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Plan
Infra-red divergences
� Branching processes
� Infra-red safe and factorizable processes

e+e− annihilation
� Total cross section
� QCD corrections to the e+e− cross section.
� Shape distributions
� Jet fractions

Jet algorithms

� Jet algorithms in e+e−

� Inclusive kT algorithm
� Cambridge-Aachen algorithm
� Anti kT algorithm
� Infra-red safety of sequential recombination algorithms
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Infrared divergences
Even in high-energy, short-distance regime, low energy aspects of QCD cannot be
ignored. Soft or collinear gluon emission gives infrared divergences in PT. Light
quarks (mq � Λ) also lead to divergences in the limit mq → 0 (mass singularities).

� Spacelike branching: gluon splitting on incoming line (a)

p2b = −2EaEc(1− cos θ) ≤ 0 .

Propagator factor 1/p2b diverges as Ec → 0 (soft singularity) or θ → 0

(collinear or mass singularity).
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If a and b are quarks, inverse propagator factor is

p2b −m2
q = −2EaEc(1− va cos θ) ≤ 0 ,

Hence Ec → 0 soft divergence remains; collinear enhancement becomes a divergence
as va → 1, i.e. when quark mass is negligible. If emitted parton c is a quark, vertex
factor cancels Ec → 0 divergence.

Timelike branching: gluon splitting on outgoing line (b)

p2a = 2EbEc(1− cos θ) ≥ 0 .

Diverges when either emitted gluon is soft (Eb or Ec → 0) or when opening angle
θ → 0. If b and/or c are quarks, collinear/mass singularity in mq → 0 limit. Again,
soft quark divergences cancelled by vertex factor.

Similar infrared divergences in loop diagrams, associated with soft and/or collinear
configurations of virtual partons within region of integration of loop momenta.

Infrared divergences indicate dependence on long-distance aspects of QCD not
correctly described by PT. Divergent (or enhanced) propagators imply propagation
of partons over long distances. When distance becomes comparable with hadron
size ∼ 1 fm, quasi-free partons of perturbative calculation are confined/hadronized
non-perturbatively, and apparent divergences disappear.
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Calculable quantities
Can still use PT to perform calculations, provided we limit ourselves to two classes
of observables:
� Infrared safe quantities, i.e. those insensitive to soft or collinear branching.

Infrared divergences in PT calculation either cancel between real and virtual
contributions or are removed by kinematic factors. Such quantities are
determined primarily by hard, short-distance physics; long-distance effects
give power corrections, suppressed by inverse powers of a large momentum
scale.

� Factorizable quantities, i.e. those in which infrared sensitivity can be absorbed
into an overall non-perturbative factor, to be determined experimentally.

In either case, infrared divergences must be regularized during PT calculation,
even though they cancel or factorize in the end.
� Gluon mass regularization: introduce finite gluon mass, set to zero at end of

calculation. However, as we saw, gluon mass breaks gauge invariance.
� Dimensional regularization: analogous to that used for ultraviolet divergences,

except we must increase dimension of space-time, ε = 2− D
2

< 0.
Divergences are replaced by powers of 1/ε.
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e+e− annihilation cross section
e+e− → µ+µ− is a fundamental electroweak processes.

Same type of process, e+e− → qq̄, will produce hadrons. Cross sections are
roughly proportional.

At high energy cross sections fall like 1/s.
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Parenthetical remark
We have reason to be interested in even smaller cross sections at an e+e−
collider. e+e− measurements can give inter alia a model-independent
measurement of the Higgs width.
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e+e− to hadrons
Since formation of hadrons is non-perturbative, how can perturbation theory give
hadronic cross section? This can be understood by visualizing event in space-time:

� e+ and e− collide to form γ or Z0 with virtual mass Q =
√
s. This fluctuates

into qq̄, qq̄g,. . . , occupy space-time volume ∼ 1/Q. At large Q, rate for this
short-distance process given by PT.

� Subsequently, at much later time ∼ 1/Λ, produced quarks and gluons form
hadrons. This modifies outgoing state, but occurs too late to change original
probability for event to happen.

Well below Z0, process e+e− → ff̄ is purely electromagnetic, with lowest-order
(Born) cross section (neglecting quark masses)

σ = Nc σ0, σ0 =
4πα2

3s
Q2

f
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e+e− to hadrons

Matrix element in Feynman gauge,

M = (−ie)v̄(q2)γ
µu(q1)×

( −i

(q1 + q2)2

)
× (−ie)Qf ū(p1)γµv(p2) δc1,c2

M =
ie2Qf

(q1 + q2)2
v̄(q2)γ

µu(q1) δc1,c2 ū(p1)γµv(p2)

∑
spins,colors

|M |2 =
e4Q2

fNc

((q1 + q2)2)2

∑
spins

ū(q1)γ
νv(q2)v̄(q2)γ

µu(q1)×v̄(p2)γνu(p1)ū(p1)γµv(p

using
∑

spins v(q)v̄(q) = �q and
∑

spins u(p)ū(p) = �p.

∑
spins,colors

|M |2 =
e4Q2

fNc

((q1 + q2)2)2
Tr{�q1γν �q2γµ} × Tr{�p2γν �p1γµ}
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Phase space
Two-particle massless phase space

PS(2) =

∫
d4p1

(2π)3
d4p2

(2π)3
(2π)4δ4(q1 + q2 − p1 − p2) δ(p

2
1) δ(p

2
2)

=
1

16π

∫ 1

−1
d cos(θ)

θ is the centre-of-mass scatering angle.

Volume of n-particle massless phase space is,

PS(n) =
1

(n− 1)! (n− 2)!

(
2π

)(4−3n) (π
2

)(n−1)
s(n−2)

For n = 2,

PS(2) =
( 1

2π

)2 (π
2

)
=

1

8π
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Calculation of trace with Form
FORM 4.3.1 (Apr 11 2023, v4.3.1) 64-bits Run: Tue Jun 13 17:24:15 20

Off stats;

* Declare vectors
V q1,q2,p1,p2;

* Declare indices
I mu,nu,j1,j2;

* Declare scalars
S s,t,u,e,Qf,ave,theta,flux,PS,alpha,pi,costh,dcosth,Nc;
.global

* Define Strings of Gamma matrices
G Msq=ave*eˆ4*Qfˆ2*g_(j1,q1,nu,q2,mu)*g_(j2,p2,nu,p1,mu)/sˆ2*Nc;
Id,ave=1/4;

* Take the traces;
Trace4,j1;Trace4,j2;

* simplify dot products
Id,p1.q1=-t/2;Id,p2.q2=-t/2;Id,p1.q2=-u/2;Id,p2.q1=-u/2;
Id,t=-s/2*(1-costh);Id,u=-s/2*(1+costh);
B e,Qf,Nc;
Print;
.store
Msq = + eˆ4*Qfˆ2*Nc * ( 1 + costhˆ2 );
L sigma=1/flux*PS*Msq;
Id,fluxˆ-1=1/2/s;Id,eˆ2=4*pi*alpha;Id,PS=1/16/pi*dcosth;
Id,dcosth*costhˆ2=2/3;Id,dcosth=2;
Print;
.end
sigma = 4/3*sˆ-1*Qfˆ2*alphaˆ2*pi*Nc;
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The ratio R
Thus (3 = N = number of possible qq̄ colours)

R ≡ σ(e+e− → hadrons)
σ(e+e− → µ+µ−)

=

∑
q σ(e

+e− → qq̄)

σ(e+e− → µ+µ−)
= 3

∑
q

Q2
q .

On Z0 pole,
√
s = MZ , neglecting γ/Z interference

σ0 =
4πα2κ2

3Γ2
Z

(a2e + v2e) (a
2
f + v2f )

where κ =
√
2GFM2

Z/4πα = 1/ sin2(2θW ) 	 1.5. Hence

RZ =
Γ(Z → hadrons)
Γ(Z → µ+µ−)

=

∑
q Γ(Z → qq̄)

Γ(Z → µ+µ−)
=

3
∑

q(a
2
q + v2q )

a2µ + v2µ

The couplings to the Z are specified by the SU(2)L × U(1) structure

vf = T 3
f − 2Qf sin2 θW , af = T 3

f

where T 3
f = 1

2
for f = ν, u, . . . and T 3

f = − 1
2

for f = e, d, . . . .

QCD and collider physicsLecture II: Infrared safety, e+e− annihilation and Jets – p.13/34



Comparison with data
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QCD corrections to e+e− to hadrons
Measured cross section is about 5%
higher than σ0, due to QCD
corrections. For massless quarks,
corrections to R and RZ are equal. To
O(αS) we have:

Real emission diagrams (b):
� Write 3-body phase-space

integration as

dΦ3 = [...]dαdβ dγ dx1 dx2 ,

α, β, γ are Euler angles of
3-parton plane,
x1 = 2p1 · q/q2 = 2Eq/

√
s,

x2 = 2p2 · q/q2 = 2Eq̄/
√
s.

� Applying Feynman rules and
integrating over Euler angles:

σqq̄g = 3σ0CF
αS

2π

∫
dx1 dx2

x2
1 + x2

2

(1− x1)(1− x2)
.
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Integration of real radiation
Integration region: 0 ≤ x1, x2, x3 ≤ 1 where
x3 = 2k · q/q2 = 2Eg/

√
s = 2− x1 − x2.

Integral divergent at x1,2 = 1:

1− x1 =
1

2
x2x3(1− cos θqg)

1− x2 =
1

2
x1x3(1− cos θq̄g)

Divergences:
� collinear when θqg → 0 or θq̄g → 0;
� soft when Eg → 0, i.e. x3 → 0.

If the singularities do not surivive in our observ-
able, they are not physical – simply indicate
breakdown of PT when energies and/or invari-
ant masses approach QCD scale Λ.
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Integration with dimensional regularization
Collinear and/or soft regions do not in fact make important contribution to R. To
see this, make integrals finite using dimensional regularization, D = 4− 2ε with
ε < 0. Then

σqq̄g = 2σ0
αS

π
H(ε)

×
∫

dx1dx2

P (x1, x2)

[ (1− ε)(x2
1 + x2

2) + 2ε(1− x3)

[(1− x1)(1− x2)]
− 2ε

]

where H(ε) =
3(1− ε)(4π)2ε

(3− 2ε)Γ(2− 2ε)
= 1 +O(ε) .

and P (x1, x2) = [(1− x1)(1− x2)(1− x3)
]ε

Perform the integration over x1 by performing the transformation
x1 = 1− x2(1− y), ∫ 1

1−x2

dx1 = x2

∫ 1

0
dy

σqq̄g = 2σ0
αS

π
H(ε)

[
2

ε2
+

3

ε
+

19

2
− π2 +O(ε)

]
.

Soft and collinear singularities are regulated, appearing instead as poles at D = 4.
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Gamma Function
In order to perform the integration we needed information about the gamma
function and the beta function (of mathematics, not QCD!).

Γ(z) =
∫∞
0 dt e−ttz−1

zΓ(z) = Γ(z + 1)

Γ(1) = 1

B(a, b) =
∫ 1
0 dx xa−1(1− x)b−1

B(a, b) =
Γ(a)Γ(b)
Γ(a+b)
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Completion of total cross section
Virtual gluon contributions (a): using dimensional regularization again

σqq̄ = 3σ0

{
1 +

2αS

3π
H(ε)

[
− 2

ε2
− 3

ε
− 8 + π2 +O(ε)

]}
.

Adding real and virtual contributions, poles cancel and result is finite as ε → 0:

R = 3
∑
q

Q2
q

{
1 +

αS

π
+O(α2

S)
}
.

Thus R is an infrared safe quantity.

Coupling αS evaluated at renormalization scale µ. UV divergences in R cancel to
O(αS), so coefficient of αS independent of µ. At O(α2

S) and higher, UV
divergences make coefficients renormalization scheme dependent:

R = 3 KQCD

∑
q

Q2
q ,

KQCD = 1 +
αS(µ

2)

π
+

∑
n≥2

Cn

(
s

µ2

) (
αS(µ

2)

π

)n
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Higher order coefficients
R = KQCD 3

∑
f Q2

f

KQCD = 1 +
αs(µ

2)
π

+
∑

n≥2 Cn

(
s
µ2

) (
αs(µ

2)
π

)n

In MS scheme with scale µ =
√
s,

C2(1) =
365

24
− 11ζ(3)− [11− 8ζ(3)]

Nf

12
, ζ(3) = 1.2020569 . . .

	 1.986− 0.115Nf

Coefficient C3 is also known.

Scale dependence of C2, C3 . . . fixed by requirement that, order-by-order, series
should be independent of µ. For example

C2

(
s

µ2

)
= C2(1)− β0

4
log

s

µ2

where β0 = 4πb = 11− 2Nf/3.
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Scheme and scale dependence
Scale and scheme dependence only cancels completely when series is computed
to all orders. Scale change at O(αn

S) induces changes at O(αn+1
S ). The more

terms are added, the more stable is prediction with respect to changes in µ.

Residual scale dependence is an important source of uncertainty in QCD
predictions. One can vary scale over some ‘physically reasonable’ range, e.g.√
s/2 < µ < 2

√
s, to try to quantify this uncertainty. But there is no real substitute

for a full higher-order calculation.
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Shape distributions
Shape variables measure some aspect of shape of hadronic final state, e.g.
whether it is pencil-like, planar, spherical etc.

For dσ/dX to be calculable in PT, shape variable X should be infrared safe, i.e.
insensitive to emission of soft or collinear particles. In particular, X must be
invariant under pi → pj + pk whenever pj and pk are parallel or one of them
goes to zero.

Examples are Thrust and C-parameter:

T = max

∑
i |pi · n|∑

i |pi|

C =
3

2

∑
i,j |pi| |pj | sin2 θij

(
∑

i |pi|)2

After maximization, unit vector n defines thrust axis.

In Born approximation final state is qq̄ and 1− T = C = 0. Non-zero contribution
at O(αS) comes from e+e− → qq̄g. Recall distribution of xi = 2Ei/

√
s:

1

σ

d2σ

dx1dx2
= CF

αS

2π

x2
1 + x2

2

(1− x1)(1− x2)
.
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Distribution of shape variable X is obtained by integrating over x1 and x2 with constraint
δ(X − fX (x1, x2, x3 = 2− x1 − x2)), i.e. along contour of constant X in (x1, x2)-plane.

For thrust, fT = max{x1, x2, x3} and we find

1

σ

dσ

dT
= CF

αS

2π

[
2(3T 2 − 3T + 2)

T (1− T )
log

(
2T − 1

1− T

)

−3(3T − 2)(2− T )

(1− T )

]
.

This diverges as T → 1, due to soft and collinear gluon singularities. Virtual gluon
contribution is negative and proportional to δ(1− T ), such that correct total cross

section is obtained after integrating over 2
3
≤ T ≤ 1, the physical region for two-

and three-parton final states.

O(α2
S) corrections also known. Comparisons with data provide test of QCD matrix

elements, through shape of distribution, and measurement of αS , from overall rate.
Care must be taken near T = 1 where (a) hadronization effects become large, and
(b) large higher-order terms of the form αn

S log2n−1(1− T )/(1− T ) appear in
O(αn

S).
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Delphi data
Figure shows thrust distribution measured at LEP1 (DELPHI data) compared with
theory for vector gluon (solid) or scalar gluon (dashed).
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Problems with seeded cone algorithms
Iterative cone algorithm
� sort all particles according to their transverse momentum
� Identify the particle with the largest transverse momentum as the seed

particle.
� Draw a cone of radius ∆R about the seed particle, and identify the direction

of the particles contained in the cone.
� If that direction does not correspond to the seed direction, adopt that direction

as the new seed.
� When cone direction and seed direction coincide, remove particles from the

eventt and iterate.

Unfortunately the particle with the largest transverse momentum is not an collinear
safe concept.

jet 2
jet 1jet 1jet 1 jet 1

αs x (+ )∞nαs x (− )∞n αs x (+ )∞nαs x (− )∞n

Infinities cancel Infinities do not cancel

a) b) d)c)

Collinear safe jet alg. Collinear unsafe jet alg

in figure horizontal distance shows
rapidity, vertical distance shows
pT
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Jet algorithms
At a hadron collider jets are clearly
visible by eye.

There are many possible
mathematical procedures for defining
a jet. A jet algorithm has to specify
� Which particles/partons are

grouped together in a jet.
� How the momenta of the chosen

particles are combined to form a
pseudo-particle

A proper jet algorithm should be
insensitve to the emission of soft and
collinear radiation
� From a theoretical point of view,

this is a requirement for a finite
result, which will be calculable in
QCD perturbation theory

� From a experimental point of
view, the detector will not be able
to resolve collinear and/or soft
hadrons.

“Lego” plot in terms of azimuthal angle
and rapidity y = 1

2
ln(E+pz

E−pz
). For a

massless particle y is identical to the
pseudorapidity, η = − ln tan(θ/2).

Rapidity is additive under longitudinal
boosts.
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Jet fractions
To define fraction fn of n-jet final states (n = 2, 3, . . .), must specify jet algorithm.

Development of a jet a series of sequential branchings. Majority of QCD branching
is soft and/or collinear, with following divergences:

[dkj ] |Mg→gigj |2 =
2αsCA

π

dEi

EiEj

dθij

θij
Ej � Ei, θij � 1

To invert branching process, take pair which are closest in a metric defined by the
divergence structure of the theory

This is the philosophy of kT or Durham algorithm:
� Define jet resolution ycut (dimensionless).

� For each pair of final-state momenta pi, pj define

yij = 2min{E2
i , E

2
j }(1− cos θij)/s

� If yIJ = min{yij} < ycut, combine I, J into one
object K with pK = pI + pJ .

� Repeat until yIJ > ycut. Then remaining objects
are jets.
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Sequential recombination jet algorithms
Development of a jet a series of sequential branchings. Majority of QCD branching
is soft and/or collinear, with following divergences:

[dkj ] |Mg→gigj |2 =
2αsCA

π

dEi

EiEj

dθij

θij
Ej � Ei, θij � 1

To invert branching process, take pair which are closest in a metric defined by the
divergence structure of the theory

Definition of the kT /Durham algorithm for hadron collisions.
1. Calculate (or update) distances between all (pseudo-)particles i and j, (related

to the relative kT between the particles)

yij = 2min(E2
i , E

2
j )(1− cos θij)

2. Find smallest of yij

� If y > ycut stop clustering
� else recombine i and j and repeat from step 1
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Inclusive kT algorithm
The inclusive kT algorithm for hadron-hadron collisions is a generalization of the
e+e− variant.

It belongs to the class of sequential recombination jet algorithms, which define
both a jet and a clustering history.

Introduces the new concept of a particle beam distance and the angular radius R

dij = min(k2Ti, k
2
Tj)

∆R2
ij

R2
, ∆R2

ij = (yi − yj)
2 + (φi − φj)

2

diB = k2Ti

1. Find smallest of dij , diB
2. if it is ij , combine i+ j and return to step 1
3. if it is iB, call i a jet, remove it from list of particles, and return to step 1
4. stop when no particles are left.

S.D. Ellis and Soper, (hep-ph/9305266);

Jets all separated by at least R on the lego plot.

NB: number of jets not IR safe (soft jets near beam); number of jets above pt cut is
IR safe.

depends on two parameters, R and pcutT
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Cambridge-Aachen for hadronic collisions
We can classify the a family sequential recombination algorithms as follows

dij = min(k2pTi, k
2p
Tj)

∆R2
ij

R2

diB = k2pTi

The Cambridge-Aachen is the simplest jet algorithm and corresponds to p = 0,
Wobisch and Wengler, hep-ph/990728

Recombine the pair of objects closest in Rij

Repeat until all Rij > R.

The remaining objects are jets.

Because of clustering hierachy in angle, C/A has been shown to provide the best
performance when it comes to resolving jet substructure
� undoing the pair-wise clustering of a jet step-by-step yields its subjets
� Promising strategies to find e.g. high-pT top quarks and Higgs bosons are

based on subjets using the C/A algorithm

Leads to ragged edge jets

QCD and collider physicsLecture II: Infrared safety, e+e− annihilation and Jets – p.30/34



Anti-kt
Formulated similarly to kt (Cacciari, Salam & Soyez 0802.1189), but with

dij = min(1/k2Ti, 1/k
2
Tj)

∆R2
ij

R2

Anti-kt privileges the collinear divergence of QCD, favours clusterings that involve
hard particles, and disfavours clustering between pairs of soft particles.

Most pairwise clusterings involve at least one hard particle

The algorithm involves two parameters, R the angular reach for the jets, and pT
threshold for the final jets to be taken into account.

However since the algorithm still involves a combination of energy and angle in its
distance measure, this is a collinear-safe growth, (a collinear branching gets
clustered first).

Anti-kt leads to circular jets, which are experimentally favoured for acceptance
corrections.

Clustering sequence is not usefully related to QCD branching.
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Sequential recombination algorithms:IRC safety

dij = min(k2pTi, k
2p
Tj)

∆R2
ij

R2
. diB = k2pTi, ∆R2

ij = (yi − yj)
2 + (φi − φj)

2

p > 0

� New soft particle (kT → 0) means that d → 0 → clustered first, no effect on
jets

� New collinear particle (∆y2 +∆φ2 → 0) means that d → 0 → clustered first,
no effect on jets

p = 0

� New soft particle (kT → 0) can be new jet of zero momentum → no effect on
hard jets

� New collinear particle (∆y2 +∆φ2 → 0) means that d → 0 → clustered first,
no effect on jets

p < 0

� New soft particle (kT → 0) means d → ∞ → clustered last or new zero-jet,
no effect on hard jets;

� New collinear particle (∆y2 +∆φ2 → 0) means that d → 0 → clustered first,
no effect on jets.
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Comparison of jet algorithms,arXiv:0802.1189
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Recap
Perturbative QCD has infrared singularities due to collinear or soft parton
emission. We can calculate infra-red safe or factorizable quantities in perturbation
theory because of the property of asymptotic freedom.

Total e+e− cross section is an example of an infra-red finite quantity.

IR singularities are normally regularized by dimensional regularization.

Higher order corrections can be calculated for IR safe or factorizable quantities;
because αS is not so small, they are necessary to find agreement with the data.

Jets are specified by a jet algorithm, depending on one or two parameters.
Different algorithms (and parameters) will best capture different features of the
data.

Anti-kT algorithm is the de facto standard at the LHC; yields all the benefits of a
cone algorithm without their defects.
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