{\mu}^{3} \rightarrow W_{\mu}^{3}+\partial_{\mu} \alpha_{Q} \text { and } B_{\mu} \rightarrow B_{\mu}+\partial_{\mu} \alpha_{Q}
\end{aligned}
$$

Therefore, the combination
$Z_{\mu}=\underset{\tau}{c}\left(W_{\mu}{ }^{3}-B_{\mu}\right)$ does not constant transform under $G(1)_{Q}$
$\Rightarrow Z_{\mu} z^{\mu}$ is allowed \Rightarrow massive neutral gauge boson

The or thogonal linear combination transforms non-trivially \Rightarrow must be massless.
We can verify this by brute force (in unitary gauge sit. Goldstone bosons are eaten)

$$
H(x)=\binom{0}{\frac{v+h(x)}{\sqrt{2}}} \quad \begin{array}{ll}
h(x) \text { is real scalar } \\
& \text { field, The "riggs bosom". }
\end{array}
$$

The covariant derivative in unitary gauge is

$$
\begin{aligned}
& D_{\mu} H=\partial_{\mu} H-i\left(W_{\mu}+\frac{1}{2} B_{\mu} \mathbb{H}\right) H=\binom{0}{\frac{1}{\sqrt{2}} \partial_{\mu} h}-i \frac{v+h}{\sqrt{2}}\binom{v_{2} W^{t}}{B_{\mu}-v_{\mu}^{3}} \\
\Rightarrow & Z \rightharpoonup\left|D_{\mu} H\right|^{2} \Rightarrow \text { mass for } W^{t /-} \text { and } Z .
\end{aligned}
$$

Note that these expressions are valid for

$$
I \supset-\frac{1}{2 g^{2}} \operatorname{Tr}\left[W_{\mu \nu} W^{\mu \nu}\right]-\frac{1}{4 g^{\prime 2}} B_{\mu \nu} B^{\mu \nu}
$$

To determine $\omega+Z$ mass, need to work with Canonical normalization \Rightarrow
rescale $W \rightarrow g W$ and $B \rightarrow g^{\prime} B$

$$
\Rightarrow Z=c\left(g W^{3}-g^{\prime} B\right) \text { and } Z \supset-\frac{1}{4}\left(\left(W_{\mu \nu}^{3}\right)^{2}+\left(B_{\mu \nu}\right)^{2}\right]
$$

Normalize z so that it is a rotation in 17 W^{3}, B space so that if preserves the normalization

$$
\begin{aligned}
& \Rightarrow Z=\cos \theta_{\omega} \omega^{3}-\sin \theta_{\omega} B=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(g \omega^{3}-g^{\prime} B\right) \\
& \Rightarrow \cos \theta_{\omega}=c_{\omega}=\frac{g}{\sqrt{g^{2}+g^{\prime 2}}} \text { and } \sin \theta_{\omega}=s_{\omega}=\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}
\end{aligned}
$$

θ_{ω} is "weak rising angle" (or Weinberg angle) The or thogonal combination is the photon:

$$
A_{\mu}=c_{\omega} B_{\mu}+s_{\omega} \omega_{\mu}^{3}
$$

We can also relate the $u(1)$ a coupling 18 to $g+g^{\prime}$ Since $w /$ canonical norm, we have
$A_{\mu} \rightarrow A_{\mu}+\frac{1}{e} \partial_{\mu} \alpha$ under $U(1)_{\alpha}$ gauge trans. and for $U(1)_{\omega}$ and $U(1)_{Y}$ we have

$$
\begin{aligned}
& W_{\mu}^{3} \rightarrow W_{\mu}^{3}+\frac{1}{g} \partial_{\mu} \alpha \quad \partial \quad B_{\mu} \rightarrow B_{\mu}+\frac{1}{g}, \partial_{\mu} \alpha \\
\Rightarrow & A_{\mu}=c_{\nu} B_{\mu}+s_{\omega} w_{\mu}^{3} \rightarrow A_{\mu}+\left(\frac{c_{w}}{g^{\prime}}+\frac{s_{w}}{g}\right) \partial_{\mu \alpha} \\
\Rightarrow & \frac{1}{e}=\frac{1}{\sqrt{g^{2}+g^{\prime 2}}}\left(\frac{g}{g^{\prime}}+\frac{g^{\prime}}{g}\right)=\frac{\sqrt{g^{2}+g^{\prime 2}}}{g g^{\prime}}=\sqrt{\frac{1}{g^{2}}+\frac{1}{g^{\prime 2}}} \\
\Rightarrow & e=\frac{g g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}
\end{aligned}
$$

Now we can compute the masses and interactions for the bosonic electroweak sector:

$$
\text { Note } D_{\mu} H=\binom{0}{\frac{\partial \mu h}{v_{2}}}-i \frac{v+h}{\sqrt{2}}\binom{\sqrt{2} g w_{\mu}^{t}}{\sqrt{g^{2}+g^{\prime 2}} Z_{\mu}}
$$

\Rightarrow Highs kinetic terms \Rightarrow

$$
\begin{aligned}
& \left|D_{\mu} H\right|^{2}=\frac{1}{2}\left(\partial_{\mu} h\right)^{2}+\frac{(v+h)^{2}}{8}\left[2 g^{2}|\omega|^{2}+\left(g^{2}+g^{\prime 2}\right) z^{2}\right] \\
& \Rightarrow m_{\omega}=\frac{1}{2} g v+m_{z}=\frac{1}{2} \sqrt{g^{2}+g^{12}} v=\frac{1}{2} \frac{g}{c_{\omega}} v=\frac{m_{\omega}}{c_{\omega}}
\end{aligned}
$$

Note, the combination

$$
\rho \equiv \frac{m_{\nu}^{2}}{m_{z}^{2} c_{w}^{2}}=1_{\text {tree-level }}
$$

This is an important precision observable for resting the SM (sensitive to loop effects and BSM physics).
The Hings kinetic form also gives us interactions:

$$
v_{w^{\mu}}^{\left.v^{\frac{1}{2}}\right\}_{\omega^{v}}^{h}=\frac{i}{2} g^{2} v \eta_{\mu v}=2 i \frac{m_{\omega}^{2}}{v} \eta_{\mu v}}
$$

$\overbrace{z^{\mu}}^{i_{z^{2}}^{i n}}$

$$
=\frac{i}{2}\left(g^{2}+g^{\prime 2}\right) v \eta_{\mu v}=2 i \frac{v^{2} z}{v} \eta_{\mu v}
$$

$$
\left.\operatorname{z}^{\prime \mu}\right\}_{z^{v}}^{\prime}=\frac{i}{2} \frac{g^{2}}{c_{v}^{2}} \eta_{\mu \nu}
$$

The Hags potential gives

unitary
game

$$
\begin{aligned}
& U(H) \stackrel{\text { gauge }}{=} \frac{1}{2}\left(2 \lambda v^{2}\right) h^{2}+\lambda v h^{3}+\frac{\lambda}{4} h^{4} \\
& \Rightarrow m_{h}=\sqrt{2 \lambda} v=\sqrt{2} \mu
\end{aligned}
$$

and we have Highs self interactions

$$
=-6 i \lambda v
$$

$$
=-6 i \lambda
$$

We also have gauge boson self interactions: All gauge self interactions come from SU(2) structure \Rightarrow we can use the calculations for pare $S U(2)$, with the replacement

$$
w^{3}=c_{w} Z+s_{w} A \quad\left(a / s_{0} \quad B=c_{w} A-s_{v} Z\right)
$$

where A is the photon. \Rightarrow

$$
=-i g c_{\omega}\left[\left(k_{t}-k_{-}\right)_{\rho} \eta_{\mu v}+\left(u_{-}-k_{z}\right)_{\mu} \eta_{\nu \rho}+\left(u_{z}-k_{+}\right)_{v} \eta_{\mu p}\right]
$$

Also, we have:

$$
=-i g s_{w}[\cdots]
$$

Similarly, The pare $W^{\text {t/ }}$ vertices are unchanged
The vertices involving $Z \perp A$ are

Parameters of bosonic sector of $S M$
We see that we have 4 parameters:
g, g^{\prime}, μ, λ
Historically, what was actually measured first were

- e from electromagnitism /QED
- v (really G_{F}) from weak decays (μ decor)
- Sw from v-e scattering and Z-pole
- λ Higgs mas

Summary for bosonic sector

$$
\begin{aligned}
& m_{\omega}=\frac{1}{2} g v=c_{w} m_{z} \\
& m_{h}=\sqrt{2 \lambda} v \\
& s_{\omega}=\frac{g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}} \quad c_{w}=\frac{g}{\sqrt{g^{2}+g^{\prime 2}}} \\
& e=\frac{g g^{\prime}}{\sqrt{g^{2}+g^{\prime 2}}}=g s_{w}=g^{\prime} c_{w}
\end{aligned}
$$

Measured Values:

$$
\begin{aligned}
& m_{w} \simeq 80 \mathrm{GeV}, m_{z}=91 \mathrm{GeV}, m_{n}=125 \mathrm{GaV} \\
& v \simeq 246 \mathrm{GeV}, S_{w}^{2} \simeq 0.23, g \simeq 0.65 \\
& g^{\prime} \simeq 0.35, \lambda \simeq 0.13, \mu \simeq 88 \mathrm{GeV}
\end{aligned}
$$

Quarks and Leptons
Now we need to introduce the $\operatorname{spin} 1 / 2$ matter fields. There are two types: the quarks (charged under $S G(3)$) and The leptons (neutral under Su(3)) There are three copies of each, which are called the "families".

In more detail, a family of leptons consists of 3 Weyl spinors. We will use Dirac notation, $\psi_{L, R}$ with the property

$$
\gamma_{5} \psi_{L}=-\psi_{L}, \gamma_{5} \psi_{R}=+\psi_{R}
$$

The 3 fields are l_{L}, ν_{2}, l_{R}
If is possible that V_{R} also exists, but we do not know for sure so we do not typically include it in the SM, In other words, neutrinos are massless in the SM. Notice we treat left and right differently. We combine the left handed fields into The "lepton doublet" $L_{L}=\binom{v_{L}}{l_{L}}$
which transforms in the fundamental rep of SG(2). We want l_{2} to be the electron, So we should choose its hypercharge so that $Q\left(l_{L}\right)=-1$. Using $Q=T^{3}+Y$ and $T^{3}=-\frac{1}{2}$ for l_{L} we need $Y\left(l_{L}\right)=-1 / 2$

This implies $Q(\nu)=\frac{1}{2}-\frac{1}{2}=0$ so
The neutrinos are neutral.
We also need l_{R} to have $Q\left(l_{R}\right)=-1$.
Since it is an $S u(2)$ singlet, we have

$$
\begin{aligned}
& T_{3}\left(l_{e}\right)=0 \Rightarrow V\left(l_{R}\right)=-1 \\
& \Rightarrow L_{L}=\binom{V_{L}}{l_{L}} \in Z_{-1 / 2}+l_{R} \in \mathbb{I}_{-1} \\
&\left.\tau_{u(2)}+1\right)_{y}
\end{aligned}
$$

When we write Dirac spinors, $l=l_{L}+l_{R}$, we also write $\gamma=v_{L}+v_{R}$. But v_{R} does not couple to anything so it plays no physical role.

Quarks
One family of quarks is made up of

$$
Q_{L}=\binom{u_{L}}{d_{L}} \in \sum_{1 / 6}+u_{R} \in \mathbb{1}_{2 / 3}+d_{R} \in \mathbb{1}_{-1 / 3}
$$

(neglecting su(3))

Families
The families have identical interaction structure.
Only difference is the masses and mixing effects (we will discuss this later when we introduce the CKM matrix).
The 3 families are:

Let's work out their couplings to the $W^{* / \sim}, \mathcal{B}, A$: Writing $\quad w_{\mu}=\frac{1}{2}\binom{w_{\mu}^{3} \sqrt{2} \omega_{\mu}^{t}}{\sqrt{2} w_{\mu}^{-}-w_{\mu}^{3}}$

Then for a generic doublet D_{n} we have

$$
D_{\mu} D_{L}=\left(\partial_{\mu} \mathbb{I}-i g \omega_{\mu}-i g^{\prime} Y\left(D_{L}\right) B_{\mu} \mathbb{A}\right) D_{L}
$$

For a generic singlet S_{R} we have

$$
D_{\mu} S_{R}=\left(\partial_{\mu}-i g^{\prime} Y\left(S_{R}\right) B_{\mu}\right) S_{R}^{\prime}
$$

This gives "charged current" interactions $\mid 26$ for $\quad D_{L}=\binom{4_{u, l}}{4_{d, l}}$

$$
\mathcal{Z} \supset \frac{1}{\sqrt{2}} g \bar{\psi}_{u, c} \gamma \mu w_{\mu}^{+} \psi_{d, L}+\frac{1}{\sqrt{2}} g \bar{\psi}_{d, L} \gamma \mu w_{\mu}^{-} \psi_{u, L}
$$

If we want to express this using $\psi=\psi_{c}+\psi_{e}$ we use $\psi_{c / 2}=\frac{1 \mp \gamma^{5}}{2} \psi$

$$
\begin{aligned}
\Rightarrow Z & =\frac{g}{2 \sqrt{2}} \overline{4}_{u} \gamma^{\mu}\left(1-\gamma^{5}\right) \omega_{\mu}^{+} \psi_{d} \\
& +\frac{g}{2 \sqrt{2}} \overline{4}_{d} \gamma^{\mu}\left(1-\gamma^{5}\right) w_{\mu}^{-} \psi_{u} \\
\Rightarrow & \sum_{i}^{w}=i \frac{9}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right)
\end{aligned}
$$

$4 d \quad 4 u$
lord V or u

$$
\left\{\begin{array}{l}
\{w \\
\left\{=i \frac{g}{2 \sqrt{2}} \gamma^{\mu}\left(1-\gamma^{5}\right)\right.
\end{array}\right.
$$

Note the universality of the couplings.

We can write this in terms of a "charged current"

$$
\begin{aligned}
& J_{\mu}^{+} \equiv \sum_{\text {doublets }}^{1} \bar{\psi}_{d} \gamma_{\mu}\left(1-\gamma^{5}\right) \psi_{u} \\
&=\bar{l} \gamma_{\mu}\left(1-\gamma^{5}\right) v+\bar{d} \gamma_{\mu}\left(1-\gamma^{5}\right) u+\text { other } \\
& \text { families }
\end{aligned}
$$

and $J_{\mu}^{-}=\left(J_{\mu}^{+}\right)^{+}$

$$
\Rightarrow Z \supset \frac{9}{2 \sqrt{2}} \omega_{\mu}+J^{-\mu}+\frac{s}{2 \sqrt{2}} \omega_{\mu}-J^{+\mu}
$$

"Neutral currents" $(Z+A)$ follow from the Same logic.

$$
\mathcal{Z}_{D_{l}} \supset \sum_{l=u, d} \bar{\psi}_{l, l} \gamma^{\mu}\left(g T^{3}(l) \omega_{\mu}^{3}+g^{\prime} Y_{B_{\mu}}\right) \psi_{l, l}
$$

Then using $Q=T^{3}+Y$

$$
\Rightarrow Z_{D_{L}}>\sum_{l}^{\prime} \bar{\psi}_{l, 2} \gamma^{\mu}\left[\left(g w^{3}-g^{\prime} B\right)+T^{3}(l)+g^{\prime} Q(l) B\right] \psi_{l, 2}
$$

Plug in $w^{3}=c_{w} Z+s u A+B=c_{w} A-s_{\nu} Z$

$$
\Rightarrow Z_{D_{l}} \partial \sum_{l} e Q(l) \overline{4}_{L, l} \gamma^{\wedge} A_{\mu} \psi_{l, l}=Z_{Q E D}
$$

For the Z, we have

$$
Z_{D_{L}} \partial \frac{g}{C_{\omega}} \sum_{l} \overline{4}_{l, l} \gamma^{\mu} Z_{\mu}\left[T^{3}(l)-s_{\omega}^{2} Q(l)\right] \psi_{l, L}
$$

For right handed fields, we have

$$
\begin{aligned}
\mathcal{Z}_{S_{R}} & =g^{\prime} B_{\mu} Y\left(\psi_{R}\right) \overline{4}_{R} \gamma^{\mu} \psi_{n} \\
& =e Q\left(\psi_{R}\right) \overline{\psi_{R}} \gamma^{\mu} A_{\mu} \psi_{R}-\frac{g}{c_{\omega}} S_{\omega}^{2} Q\left(\psi_{R}\right) \overline{\psi_{R}} \gamma^{\mu} \xi_{\mu} \psi_{1}
\end{aligned}
$$

\Rightarrow Again we get QED.
We can write the coupling to the Z in terms of a neutral current

$$
J_{\mu}{ }^{0} \equiv \sum_{\substack{\text { coin } \\ \text { fermions }}} \bar{\psi}_{i} \gamma^{\mu}\left(g_{v}(i)-g_{A}(i) \gamma^{5}\right) \psi_{i}
$$

where $Z=\frac{g}{c_{w}} Z_{\mu} J^{0 \mu}$ and we have defined "vector" and "axial" couplings

$$
\begin{aligned}
& g_{V}(i)=\frac{1}{2}\left[T^{3}(i)-2 s_{v}^{2} Q(i)\right] \\
& g_{A}(i)=\frac{1}{2}\left[T^{3}(i)\right]
\end{aligned}
$$

where T^{3} denotes the T^{3} quantum number for the left handed component of The Dirac field.

Feynman rules:

Fermion Masses and Mixings
There is one more set of terms we can write in the Lagrangian with $D \leqslant 4$, The "Yukawa Couplings ': $\quad \mathcal{L}>y_{n} H Q u+y_{d} H Q d+y_{e} H L_{e}$ Let's understand their structure and implications in detail.
Note: Su(3), forbids any Yuhave coupling between quarks and /eptons.

Lepton Yak aws
Must be $S U(2)_{L} \times U(1)_{y}$ invariant
Recall $L_{L} \in Z_{-1 / 2}, e_{R} \in \mathbb{R}_{-1}, H \in Z_{1 / 2}$
Lorentz invariance for spinors requires $L \bar{e}$
Note $Y\left[L_{\bar{e}}\right]=1 / 2 \Rightarrow M_{\text {us }}$ contract w/ H :

$$
\begin{aligned}
& \left(H^{*}\right)^{\alpha} L_{L, \alpha}=H^{*} \cdot L \\
\Rightarrow & \mathcal{L} \partial-y_{e} \bar{e}_{R} H^{*} \cdot L_{L}-y_{e}^{*} \bar{L}_{L} \cdot H e_{R}
\end{aligned}
$$

Plugging in the Highs vav in unitary gauge, we here

$$
\begin{aligned}
H & =\binom{0}{\frac{c+h}{\sqrt{2}}} \quad L_{L}=\binom{V_{L}}{e_{L}} \\
\Rightarrow \mathcal{L} & >-\frac{y_{e}}{\sqrt{2}}(v+h) \bar{l}_{R} l_{L}-\frac{y_{e}^{*}}{\sqrt{2}}(v+h) \bar{l}_{L} l_{R} \\
& =\frac{y_{e}}{\sqrt{2}} v \bar{l} l-\frac{y_{c}}{\sqrt{2}} h \bar{l} l
\end{aligned}
$$

replace l_{L} or l_{R} to mane ye real
\Rightarrow Charged lepton has a Dirac mass $m_{e}=\frac{y e V}{\sqrt{2}}$ and there is a new Feynman vertex:

$$
\begin{aligned}
& \underset{e^{\prime h}}{\underset{x_{e}}{\prime h}=-i \frac{y_{e}}{\sqrt{2}}=-i \frac{m_{e}}{v} . ~ . ~ . ~} \\
& \text { * The neutrino } \\
& \text { Stays massless. }
\end{aligned}
$$

From the masses of the leptons, we can detarnize 131

$$
y_{e}=\frac{\sqrt{2} m_{e}}{v}=\left(\begin{array}{cc}
3 \times 10^{-6}, & 6 \times 10^{-4}, \\
e, & 10^{-2} \\
\mu & \bar{c}
\end{array}\right.
$$

\Rightarrow Couplings between Hings boson and leptons is tiny and typically can be ignored.
Quark Yukawas
To write the up-type Yakawas, we will need

$$
H_{\alpha}^{c} \equiv \Sigma_{\alpha \beta}\left(H^{*}\right)^{\beta}=\left(\begin{array}{cc}
0 & +1 \\
-1 & 0
\end{array}\right)\binom{h_{u}^{*}}{h_{d}^{*}}
$$

This is a doublet of $S G(2) w /$ hypercharge $-1 / 2$
It transforms like a doublet because $\Sigma_{\alpha \beta}$ "lovers"
GU(2) indices. We can check explicitly.
using $\sigma_{2} \tau^{a \phi} \sigma_{2}=-\tau^{a} \Rightarrow \sigma_{2} e^{-i \alpha^{a} \tau^{* a}} \sigma_{2}=e^{i \alpha+\sigma^{a}}$

$$
\begin{aligned}
\Rightarrow H^{c} \equiv i \sigma_{2} H^{\phi} \xrightarrow{S u(2)} i \sigma_{2} e^{-i \alpha^{-} \tau^{a *}} H^{*}=e^{i \alpha^{a} \tau^{a}} \underbrace{i \sigma_{2} H^{\phi}}_{=H^{c}}
\end{aligned}
$$

Then the quark Yukawas are

$$
\begin{aligned}
Z \supset & -y_{d} \bar{Q}_{L} \cdot H d_{R}+h \cdot c . & & \left(y=-\frac{1}{6}+\frac{1}{2}-\frac{1}{3}=0\right) \\
& -y_{u} \bar{Q}_{L} \cdot H^{c} u_{R}+h \cdot c . & & \left(Y=-\frac{1}{6}-\frac{1}{2}+\frac{2}{3}=0\right)
\end{aligned}
$$

In Unitary gauge, $H^{c}=\binom{\frac{u+h}{\sqrt{2}}}{0} \Rightarrow \underset{\substack{\text { gives mass } \\ \text { to up-type } \\ \text { quarks }}}{\text { qu 2 }}$

$$
\begin{gathered}
\Rightarrow \mathcal{L} \supset-\frac{y_{d}}{\sqrt{2}} v \bar{d} d-\frac{y_{d}}{\sqrt{2}} h \bar{d} d-\frac{y_{u}}{v_{2}} v \bar{u} u-\frac{y u}{\sqrt{2}} h \bar{u} u \\
\left.m_{u d_{d}}=\frac{y_{u} u_{d}}{\sqrt{2}} v \quad\right\}_{u, d}=-i \frac{1 / d}{\sqrt{2}}=-i \frac{m_{d}}{v}
\end{gathered}
$$

Yakawas are small except for the top quark:

$$
m_{t} \simeq 173 \mathrm{GeV} \Rightarrow 1 / t \simeq 1
$$

This is the largest coupling in the SM (above the QCD confinment scale)
Impact of family structure
This was correct for a I family model.
But the SM has 3 families \Rightarrow can have mixing between the different families. The point is that we are allowed to do field redefinitions without changing any of the physical observables.

In this case, the field redefinitons are
rotations among the families and rephasing of The fields. We will see that we can remove many of these mixing parameters using such field redefinitions.

3 families of leptons
First we will show that the mixing parameters have no physical impact in the lepton sector (as long as the neutrinos are massless).
Take the most general lepton Yukawa matrix:

$$
\mathcal{I} \supset-\left(Y_{l}\right)_{i}^{j} \frac{L}{L}_{i}^{i} \cdot H e_{R, j}-\left(Y_{l}^{\dagger}\right)^{i} ; e^{j} H^{t} \cdot L_{L, i}
$$

w/ $i=1,2,3$
It seams we now have 9 complex parameters to specify. We will now show that we can absorb all but 3 real parameters into field redefs.
Dote that the kinetic term and gauge interactions are diagonal:

$$
\mathcal{I}>\sum_{i=1}^{3} L_{i}^{i} i \not D L_{L, i}+\sum_{j=1}^{3} \bar{e}_{R} j i \not p e_{R, j}
$$

\Rightarrow There is a $U(3)_{L} \times U(3)_{e}$ global symmetry group

$$
\begin{array}{ll}
L_{L, i} \rightarrow\left(V_{L}\right)_{i}^{j} L_{L, j} & L_{L} \in(3,1) \\
\bar{L}_{L}^{i} \rightarrow\left(V_{L}^{+}\right)^{i} ; \bar{L}_{L} ; & \bar{L}_{L} \in(\overline{3}, 1) \\
e_{R, i} \rightarrow\left(V_{e}\right)_{i}^{j} e_{R, j} & e_{R} \in(1,3) \\
\bar{e}_{R}^{i} \rightarrow\left(V_{e}^{+}\right)^{i} ; \bar{e}_{R} j & \bar{e}_{R} \in(1, \overline{3})
\end{array}
$$

where $U^{\top} V=1$ (the V^{\prime} 's are unitary)
Performing this transformation does not change
The kinetic and gauge terms. It will
Change the Yuhawn terms. We can always write

$$
Y_{e}=U_{L} Y_{e}^{D} U_{R}^{+} \quad \text { w/ } \quad U_{L, a}^{+} U_{L, R}=1
$$

by doing a Singular Value Decomposition. $\omega /$
$Y_{e}^{D}=\left(\begin{array}{ccc}Y_{e} & & O \\ 0 & Y_{\mu} & Y_{T}\end{array}\right)$ is diagonal and
\Rightarrow We can write (Supressing all the indices)

$$
\mathcal{Z}>-\overrightarrow{\bar{L}}_{L} H U_{L} \mathcal{L}_{e}^{D} U_{e} \stackrel{\rightharpoonup}{e}_{R}+\text { hic. }
$$

Then we can perform a $U(3)_{L} \times U(3)_{e}$
transformation $V_{L, e}=U_{L, R}$

$$
\Rightarrow \mathcal{Z}=-\stackrel{\rightharpoonup}{\mathcal{L}} H Y_{e}^{D} \vec{e}_{R}+h \cdot c .
$$

This has profound implications. It tells as That The most general \mathcal{L} with operators $d \leqslant 4$ does not allow lepton flavor transitions.
There is an exact $U(1)$ symmetry left over after rotating to the diagonal basis:

$$
\begin{aligned}
& L_{L}=\binom{V_{L}}{e_{L}} \rightarrow e^{i \alpha_{l}\binom{V_{C}}{e_{L}}} \\
& \bar{e}_{R} \rightarrow e^{-i \alpha_{l}} \bar{e}_{R} \Rightarrow U(1)_{l} \quad \text { "lepton" } \\
& \text { number" }
\end{aligned}
$$

There is one for each family $\Rightarrow 3$ conserved charges "electron number", "union number" and "fan number" These are "accidental symmetries" of the SM. They can be violated by $d>4$ operators.

So processes like $\mu \rightarrow e \gamma, \mu \rightarrow$ eec, ... 36 are forbidden in the $S M$.

Quark masses and mixing
Now we have

$$
\mathcal{L} \supset \sum_{i=1}^{3} \bar{Q}_{L}^{i} i \not D Q_{L, i}+\sum_{j=1}^{3} \bar{u}_{R} j i \phi u_{R, j}+\sum_{n=1}^{3} \bar{d}_{R}^{k} i \phi d_{R, n}
$$

w) flavor group $U(3)_{Q} \times U(3)_{u} \times U(3) d$
\Rightarrow Can remove 3 unitary matrices worth of parameters in The Yukawn couplings.
The new feature is we would need 4 independent unitary matrices to diagonalize both Yahawa couplings in genera, ie., u_{L} and d_{L} are linked.
Let us try to do the same trick:

$$
Y_{u}=U_{L, u} Y_{u}^{D} U_{R, h}^{+} ; Y_{d}=U_{L, d} Y_{d}^{D} U_{R, d}^{+}
$$

set $V_{Q}=U_{L, u}, V_{u}=U_{R, n}, V_{d}=U_{R, d}$

$$
\Rightarrow \mathcal{L} \supset-\stackrel{\rightharpoonup}{Q}_{L} H^{c} Y_{u}^{D} \vec{U}_{R}-\stackrel{\rightharpoonup}{Q}_{L} V_{Q}^{T} U_{L, d} \Psi_{d}^{D} \vec{d}_{R}+\text { h.c. }
$$

So we have the 6 real parameters

$$
\begin{aligned}
& Y_{u}=\operatorname{diag}\left(Y_{u}, Y_{1}, Y_{t}\right) \\
& Y_{d}=\operatorname{diag}\left(Y_{d}, Y_{s}, Y_{b}\right)
\end{aligned}
$$

and a unitary matrix worth of parameters

$$
U_{C K M}^{\prime} \equiv V_{Q}^{\dagger} \cdot U_{L, d}=U_{L, M}^{t} \cdot U_{L, d}
$$

"Cabibbo-Kobayashi-Maskawa" matrix
\Rightarrow There is no exact notion of quart flavor in the SM. So the 3 would be $U(1)^{3}$ global symmetry is broken down to a single $U(1)_{B}$ "Baryon number".

The CGM matrix has another important impact: it can break CP symmetry. To see this, we need to understand the CP structure of the Yuhawa couplings. We know:

$$
\begin{aligned}
& 4 \xrightarrow{P} \gamma^{\circ} 4, H \xrightarrow{P} H, H^{c} \xrightarrow{P} H^{c} \\
\Rightarrow & \overline{4}, H\left(\frac{1-\gamma^{5}}{2}\right) \psi_{2} \xrightarrow{P} \bar{\psi}_{1} H\left(\frac{1+\gamma^{5}}{2}\right) \psi_{2} \quad\binom{\text { used }}{\{\gamma, \gamma, \gamma \xi\}=0}
\end{aligned}
$$

Under $G^{\prime}: \quad \Psi \rightarrow i \gamma^{2} \gamma^{0} \bar{\psi}^{t} ; H \rightarrow H^{*}$

$$
\begin{aligned}
& \Rightarrow \bar{\psi}_{1} H\left(\frac{1+\gamma^{5}}{2}\right) \psi_{2} \xrightarrow{c p} \psi_{1}^{t} H^{*}\left(i \gamma^{2} \gamma^{0}\right)^{2}\left(\frac{1-\gamma^{5}}{2}\right) \psi_{2}^{t} \\
&=-\psi_{1}^{t} H^{*}\left(\frac{1-\gamma^{5}}{2}\right) \bar{\psi}_{2}^{t} \\
& {\left[\left(i \gamma^{2} \gamma^{0}\right)^{2}=\mathbb{1}\right] } \\
& \text { arti-cormete }= \\
& {\left[\left(\overline{4}_{1} \gamma^{5} \psi_{2}\right)^{t}=\right.}\left.=-\bar{\psi}_{2} H^{2} H^{*}\left(\frac{1-\gamma_{1}}{2}\right) \psi_{1}\right]
\end{aligned}
$$

\Rightarrow Yuhawa operator θ_{y} transforms to its Conjugate under $C P$.

$$
\begin{aligned}
\Rightarrow \mathcal{L}_{Y}=Y \theta_{Y}+Y^{*} \theta_{Y}^{t} \xrightarrow{C P} & \underline{Y} \theta_{Y}^{+}+Y^{*} \theta_{Y} \\
& =\mathcal{L}_{Y} \text { iff } Y=r^{*}
\end{aligned}
$$

So complex Yukawa couplings break CP. In our basis above, we diagonalized the up -type iukawas using SVD. So the up-type sector preserves $C P$.
The down-type sector depends on U cum. Since $Y_{d}{ }^{D}$ is real, the down-type Sector preserves $C P$ if $V_{c k M}^{*}=V_{\text {cuM }}$.

Since Vcum is unitary, it in principle $\angle 39$ has many complex entries. But we did not exhaust our field redefinition freedom yet, ie., some of the Vcum parameters are unphysical.
Our Lagrangian is invariant under $3 \mathrm{U}(1)$ phase rotations in the up-sector (just like for
the leptons):

$$
Q_{L}^{j} \rightarrow e^{i \alpha_{j}} Q_{L}^{j} ; u_{R}^{j} \rightarrow e^{i \alpha_{j}} u_{R}^{j} \quad j=1,2,3
$$

We can also rephase all the d_{R} 's:

$$
d_{R}^{j} \rightarrow e^{i \beta_{j}} d_{R}^{j} \quad \omega / \quad j=1,2,3
$$

The down-type Kuhawas break all 6 of these $U(1)$ global symmetries down to $U(1)$ Baryon number: $\quad \alpha_{j}=\beta_{j} \equiv \alpha_{B} \Rightarrow$ There are 5 phase rotations we can do to remove phases in CM:

$$
\left.\begin{array}{l}
\mathcal{L}>-\vec{Q}_{L} H \cdot\left(V_{\text {cum }} \cdot Y_{d}^{D}\right) \vec{d}_{R}+\text { hic. }
\end{array} \begin{array}{c}
\text { both diagoul } \\
\text { so then } \\
\text { comunfe }
\end{array}\right)
$$

So we can redefine

$$
V_{\text {chM }} \rightarrow e^{-i \operatorname{diag}(\hat{\alpha})} V_{\text {cum }} e^{i \operatorname{diag}(\vec{B})}
$$

Taking $\alpha_{i}=\beta_{i}=\alpha_{B}$ has no impact, so This is how we remove 5 phases.
Let us count parameters:
We know that an $N \times N$ unitary matrix has N^{2} real parameters. Of Ruse,
$N(N-1) / 2$ are angles and
$N(N+1) / 2$ are phases.

- Assume $N=1$ generations $\Rightarrow 1$ phase

Can absorb this phase w/ chiral phase rotation $\alpha=-\beta$ (confirms what we already knew for $N=1$ model). $\alpha=\beta$ rotation does nothing.

- Assume $N=2$ generations $\Rightarrow 1$ angle +3 phases. Now we have $2 \alpha^{\prime}$ s and $Z \beta$'s that can absorb phases, but $\alpha_{1}=\alpha_{2}=\beta_{1}=\beta_{2}=$ baryon $\#$ has no impact \Rightarrow remove 3 phases \Rightarrow no $A P$ and one angle.

This is the "Cabibbo Angle"

$$
\begin{gathered}
\Rightarrow V_{c k \mu}^{(2)}=\left(\begin{array}{cc}
\cos \theta_{c} & \sin \theta_{c} \\
-\sin \theta_{c} & \cos \theta_{c}
\end{array}\right) \\
\omega / \sin \theta_{c} \simeq 0.23
\end{gathered}
$$

- Assume $N=3$ generations $\Rightarrow 3$ angles and 6 phases Can use 5 of 6 phases $\vec{\alpha}+\vec{\beta}$ to remove 3 phases. \Rightarrow Van specified by 3 angles and $16 P$ phase.
Now that we know the physical content of the ChM matrix, we can study how it enters the Feynman rules. There are two basis choices that are typically discussed. The first is the "gauge eigenstate" basis, where the couplings to the W boson are diagonal in flavor space, The up-type quark masses are diagonal, but the down-type Yukawas take the form (in unitary gunge):

$$
\begin{aligned}
\mathcal{L}> & -\stackrel{\rightharpoonup}{Q_{L}} H \cdot V_{C K M} \cdot Y_{d}^{D} \vec{d}_{R}+\text { h.c. } \\
& =-\frac{v+h}{\sqrt{2}} \overrightarrow{\bar{J}}_{L} \cdot V_{C K M} \cdot V_{d}^{D} \vec{d}_{R}+h \cdot c .
\end{aligned}
$$

\Rightarrow non-diagonal mass matrix, so miring effects must be included in propagators. The other basis is the "mass eigenstate" basis, where we diagonalize the down-type iukawe

$$
\begin{aligned}
\Rightarrow \mathcal{Z}> & \frac{g}{\sqrt{2}}\left(V_{c h m}\right)_{i} j W_{\mu}^{+} \bar{u}_{L}^{i} \gamma^{\mu} d_{L, j} \\
& +\frac{g}{\sqrt{2}}\left(V_{\text {chm }}^{*}\right)_{j}^{i} W_{\mu} \bar{d}_{L}^{j} \gamma^{\mu} u_{c, i}
\end{aligned}
$$

All other interactions are flavor diagonal.

$$
\Rightarrow \sum_{d_{j}}^{\omega t} \psi_{u_{i}}=i \frac{g}{\sqrt{2}}\left(v_{c u m}\right)_{i j} \gamma^{\mu}\left(1-\gamma^{5}\right)
$$

+ conjugate diagram

The ChM matrix is often written as 143

$$
V_{c k \mu}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

So that

There is a common phenomenological parametrization due to Wolfenstein:

$$
\begin{aligned}
& V_{\text {chm }}=\left(\begin{array}{ccc}
1-\lambda / 2 & \lambda & A \lambda^{3}(p-i \eta) \\
-\lambda & 1-\frac{\lambda^{2}}{2} & A \lambda^{2} \\
A \lambda^{3}(1-p-i \eta)-A \lambda^{2} & 1
\end{array}\right)+\theta\left(\lambda^{2}\right) \\
& \omega\left(\quad \lambda \simeq \sin \theta_{<} \simeq 0.23\right. \\
& A \simeq 0.8, p \simeq 0.14, \eta \simeq 0.35
\end{aligned}
$$

$\Rightarrow 1 \leftrightarrow 2$ transitions most likely, $Z \leftrightarrow 3$ Somewhat likely, $1 \leftrightarrow 3$ transitions least /likely

Since $C P$ requires 3-families, we can
pat the phase in $1-3$ entry \Rightarrow tiny effect.
It is often a good approx to take

$$
V_{c u M} \simeq\left(\begin{array}{cc}
U_{c, b i b b} & 0 \\
0 & 1
\end{array}\right)
$$

Intro to Effective Field Theory (EFT)
We are familiar with the idea that 1903.03622 one does not need to know the detailed microscopic properties of a system to accurately model it.
eeg. Friction, Thermadyalamics,...
QM e.g. Hydrogen: treat proton as pointline is good approx since $r_{B}=10^{-7} \mathrm{~cm}$ white $r_{p} \sim 10^{-13} \mathrm{~cm}$
ratio of scales $r_{P} / r_{B} \sim 10^{-6}$
EFT makes these types of approximations systemath We will use toy scalar theory to illustrate how to generate sys expansion E / M
$E=$ low energy of experiments $+\mu=$ heavy mass sure Termanology
relevant couplings: positive mass $\operatorname{dim}\left(m^{2} \varphi^{2}\right)$ marginal couplings: zero mass dim $\left(\lambda \phi^{4}\right)$
irrelevant couplings: negative comas $\operatorname{dim}\left(\frac{1}{M^{2}} \phi^{6}\right)$ fundamental theory: UV Effective theory: IR

Two real scalar fields $\varnothing+\eta$ w/ $m_{\varphi} \ll m_{\eta} \quad 46$ Want effective description for $E \ll m_{y}$ Impose a Z_{2} symmetry $\phi \rightarrow-\varphi \forall q \rightarrow+\eta$

$$
\mathcal{Z}=\frac{1}{2}(\partial \varphi)^{2}-\frac{1}{2} m_{\varphi}^{2} \varphi^{2}+\frac{1}{2}(\partial \eta)^{2}-\frac{1}{2} m_{\eta}^{2} \eta^{2}-V
$$

$\omega / V=\frac{\lambda}{4!} \varphi^{4}+\frac{9}{2} \phi^{2} \eta+\frac{\frac{s}{}^{\prime}}{3!} \eta^{3}+\frac{\lambda^{\prime}}{4} \phi^{2} \eta^{2}+\frac{\lambda^{\prime \prime}}{4!} \eta^{4}$
Path integral to compute ϕ correlation Functions:

$$
z[J]=\int \rho \varphi \mathcal{q} \exp \left[i S[\phi, q]+\int J \varphi\right]
$$

Nate only include Source for φ, since we do not have energy to produce I Path integral for EFT

$$
Z_{e f f}[J]=\int D \varphi \exp \left[i S_{e f f}[\phi]+\int J \varphi\right]
$$

with $\exp \left[i S_{\text {eff }}[\varphi]\right]=\int D_{\eta} e^{i S[\varphi, \eta]}$
This could be useful if Seff is "local" i.e., Leos is polynomial in fields and derivaties of fields
Call procedure for deriving SPf "integrating out" the heavy field q.

Let's compute a few terms

$$
\Rightarrow i S_{\text {eff }}[\phi]=i S_{\varphi}+i-1+i+\ldots
$$

Focus on 4-point:

$$
\begin{aligned}
& =-i \lambda-i g^{2}\left[\frac{1}{s-m_{\eta}^{2}}+\frac{1}{t-m_{\eta}^{2}}+\frac{1}{u+m_{\eta}^{2}}\right]
\end{aligned}
$$

Assume $E \ll m_{\eta}: \frac{1}{p^{2}-m_{\eta}^{2}+i \varepsilon}=-\frac{1}{m_{\eta}^{2}}-\frac{p^{2}}{m_{\eta}^{4}}+\ldots$

$$
\begin{aligned}
& \Rightarrow-i \not \prod^{\prime}=\lambda+\frac{g^{2}}{m_{\eta}^{2}}+\frac{g^{2}}{m_{\eta}^{4}}(s+t+n)+\cdots \\
& \Rightarrow \mathcal{L}_{\text {eff }}^{(4)}=-\frac{1}{4!}\left(\lambda-\frac{3 g^{2}}{m_{\eta}^{2}}\right) \varphi^{4}-\frac{g^{2}}{8 m_{\eta}^{4}} \varphi^{2} D \varphi^{2}+\cdots
\end{aligned}
$$

What are we doing? Shrinking heavy line to point:

Power Counting
Integrating oat y generates an $\infty \#$ of terms (an we organize them?
Assume: Fundamental params

$$
\begin{aligned}
& g, g^{\prime} \sim m_{\eta}=M \quad+\lambda, \lambda^{\prime}, \lambda^{\prime \prime} \sim \theta(1) \\
& \Rightarrow \mathcal{L}_{\text {eff }} \sim \sum_{n, m} \frac{1}{\mu^{n+m-4}} \partial^{n} \theta^{m \quad w / \text { pow }} \text { syn }
\end{aligned}
$$

w/ only even powers due te Symmetries
eg af $\theta\left(1 / \mu^{2}\right): \theta^{6}, \partial^{2} \phi^{4}, \partial^{4} \phi^{2}$
Truncating to $\theta\left(\begin{array}{c}\left.1 / \mu^{2}\right) \Rightarrow \text { computing amplitudes } \\ E^{2}\end{array} \mu^{2}\right.$ a to accuracy E^{2} / M^{2}.
\Rightarrow Power counting determines accuracy of calculation
Integrate out field using equations of motion
"Semiclassical expansion": evaluate action on a solution to EOM

$$
\begin{aligned}
& S_{e f f}^{\prime}[\phi]=S\left[\varphi, \eta_{c 1}\right]+\theta(\hbar) \\
& \omega /\left.\frac{\delta S[\varphi, \eta]}{\delta \eta}\right|_{\eta=\eta_{c 1}}=0
\end{aligned}
$$

$$
\stackrel{\text { EON }}{\Rightarrow} \square \eta+m_{\eta}^{2} \eta+\frac{9}{2} \varphi^{2}+q^{\prime} \eta^{2}+\frac{\lambda^{\prime}}{2} \eta \varphi^{2}+\frac{\lambda^{\prime \prime}}{6} \eta^{3}=0
$$

Solve itteratively: $\eta_{c_{1}}^{(1)}=\frac{-9}{2 m_{\eta}^{2}} \varphi^{2} \sim \theta\left(\frac{1}{M}\right) \quad 49$

$$
\Rightarrow \eta_{c_{1}}=\underbrace{-\frac{g}{2 m_{\eta}^{2}} \phi^{2}}_{\theta\left(\frac{1}{n}\right)}-\underbrace{\frac{1}{m_{\eta}^{2}} D \eta_{c_{1}}-\frac{\lambda^{\prime}}{2 m_{\eta}^{2}} \eta_{c_{1}} \phi^{2}}_{\theta\left(1 / M^{3}\right)}-\underbrace{\underbrace{\frac{g^{\prime}}{2 m_{\eta}^{2}} \eta_{c}^{2}}_{\theta\left(1 / \mu^{3}\right)}-\frac{\lambda^{\prime \prime \prime}}{\frac{m_{\eta}^{2}}{} \eta^{3}} \underbrace{}_{\theta\left(1 / \mu^{5}\right)}}_{\theta\left(1 / M^{3}\right)}
$$

\Rightarrow To go to $\theta\left(1 / m^{3}\right)$ sub $\eta_{c 1}^{(1)}$ into EOM Keeping terms up to $O\left(1 / M^{3}\right)$

$$
\Rightarrow \eta_{c 1}^{(3)}=\frac{-g}{2 m_{2}^{2}} \varphi^{2}+\frac{g}{2 m_{\eta}^{4}} D \varphi^{2}+\left(\frac{g \lambda^{\prime}}{4 m_{\eta}^{4}}+\frac{g^{2} g^{\prime}}{4 m_{\eta}^{6}}\right) \varphi^{4}+\theta\left(\frac{1}{r^{5}}\right)
$$

Sub into $\mathcal{L u v}$

$$
\begin{aligned}
\Rightarrow \mathcal{L}_{\text {eff }} & =\frac{1}{2}(\partial \varphi)^{2}-\frac{1}{2} m_{\phi}^{2} \phi^{2}-\frac{1}{4!}\left(\lambda-\frac{3 g^{2}}{m_{\eta}^{2}}\right) \varphi^{4} \\
& -\frac{1}{6!}\left(\frac{45 \lambda^{\prime} g^{2}}{m_{l}^{4}}-\frac{15 g^{\prime} g^{3}}{m_{l}^{6}}\right) \varphi^{6} \\
& \left.+\frac{g^{2}}{8 m_{l}^{4}} \partial_{\mu} \varphi^{2}\right)\left(\partial^{\mu} \varphi^{2}\right)+\theta\left(1 / m^{4}\right)
\end{aligned}
$$

which agrees w/ previous diagramatic ${ }^{a}$ prices upon integration by parts of $\left(\partial q^{2}\right)^{2}$ teem.

Simplifying $\mathcal{Z e f f}^{\text {eff }}$
Two stradigies:
(1) integration by parts
(2) field redefinitions

Ex: Classify all possible terms of the form $\partial^{2} \phi^{n}$ Using $\partial_{\mu} \phi^{r}=r \phi^{r-1} \partial_{\mu} \varphi$ rewrite operator so each derivative acts on single field.
\Rightarrow Most general operator is linear combo of

$$
\phi^{n-1} D \phi \quad \text { and } \quad \phi^{n-2} \partial^{\mu} \varphi \partial_{\mu} \varphi
$$

Then $\phi^{n-2} \partial^{\mu} \phi \partial_{\mu} \phi=\frac{1}{n-1} \partial^{\mu} \varphi^{n-1} \partial_{\mu} \varphi$

$$
=-\frac{1}{n-1} \phi^{n-1} \square \varphi+\operatorname{tata}_{\text {der }}
$$

\Rightarrow Only single independent operator for each n.
Ex: Field redefinitions (aka "using the equations of motion")
Let $\varphi \rightarrow \varphi+f(\varphi)$ and expand in powers of $f(\varphi)$:

$$
Z=\frac{1}{2}(\partial \varphi)^{2}-V \rightarrow \frac{1}{2}(\partial \varphi)^{2}-V-f(\varphi) \underbrace{\left[D \varphi+V^{\prime}\right]}_{E O M}+O\left(f^{2}\right)
$$

Ex: Let's simplify our previous example 51

$$
\begin{aligned}
\varphi & \rightarrow \varphi_{+}+\frac{g^{2}}{m_{\eta}^{4}} \phi^{3} \\
\Rightarrow \mathcal{Z}_{\text {eff }} & \rightarrow \mathcal{Z}_{\text {eff }}+\frac{c g^{2}}{m_{\eta}^{4}} \phi^{3}\left[D \varphi+m_{\varphi}^{2} \varphi+\frac{\lambda}{3!} \phi^{3}\right]+\theta\left(\eta^{-4}\right)
\end{aligned}
$$

Taking $c=\frac{1}{2} \Rightarrow$
$\theta(1) \quad \theta\left(1 / \mu^{2}\right)$

$$
\begin{aligned}
\mathcal{L}_{\text {eff }} & \rightarrow \frac{1}{2}(\partial \varphi)^{2}-\frac{1}{2} m_{\varphi}^{2} \phi^{2}-\frac{1}{4!}\left(\lambda-\frac{3 g^{2}}{m_{q}^{2}}-\frac{6 g^{2} m_{q}^{2}}{m_{q}^{4}}\right) \theta^{4} \\
& +\frac{1}{6!}\left[\frac{g^{2}\left(45 \lambda^{\prime}-60 \lambda\right)}{m_{q}^{4}}-\frac{15 g^{\prime} j^{3}}{m_{q}^{6}}\right] \varphi^{6}+\theta\left(1 / m^{4}\right)
\end{aligned}
$$

We have eliminated the $\partial^{2} \phi^{4}$ term!
\Rightarrow All indirect effects from q cain be modeled by modified ϕ^{4} and ϕ^{6} terms up to $\theta\left(E^{2} / M^{2}\right)$

This justifies using the classical EMs to rewrite the \mathcal{Z} into a more convenient form.

Universality
Different UU Theories can yield same IR theory Call This "universality".
Ex: Let's add N heavy fields η_{i}
$\omega /$ Same z_{2} sym $\varphi \rightarrow-\varphi$ and $\eta_{i} \rightarrow \eta_{i}$

$$
\begin{aligned}
& \quad \mathcal{I}=\mathcal{Z}_{k i n}-V \\
& V=\frac{\lambda}{4!} \varphi^{4}+\frac{g_{i}}{2} \varphi^{2} \eta_{i}+\frac{J_{i j u}^{\prime}}{3!} \eta_{i} \eta_{j} \eta_{k}+\frac{\lambda_{i j}^{\prime}}{4} \varphi^{2} \eta_{i} \eta_{j}+\frac{\lambda_{j i j u_{i}}^{\prime} \eta_{i j} \eta_{l}}{4!}
\end{aligned}
$$

Power counting: $M \sim m_{y_{i}} \sim g_{i} \sim g_{i}^{\prime} \gg m_{p}$

$$
\lambda \sim \lambda_{i j}^{\prime} \sim \lambda_{i j r e}^{\prime \prime} \sim \theta(1)
$$

Claim: $\mathcal{L}_{\text {eft }}=\frac{1}{2}(\partial \varphi)^{2}-\frac{1}{2} m_{\varphi}^{2} \phi^{2}-\frac{\lambda_{4 \text { eff }}}{4!} \phi^{4}-\frac{\lambda_{6 \text { eff }}}{6!\mu^{2}} \phi^{6}$
$\omega / \lambda_{\text {Goff }}+\lambda_{\text {Goff }} \sim 1$ ${ }_{T} \theta\left(1 / m^{4}\right)$
and we used int by parts + EOM to eliminate $\partial^{2} \phi^{4}$ tern
Using EONs: $\eta_{c 1 i}=\frac{-g_{i}}{2 m_{\eta_{i}}^{2}} \phi^{2}+\theta\left(1 / M^{3}\right)$

$$
\Rightarrow \quad \lambda_{4 \text { eff }}=\lambda-\sum_{i} \frac{3 g_{i}^{2}}{m_{q_{i}^{2}}^{2}}+\theta\left(1 / \mathrm{m}^{2}\right) \quad \begin{aligned}
& \text { Note "de coupling" } \\
& \text { when } m_{z_{i}}
\end{aligned}>m_{z_{j}}
$$

Bottom Up EFT
Leading terms in Jeff Consist of all relevant and marginal interactions that are compatible w/ symmetries that are inherited from fund amental theory.
Impact of higher dimension operators are supressed by powers of E / M
Ex: Standard Model

$$
\Delta L_{\text {eff }} \sim \frac{1}{M}(L H)^{2} \xrightarrow[\langle H\rangle=v]{ } m_{v}=\frac{v^{2}}{M}
$$

\Rightarrow "explain" small neutrino masses.
Ex: Baryon + Lepton number are accidental symmetries \Rightarrow proton decay via higher dimension operators

Interpreting irrelevant interactions

$$
\mathcal{Z}_{\text {eff }}=\frac{\lambda_{6}}{6!} \emptyset^{6} \quad \omega /\left[\lambda_{6}\right]=-2
$$

Assume more fundamental theory w/ scale M and $\theta(1)$ couplings
Then $\lambda_{6}^{-1 / 2} \stackrel{?}{\sim} M$

From oar example, we had

$$
\lambda_{6}=\frac{9^{2}\left(45 \lambda^{\prime}-60 \lambda\right)}{m_{\eta}^{4}}-\frac{15 g^{\prime} g^{2}}{m_{q}^{6}}
$$

So rule of thumb holds for $g \sim g ' \sim m y \sim A$ and $\lambda \sim \lambda^{\prime} \sim 1$

But could have taken couplings small

$$
\Rightarrow \quad \lambda_{6}^{-1 / 2} \gg m
$$

Could we have taken couplings large?
\Rightarrow breakdown of pert theory
Can formalize as violating partial wave anitarity to find $M \leqslant 100 \lambda_{6}^{-1 / 2}$
\Rightarrow If we observe higher dim op \Rightarrow upper bound on new physics scale

Boffom up margin + relevant couplings 55

- marginal: dimensionless \Rightarrow no in fo about heavy new physics scale (loops will induce logarithmic sensitivity)
- relernut Couplings:

$$
\mathcal{L}_{\text {eff }}=-\frac{\lambda_{3}}{3!} \phi^{3}
$$

Naively if $\lambda_{3} \sim \mu \Rightarrow \operatorname{dim}$ analysis $\Rightarrow M_{2} \frac{\lambda_{3}}{E} \sim \frac{\mu}{E}$ >1
$\Rightarrow E F T$ does not make sense
Must have $\lambda_{3} \ll \mu$, Can be enforced by a symmetry (e.g. $\varphi \rightarrow-\varphi$) that is broken by small coupling (sparion).
We will revisit this.

- Mass: $\mathcal{L e f f ~}^{\text {en }}=-\frac{1}{2} m_{p}^{2} \varphi^{2}$

Loops will shift this by $\sim \frac{1}{16 \pi^{2}} M^{2}$ \Rightarrow Hierarchy problem.
Can use symmetry to solve this problem: Sask or "shift symmetry" $\varnothing \rightarrow \varphi+c$

Expanded perturbation theory: $L 56$ Now we are doing dual expansion

1) loop (h $^{\text {) expansion }}$
2) E / M expansion

Clearly distinguished at tree, but
This becomes much more subfle at loop leal.
EFTS and the SM:

- Eccme: Euler -Heisenberg for photons
- E<< $\Lambda_{Q C D}$: Chiral \mathcal{L} for light mesons
- $E C C M_{w}$: Fermi theory for quarks and leptons

$$
\text { HEFT }\left(\omega / \Lambda_{v p} \sim v\right)
$$

EFTs w/ Kinematic restrictions

- HQET: $m_{Q}>\Lambda_{Q C D} \quad P \ll m_{Q}$
 PurE
-SCET: $P \ll \sqrt{\tilde{S}} \omega / P$ "colinew"

Euler - Heisenberg
Integrate out the electron to generate light-by-light scattering

Full Theory

$$
\begin{aligned}
i M & =\operatorname{Ser}^{2} E F T \\
I_{E F T} & =\frac{c}{m_{e}^{4}}\left(F_{\mu v} F^{\mu v}\right)^{2}+\frac{c^{\prime}}{m_{e}^{4}}\left(F_{\mu \nu} \tilde{F}^{\mu \nu}\right)^{2} \\
\tilde{F}^{\mu v} & =\varepsilon^{\mu v \rho \sigma} F_{p o}
\end{aligned} \alpha=\frac{e^{2}}{4 \pi}
$$

Matching calculation $\Rightarrow C=\frac{\alpha^{2}}{90}+C^{\prime}=\frac{7 \alpha^{2}}{360}$ Can be used to compute

$$
\sigma_{r r \rightarrow \gamma r}=\frac{973}{10125 \pi} \alpha^{4} \frac{\omega^{6}}{m^{8}}
$$

(see Schwortz 33.4.2)

Fermi Theory
Now let's apply this to the SM at energies $E \ll m_{w}$. (Let us continue to ignore the fact that QCD becomes non-perturbative at $E \sim(G e V)$
This will allow us to derive "Fermi Theory" from the top down.

Start with the Lagrangian

$$
\begin{aligned}
J= & m_{\omega}^{2}\left|w_{\mu}\right|^{2}+\frac{m_{z}^{2}}{2} z_{\mu}^{2}+\frac{g}{2 \sqrt{2}} w_{\mu}+J^{+\mu \mu} \\
& +\frac{g}{2 \sqrt{2}} w_{\mu}^{-} J^{-1 \mu}+\frac{g}{c_{\omega}} z_{\mu} J^{\mu, 0}
\end{aligned}
$$

where "charged current" is

$$
\begin{aligned}
J_{\mu}^{+} & \equiv \sum_{\text {doublets }}^{1} \bar{\psi}_{d} \gamma_{\mu}\left(1-\gamma^{5}\right) \psi_{u} \\
& =\bar{l} \gamma_{\mu}\left(1-\gamma^{5}\right) v+\bar{d} \gamma_{\mu}\left(1-\gamma^{5}\right) u+\text { other families }
\end{aligned}
$$

and "neutral current" is

$$
J_{\mu}^{\circ} \equiv \sum_{\substack{011 \\ \text { fermions }}} \overline{4}_{i} \gamma^{\mu}\left(g_{\nu}(i)-g_{A}(i) \gamma^{5}\right) \psi_{i}
$$

This neglects the kinetic terms, since we are only keeping the leading term
in the derivative expansion $\left(\partial^{\circ}\right)$.
Neglects w / Z self interactions since this would lead to more powers of $1 / m_{w / z}$. Neglects Higgs interactions, since would either give more powers of $1 / m_{w / z / t / t}$ or would be proportional to tiny Yukawa couplings. In this approximation, the EOMs for The W and Z are

$$
\begin{aligned}
& m_{\omega}^{2} \omega_{\mu}^{+}+\frac{9}{2 \sqrt{2}} J_{\mu}^{+}=0 \\
& m_{z}^{2} z_{\mu}+\frac{9}{c_{\omega}} J_{\mu}^{0}=0 \quad
\end{aligned} \quad \Rightarrow \quad w_{\mu}^{+}=-\frac{9}{2 \sqrt{2} m_{\nu}^{2}} J_{\mu}^{+}
$$

Plugging These back into \mathcal{L}

$$
\begin{aligned}
\Rightarrow \mathcal{I} & =\frac{g^{2}}{8 m_{\omega}^{2}} J^{+} \cdot J^{-}-2 \frac{g^{2}}{8 m_{\omega}^{2}} J^{+} \cdot J^{-}+\frac{g^{2}}{2 c_{\omega}^{2}{m_{z}^{2}}_{2}^{2}} J_{0} \cdot J_{0}-\frac{g^{2}}{c_{\omega}^{2} m_{2}^{2}} J_{\omega} \cdot J_{0} \\
& \left.=-\frac{g^{2}}{8 m_{\omega}^{2}} J^{+} \cdot J^{-}-\frac{g^{2}}{2 \omega_{\omega}^{2}} J_{0} \cdot J_{0} \quad \text { (used } c_{\omega}^{2} m_{z}^{2}=m_{\omega}^{2}\right)
\end{aligned}
$$

We define the "Fermi Constant"

$$
\begin{aligned}
& \frac{C_{F}}{\sqrt{2}} \equiv \frac{S^{2}}{8 m_{\omega}^{2}}=\frac{1}{2 V^{2}} \quad\left[G_{F}\right]=-2 \quad G_{F}=1.2 \times 10^{-5} / \mathrm{sev}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow Z>\sum_{\substack{i, j h t \\
\text { fermions }}} \bar{\psi}_{i} \phi \psi-\frac{G_{F}}{\sqrt{2}} J^{+} \cdot J^{-}-\frac{4 G_{F}}{\sqrt{2}} J^{0} \cdot J^{0}
\end{aligned}
$$

$\omega / \quad J^{\mu,-}=\left(J^{\mu,}\right)^{*}=\sum_{\substack{1 ; g^{\prime} h t \\ \text { fauilis }}}\left(\bar{\gamma} \gamma^{\mu}\left(1-\gamma^{5}\right) e+\bar{u} \gamma \gamma\left(1-\gamma^{5}\right) d\right)$

$$
J^{\mu, 0}=\sum_{\substack{\text { light } \\ \text { families }}} \overline{4} \gamma^{\prime}\left(g_{v}-g_{A} \gamma^{5}\right) 4
$$

$\omega / \quad g_{V}=\frac{1}{4}\left[2 T^{3}-4 s_{w}^{2} Q\right], g_{A}=\frac{1}{4}\left[2 T^{3}\right]$
We see that the weak interactions provide a correction to QED by introducing irrelevant operators.
We can capture a lot of the consequences of electroweak physics using this approximation.

For example, we can compute the decay rates of fermions. For example, the muon decay is determined by

$$
L>-\frac{C_{1}}{\sqrt{2}}\left[\bar{e} \gamma^{\mu}\left(1-\gamma^{5}\right) v_{e}\right]\left[\bar{\nu}_{\mu} \gamma_{\mu}\left(1-\gamma^{5}\right) \mu\right]
$$

$$
\Rightarrow \Gamma\left(\mu \rightarrow e \bar{v}_{c} \bar{v}_{\mu}\right)=\frac{G_{F}^{2}}{192 \pi^{3}} r_{\mu}^{5}
$$

Note that this is why the weak interaction, are "weak". It is not due to small coupling since $g \sim g^{\prime} \sim e$ in the SM. It is instead due to suppression by mass of heavy particles!
We could have guessed this answer using dimensional analyse sis:

$$
M \sim G_{F} \Rightarrow \Gamma \sim G_{,=}^{2}
$$

$[r]=1 \Rightarrow$ assuming e, v_{c}, v_{r} massless, only other dimensionful quantity is m_{μ}

$$
\Rightarrow \quad \Gamma \sim G_{F}^{2}=m_{\mu}^{5}
$$

We also know 2 -body $\Gamma \sim \frac{1}{4 \pi}$

$$
3-b o d y \quad \Gamma=\frac{1}{4 \pi\left(16 \pi^{2}\right)}=\frac{1}{64 \pi^{3}}
$$

$$
\Rightarrow \Gamma \sim \frac{1}{64 \pi^{3}} G_{F}^{2} r_{\mu}^{5} \text { is pretty close } \ddot{u}
$$

This explains why the muon lives for a long time. We have $\Gamma_{r} /_{\mu \mu} \sim 3 \times 10^{-18}$
Naively expect $\Gamma / m e 10^{-2}$, so This is a bis supression.

SMEFT
Approach to parametrize indirect BSM effects Write down all $\operatorname{SU}(3) \times \operatorname{Sh}(2) \times U(1)$ invariant operators supressed by heavy scale 1 . $A \operatorname{dim} 5$, There is one unique choice:

$$
\mathcal{Z}_{\text {dim } 5}=\frac{1}{\Lambda}\left(H L^{c}\right)(H L) \rightarrow \mathcal{L} \frac{v^{2}}{\Lambda} \bar{v}^{c} v
$$

\Rightarrow Majorana neutrino mass.
At dim 6 There are 3045 independent
operators. (Must be careful about redundancies)

