Cosmology

Lecture 2

Hot Big Bang

Luminosity distance and deceleration

Luminosity distance

$$F \equiv \frac{L}{4\pi d_L^2} = \frac{L}{4\pi (1+z)^2 r^2} \longrightarrow d_L = (1+z) \int_0^z \frac{dz'}{H(z')}$$

Expanding around z = 0 we find

$$d_L = \frac{z}{H_0} \left(1 + \frac{1}{2}(1 - q_0)z + \cdots \right) \qquad \qquad q(t) \equiv -\frac{\ddot{a}a}{\dot{a}^2}$$

For $\rho + 3p > 0$ we have $\ddot{a} < 0$ and $q_0 > 0$

Luminosity distance and deceleration

Observations give $q_0 < 0$

Only possible for $\rho + 3p < 0$

Natural candidate is vacuum energy

$$\rho = \text{const.} \quad p = -\rho$$

 $\Omega_{m,0} \approx 0.3$ $\Omega_{\Lambda} \approx 0.7$

This is Λ in ΛCDM cosmological model

Vacuum energy and its puzzles

Vacuum energy dominates the energy budget today!

Vacuum energy and its puzzles

Observed energy density of the vacuum is $\rho_{\Lambda} \approx (10^{-3} \text{ eV})^4$

We could never do it in a laboratory

O(100) orders of magnitude smaller than the naive expectations

Similar to the hierarchy problem, but much worse...

Resolution may have dramatic consequences:

Multiverse and anthropic principle

Giving up EFT paradigm

Landscape vs. swampland

. . .

All energy components

Thermal history of the universe

Part 2

Equilibrium thermodynamics in the early universe

Neutrino decoupling and cosmic neutrino background

Boltzmann equation and freeze-out

Big Bang nucleosynthesis

Cosmic Microwave Background

Implications for dark matter and matter-antimatter asymmetry

Equilibrium quantities

Homogeneous plasma in termal equilibrium

$$n = \frac{g}{(2\pi)^3} \int d^3 p f(p)$$

$$\rho = \frac{g}{(2\pi)^3} \int d^3 p E(p) f(p)$$

$$P = \frac{g}{(2\pi)^3} \int d^3 p \frac{p^2}{3E(p)} f(p)$$

Distribution function

$$f(p) = \frac{1}{e^{(E-\mu)/T} \pm 1} \qquad \xrightarrow{T \ll E - \mu} \qquad f(p) = e^{-(E-\mu)/T}$$

+ fermions, - bosons

Equilibrium quantities

Relativistic particles

$$n = \frac{\zeta(3)}{\pi^2} g T^3$$
 $\rho = \frac{\pi^2}{30} g T^4$ $P = \frac{1}{3} \rho$

x 3/4 for fermions

x 7/8 for fermions

$$H^2 \sim \frac{T^4}{M_{\rm pl}^2} \longrightarrow \frac{T}{1 \,\,{\rm MeV}} \approx \left(\frac{1 \,\,{
m sec}}{t}\right)^{1/2}$$

Non-relativistic particles

$$n = g \left(\frac{mT}{2\pi}\right)^{3/2} e^{-\frac{m-\mu}{T}} \qquad \rho = nm$$

Equilibrium quantities

Entropy density
$$s \equiv \frac{S}{V} = \frac{\rho + P}{T} = \frac{2\pi^2}{45}gT^3$$

Entropy *S* is conserved in equilibrium $\longrightarrow s \sim a^{-3}$

Useful to trace temperature throughout thermal history

What can particles do?

Expansion of the universe changes temperature

Decoupling

Departure from thermal equilibrium

expansion rate
$$H$$
 vs $\Gamma = \frac{dN_{\text{int}}}{dt} = n\sigma v$

177

interaction cross section

Neutrino decoupling

$$\nu_e + \bar{\nu}_e \leftrightarrow e^+ + e^-$$

 $e^- + \bar{\nu}_e \leftrightarrow e^- + \bar{\nu}_e$

Estimate of the cross section

$$\sigma \sim G_F^2 T^2 \quad \longrightarrow \quad \Gamma \sim G_F^2 T^5$$

$$\frac{\Gamma}{H} \sim \left(\frac{T}{1 \text{ MeV}}\right)^3$$

Below 1MeV interactions stop and neutrinos decouple

e^+e^- annihilation

credit D. Baumann

Cosmic neutrino background ~300 neutrinos per cm³

Neutrinos are massive $\Omega_{\nu} > 0.001$

Effective number of dof

credit D. Baumann

$$g_{\star}^{th}(T) = \sum_{i=b} g_i + \frac{7}{8} \sum_{i=f} g_i \qquad \qquad g_{\star}^{dec}(T) = \sum_{i=b} g_i \left(\frac{T_i}{T}\right)^4 + \frac{7}{8} \sum_{i=f} g_i \left(\frac{T_i}{T}\right)^4$$

Boltzmann equation

Two major predictions of Hot Big Bang

Primordial nucleosynthesis

Origin and primordial abundance of chemical elements

Cosmic Microwave Background

Relic leftover radiation after the universe becomes transparent

Primordial nucleosynthesis

Primordial nucleosynthesis

credit D. Baumann

Primordial nucleosynthesis

Planck (2018)

Cosmic Microwave Background

Above energies of ~0.3 eV the universe is filled with plasma

credit D. Baumann $e^- + p^+ \leftrightarrow \mathrm{H} + \gamma$ T [eV]recombination 0.11 1 $e^- + \gamma \iff e^- + \gamma$ decoupling ► CMB 10^{-1} Eventually H atoms form X_e 10^{-2} recombination Boltzmann Soon after photons decouple 10^{-3} ' Saha neutral hydrogen photon decoupling plasma

z

 10^{2}

 10^{3}

Cosmic Microwave Background

CMB forms at redshift z~1100

Temperature of the photons today ~2.7 K

Cosmic Microwave Background

Implications of large η_b

Sakharov conditions for baryogenesis

In SM possible in principle, but η_b is way too small

New physics must operate in the early universe to create this large matter-antimatter asymmetry!

Implications of large η_b

CMB temperature gives number density of photons

Given η_b we can compute number density of baryons

Not enough baryons for structure formation!

 $\Omega_{\mathrm{b},0} \approx 0.05$

The rest of matter must be non-baryonic. Can it be neutrinos? No

We need non-baryonic cold dark matter (CDM in Λ CDM)