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Luminosity distance and deceleration
Luminosity distance
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Expanding around  we findz = 0
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Luminosity distance and deceleration

Observations give q0 < 0

Only possible for ρ + 3p < 0

Natural candidate is vacuum energy

⇢c ⌘
3H2

0
8⇡G

(46)

⌦i ⌘
⇢i

⇢c
(47)

H
2 = H

2
0(⌦m,0a

�3 + ⌦r,0a
�4 + · · · ) (48)

tage =

Z
tage

0
dt =

Z 1

0

da

aH(a)
=

2

3(1 + w)

1

H0

F ⌘
L

4⇡d2
L

=
L

4⇡(1 + z)2r2
(49)

dL = (1 + z)

Z
z

0

dz
0

H(z0)
(50)

dL =
z

H0

✓
1 +

1

2
(1� q0)z

2 + · · ·

◆
(51)

q(t) ⌘ �
äa
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⌦m,0 ⇡ 0.3 ⌦⇤ ⇡ 0.7 (54)
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This is  in  cosmological modelΛ ΛCDM
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Vacuum energy dominates the energy budget today!

Vacuum energy and its puzzles



Vacuum energy and its puzzles

Observed energy density of the vacuum is ρΛ ≈ (10−3 eV)4

O(100) orders of magnitude smaller than the naive expectations

Similar to the hierarchy problem, but much worse…

Resolution may have dramatic consequences:

Multiverse and anthropic principle

Giving up EFT paradigm

…

We could never do it in a laboratory

Landscape vs. swampland
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Thermal history of the universe
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Equilibrium thermodynamics in the early universe

Part 2

Neutrino decoupling and cosmic neutrino background

Boltzmann equation and freeze-out

Big Bang nucleosynthesis

Cosmic Microwave Background

Implications for dark matter and matter-antimatter asymmetry



Equilibrium quantities
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Homogeneous plasma in termal equilibrium

Distribution function
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+ fermions, - bosons
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Equilibrium quantities

Relativistic particles
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Non-relativistic particles
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Equilibrium quantities

Entropy density

Entropy  is conserved in equilibriumS
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Useful to trace temperature throughout thermal history



What can particles do?

Expansion of the universe changes temperature

Decoupling

Departure from thermal equilibrium

expansion rate H vs
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interaction cross section



Neutrino decoupling
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Estimate of the cross section
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Below 1MeV interactions stop and neutrinos decouple
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Entropy conservation

52 3. Thermal History

to an excellent approximate the relativistic Fermi-Dirac distribution (even after they become

non-relativistic at later times). In §1.2.1, we showed the physical momentum of a particle scales

as p / a
�1. It is therefore convenient to define the time-independent combination q ⌘ ap, so

that the neutrino number density is

n⌫ / a
�3

Z
d3q

1

exp(q/aT⌫) + 1
. (3.2.71)

After decoupling, particle number conservation requires n⌫ / a
�3. This is only consistent with

(3.2.71) if the neutrino temperature evolves as T⌫ / a
�1. As long as the photon temperature12

T� scales in the same way, we still have T⌫ = T� . However, particle annihilations will cause a

deviation from T� / a
�1 in the photon temperature.

3.2.5 Electron-Positron Annihilation

Shortly after the neutrinos decouple, the temperature drops below the electron mass and electron-

positron annihilation occurs

e
+ + e

� $ � + � . (3.2.72)

The energy density and entropy of the electrons and positrons are transferred to the photons,

but not to the decoupled neutrinos. The photons are thus “heated” (the photon temperature

does not decrease as much) relative to the neutrinos (see Fig. 3.5). To quantify this e↵ect,

photon heating

neutrino decoupling

electron-positron
annihilation

Figure 3.5: Thermal history through electron-positron annihilation. Neutrinos are decoupled and their
temperature redshifts simply as T⌫ / a

�1. The energy density of the electron-positron pairs is transferred
to the photon gas whose temperature therefore redshifts more slowly, T� / g

�1/3
?S a

�1.

we consider the change in the e↵ective number of degrees of freedom in entropy. If we neglect

neutrinos and other decoupled species,13 we have

g
th

?S =

(
2 + 7

8
⇥ 4 = 11

2
T & me

2 T < me

. (3.2.73)

12For the moment we will restore the subscript on the photon temperature to highlight the di↵erence with the

neutrino temperature.
13Obviously, entropy is separately conserved for the thermal bath and the decoupling species.
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Cosmic neutrino background ~300 neutrinos per cm3

Neutrinos are massive
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Effective number of dof

49 3. Thermal History

T ⇠ 1

6
mt ⇠ 30 GeV,11 the e↵ective number of relativistic species is reduced to g? = 106.75 �

7

8
⇥ 12 = 96.25. The Higgs boson and the gauge bosons W±, Z0 annihilate next. This happens

roughly at the same time. At T ⇠ 10 GeV, we have g? = 96.26 � (1 + 3 · 3) = 86.25. Next,

the bottom quarks annihilate (g? = 86.25 � 7

8
⇥ 12 = 75.75), followed by the charm quarks

and the tau leptons (g? = 75.75 � 7

8
⇥ (12 + 4) = 61.75). Before the strange quarks had

time to annihilate, something else happens: matter undergoes the QCD phase transition. At

T ⇠ 150 MeV, the quarks combine into baryons (protons, neutrons, ...) and mesons (pions, ...).

There are many di↵erent species of baryons and mesons, but all except the pions (⇡±
,⇡

0) are

non-relativistic below the temperature of the QCD phase transition. Thus, the only particle

species left in large numbers are the pions, electrons, muons, neutrinos, and the photons. The

three pions (spin-0) correspond to g = 3 · 1 = 3 internal degrees of freedom. We therefore get

g? = 2 + 3 + 7

8
⇥ (4 + 4 + 6) = 17.25. Next electrons and positrons annihilate. However, to

understand this process we first need to talk about entropy.

Figure 3.4: Evolution of relativistic degrees of freedom g?(T ) assuming the Standard Model particle content.
The dotted line stands for the number of e↵ective degrees of freedom in entropy g?S(T ).

3.2.3 Conservation of Entropy

To describe the evolution of the universe it is useful to track a conserved quantity. As we will

see, in cosmology entropy is more informative than energy. According to the second law of

thermodynamics, the total entropy of the universe only increases or stays constant. It is easy to

show that the entropy is conserved in equilibrium (see below). Since there are far more photons

than baryons in the universe, the entropy of the universe is dominated by the entropy of the

photon bath (at least as long as the universe is su�ciently uniform). Any entropy production

from non-equilibrium processes is therefore total insignificant relative to the total entropy. To

a good approximation we can therefore treat the expansion of the universe as adiabatic, so that

11The transition from relativistic to non-relativistic behaviour isn’t instantaneous. About 80% of the particle-

antiparticle annihilations takes place in the interval T = m ! 1

6
m.

credit D. Baumann

47 3. Thermal History

By comparing the relativistic limit (T � m) and the non-relativistic limit (T ⌧ m), we see

that the number density, energy density, and pressure of a particle species fall exponentially (are

“Boltzmann suppressed”) as the temperature drops below the mass of the particle. We interpret

this as the annihilation of particles and anti-particles. At higher energies these annihilations

also occur, but they are balanced by particle-antiparticle pair production. At low temperatures,

the thermal particle energies aren’t su�cient for pair production.

Exercise.—Restoring finite µ in the non-relativistic limit, show that

n = g
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⇣
µ

T

⌘
. (3.2.53)

E↵ective Number of Relativistic Species

Let T be the temperature of the photon gas. The total radiation density is the sum over the

energy densities of all relativistic species

⇢r =
X

i

⇢i =
⇡
2

30
g?(T )T

4
, (3.2.54)

where g?(T ) is the e↵ective number of relativistic degrees of freedom at the temperature T . The

sum over particle species may receive two types of contributions:

• Relativistic species in thermal equilibrium with the photons, Ti = T � mi,

g
th

? (T ) =
X

i=b

gi +
7

8

X

i=f

gi . (3.2.55)

When the temperature drops below the mass mi of a particle species, it becomes non-

relativistic and is removed from the sum in (3.2.55). Away from mass thresholds, the

thermal contribution is independent of temperature.

• Relativistic species that are not in thermal equilibrium with the photons, Ti 6= T � mi,

g
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X
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gi

✓
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T
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4
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8
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T
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. (3.2.56)

We have allowed for the decoupled species to have di↵erent temperatures Ti. This will be

relevant for neutrinos after e+e� annihilation (see §3.2.4).
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that the number density, energy density, and pressure of a particle species fall exponentially (are

“Boltzmann suppressed”) as the temperature drops below the mass of the particle. We interpret

this as the annihilation of particles and anti-particles. At higher energies these annihilations

also occur, but they are balanced by particle-antiparticle pair production. At low temperatures,

the thermal particle energies aren’t su�cient for pair production.

Exercise.—Restoring finite µ in the non-relativistic limit, show that

n = g

✓
mT

2⇡

◆3/2

e
�(m�µ)/T

, (3.2.52)

n� n̄ = 2g

✓
mT

2⇡

◆3/2

e
�m/T sinh

⇣
µ

T

⌘
. (3.2.53)

E↵ective Number of Relativistic Species

Let T be the temperature of the photon gas. The total radiation density is the sum over the

energy densities of all relativistic species

⇢r =
X

i

⇢i =
⇡
2

30
g?(T )T

4
, (3.2.54)

where g?(T ) is the e↵ective number of relativistic degrees of freedom at the temperature T . The

sum over particle species may receive two types of contributions:

• Relativistic species in thermal equilibrium with the photons, Ti = T � mi,

g
th

? (T ) =
X

i=b

gi +
7

8

X

i=f

gi . (3.2.55)

When the temperature drops below the mass mi of a particle species, it becomes non-

relativistic and is removed from the sum in (3.2.55). Away from mass thresholds, the

thermal contribution is independent of temperature.

• Relativistic species that are not in thermal equilibrium with the photons, Ti 6= T � mi,

g
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+
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. (3.2.56)

We have allowed for the decoupled species to have di↵erent temperatures Ti. This will be

relevant for neutrinos after e+e� annihilation (see §3.2.4).
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Figure 3.1: Evolution of the number of relativistic degrees of freedom assuming the Standard Model.

3.1.2 Decoupling and Freeze-Out

If equilibrium had persisted until today, the universe would be mostly photons. Any massive

particle species would be exponentially suppressed.5 To understand the world around us, it

is therefore crucial to understand the deviations from equilibrium that led to the freeze-out of

massive particles (see Fig. 3.2).

1 10 100

equilibrium

relativistic non-relativistic

freeze-out

relic density

Figure 3.2: A schematic illustration of particle freeze-out. At high temperatures, T � m, the particle
abundance tracks its equilibrium value. At low temperatures, T ⌧ m, the particles freeze out and maintain
a density that is much larger than the Boltzmann-suppressed equilibrium abundance.

Below the scale of electroweak symmetry breaking, T . 100GeV, the gauge bosons of the

weak interactions, W± and Z, receive masses MW ⇠ MZ . The cross section associated with

5This isn’t quite correct for baryons. Since baryon number is a symmetry of the Standard Model, the number

density of baryons can remain significant even in equilibrium.

credit D. Baumann
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It is instructive to write this in terms of the number of particles in a comoving volume, as defined

in (3.2.65), Ni ⌘ ni/s. This gives

d lnN1

d ln a
= ��1

H

"
1�

✓
N1N2

N3N4

◆

eq

N3N4

N1N2

#
, (3.3.86)

where �1 ⌘ n2h�vi. The r.h.s. of (3.3.86) contains a factor describing the interaction e�ciency,

�1/H, and a factor characterizing the deviation from equilibrium, [1� · · · ].
For �1 � H, the natural state of the system is chemical equilibrium. Imagine that we start

with N1 � N
eq

1
(while Ni ⇠ N

eq

i
, i = 2, 3, 4). The r.h.s. of (3.3.86) then is negative, particles

of type 1 are destroyed and N1 is reduced towards the equilibrium value N
eq

1
. Similarly, if

N1 ⌧ N
eq

1
, the r.h.s. of (3.3.86) is positive and N1 is driven towards N eq

1
. The same conclusion

applies if several species deviate from their equilibrium values. As long as the interaction rates

are large, the system quickly relaxes to a steady state where the r.h.s. of (3.3.86) vanishes and

the particles assume their equilibrium abundances.

When the reaction rate drops below the Hubble scale, �1 < H, the r.h.s. of (3.3.86) gets

suppressed and the comoving density of particles approaches a constant relic density, i.e. N1 =

const. This is illustrated in Fig. 3.2. We will see similar types of evolution when we study the

freeze-out of dark matter particles in the early universe (Fig. 3.7), neutrons in BBN (Fig. 3.9)

and electrons in recombination (Fig. 3.8).

3.3.2 Dark Matter Relics

We start with the slightly speculative topic of dark matter freeze-out. I call this speculative

because it requires us to make some assumptions about the nature of the unknown dark matter

particles. For concreteness, we will focus on the hypothesis that the dark matter is a weakly

interacting massive particle (WIMP).

Freeze-Out

WIMPs were in close contact with the rest of the cosmic plasma at high temperatures, but

then experienced freeze-out at a critical temperature Tf . The purpose of this section is to solve

the Boltzmann equation for such a particle, determining the epoch of freeze-out and its relic

abundance.

To get started we have to assume something about the WIMP interactions in the early uni-

verse. We will imagine that a heavy dark matter particle X and its antiparticle X̄ can annihilate

to produce two light (essentially massless) particles ` and ¯̀,

X + X̄ $ `+ ¯̀ . (3.3.87)

Moreover, we assume that the light particles are tightly coupled to the cosmic plasma,18 so that

throughout they maintain their equilibrium densities, n` = n
eq

`
. Finally, we assume that there

is no initial asymmetry between X and X̄, i.e. nX = n
X̄
. The Boltzmann equation (3.3.85) for

the evolution of the number of WIMPs in a comoving volume, NX ⌘ nX/s, then is

dNX

dt
= �sh�vi

h
N

2

X � (N eq

X
)2
i
, (3.3.88)

18This would be case case, for instance, if ` and ¯̀ were electrically charged.
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Two major predictions of Hot Big Bang

Primordial nucleosynthesis

Cosmic Microwave Background

Origin and primordial abundance of chemical elements

Relic leftover radiation after the universe becomes transparent



Primordial nucleosynthesis

Astronomical observations:
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Exercise.—Using �e(Tf ) ⇠ H(Tf ), show that the freeze-out temperature satisfies

Xe(Tf )Tf =
⇡
2

2⇣(3)

H0

p
⌦m

⌘�TT
3/2

0
B

1/2

H

. (3.3.126)

Use the Saha equation to show that Tf ⇠ 0.25 eV and hence xf ⇠ 54.

3.3.4 Big Bang Nucleosynthesis

Let us return to T ⇠ 1 MeV. Photons, electron and positrons are in equilibrium. Neutrinos

are about to decouple. Baryons are non-relativistic and therefore much fewer in number than

the relativistic species. Nevertheless, we now want to study what happened to these trace

amounts of baryonic matter. The total number of nucleons stays constant due to baryon number

conservation. This baryon number can be in the form of protons and neutrons or heavier nuclei.

Weak nuclear reactions may convert neutrons and protons into each other and strong nuclear

reactions may build nuclei from them. In this section, I want to show you how the light elements

hydrogen, helium and lithium were synthesised in the Big Bang. I won’t give a complete account

of all of the complicated details of Big Bang Nucleosynthesis (BBN). Instead, the goal of this

section will be more modest: I want to give you a theoretical understanding of a single number:

the ratio of the density of helium to hydrogen,

nHe

nH

⇠ 1

16
. (3.3.127)

Figure 3.9 summarizes the four steps that will lead us from protons and neutrons to helium.
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Figure 3.9: Numerical results for helium production in the early universe.

(all other elements in traces)

Why no heavier elements?
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Exercise.—Using �e(Tf ) ⇠ H(Tf ), show that the freeze-out temperature satisfies

Xe(Tf )Tf =
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Use the Saha equation to show that Tf ⇠ 0.25 eV and hence xf ⇠ 54.

3.3.4 Big Bang Nucleosynthesis

Let us return to T ⇠ 1 MeV. Photons, electron and positrons are in equilibrium. Neutrinos

are about to decouple. Baryons are non-relativistic and therefore much fewer in number than

the relativistic species. Nevertheless, we now want to study what happened to these trace

amounts of baryonic matter. The total number of nucleons stays constant due to baryon number

conservation. This baryon number can be in the form of protons and neutrons or heavier nuclei.

Weak nuclear reactions may convert neutrons and protons into each other and strong nuclear

reactions may build nuclei from them. In this section, I want to show you how the light elements

hydrogen, helium and lithium were synthesised in the Big Bang. I won’t give a complete account

of all of the complicated details of Big Bang Nucleosynthesis (BBN). Instead, the goal of this

section will be more modest: I want to give you a theoretical understanding of a single number:

the ratio of the density of helium to hydrogen,

nHe

nH

⇠ 1

16
. (3.3.127)

Figure 3.9 summarizes the four steps that will lead us from protons and neutrons to helium.
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Figure 3.9: Numerical results for helium production in the early universe.

credit D. Baumann
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This reproduces the observed dark matter density if

p
h�vi ⇠ 10�4GeV�1 ⇠ 0.1

p
GF .

The fact that a thermal relic with a cross section characteristic of the weak interaction gives the

right dark matter abundance is called the WIMP miracle.

3.3.3 Recombination

An important event in the history of the early universe is the formation of the first atoms. At

temperatures above about 1 eV, the universe still consisted of a plasma of free electrons and

nuclei. Photons were tightly coupled to the electrons via Compton scattering, which in turn

strongly interacted with protons via Coulomb scattering. There was very little neutral hydrogen.

When the temperature became low enough, the electrons and nuclei combined to form neutral

atoms (recombination19), and the density of free electrons fell sharply. The photon mean free

path grew rapidly and became longer than the horizon distance. The photons decoupled from the

matter and the universe became transparent. Today, these photons are the cosmic microwave

background.

Saha Equilibrium

Let us start at T > 1 eV, when baryons and photons were still in equilibrium through electro-

magnetic reactions such as

e
� + p

+ $ H+ � . (3.3.100)

Since T < mi, i = {e, p,H}, we have the following equilibrium abundances

n
eq

i
= gi

✓
miT

2⇡

◆
3/2

exp

✓
µi �mi

T

◆
, (3.3.101)

where µp+µe = µH (recall that µ� = 0). To remove the dependence on the chemical potentials,

we consider the following ratio

✓
nH

nenp

◆

eq

=
gH

gegp

✓
mH

memp

2⇡

T

◆
3/2

e
(mp+me�mH)/T

. (3.3.102)

In the prefactor, we can use mH ⇡ mp, but in the exponential the small di↵erence between mH

and mp +me is crucial: it is the binding energy of hydrogen

BH ⌘ mp +me �mH = 13.6 eV . (3.3.103)

The number of internal degrees of freedom are gp = ge = 2 and gH = 4.20 Since, as far as we

know, the universe isn’t electrically charged, we have ne = np. Eq. (3.3.102) therefore becomes

✓
nH

n2
e

◆

eq

=

✓
2⇡

meT

◆
3/2

e
BH/T

. (3.3.104)

19Don’t ask me why this is called recombination; this is the first time electrons and nuclei combined.
20The spins of the electron and proton in a hydrogen atom can be aligned or anti-aligned, giving one singlet

state and one triplet state, so gH = 1 + 3 = 4.

Above energies of ~0.3 eV the universe is filled with plasma

61 3. Thermal History

The reason that Trec ⌧ BH = 13.6 eV is that there are very many photons for each hydrogen

atom, ⌘b ⇠ 10�9 ⌧ 1. Even when T < BH, the high-energy tail of the photon distribution

contains photons with energy E > BH so that they can ionize a hydrogen atom.

Exercise.—Confirm the estimate in (3.3.109).

Using Trec = T0(1 + zrec), with T0 = 2.7K, gives the redshift of recombination,

zrec ⇡ 1320 . (3.3.110)

Since matter-radiation equality is at zeq ' 3500, we conclude that recombination occurred

in the matter-dominated era. Using a(t) = (t/t0)2/3, we obtain an estimate for the time of

recombination

trec =
t0

(1 + zrec)3/2
⇠ 290 000 yrs . (3.3.111)

Photon Decoupling

Photons are most strongly coupled to the primordial plasma through their interactions with

electrons

e
� + � $ e

� + � , (3.3.112)

with an interaction rate given by

�� ⇡ ne�T , (3.3.113)

where �T ⇡ 2⇥ 10�3MeV�2 is the Thomson cross section. Since �� / ne, the interaction rate

decreases as the density of free electrons drops. Photons and electrons decouple roughly when

the interaction rate becomes smaller than the expansion rate,

��(Tdec) ⇠ H(Tdec) . (3.3.114)

Writing

��(Tdec) = nbXe(Tdec)�T =
2⇣(3)

⇡2
⌘b �T Xe(Tdec)T

3

dec
, (3.3.115)
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we get

Xe(Tdec)T
3/2

dec
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2

2⇣(3)
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p
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⌘�T T
3/2

0

. (3.3.117)

Using the Saha equation for Xe(Tdec), we find

Tdec ⇠ 0.27 eV . (3.3.118)

Notice that although Tdec isn’t far from Trec, the ionization fraction decreases significantly be-

tween recombination and decoupling, Xe(Trec) ' 0.1 ! Xe(Tdec) ' 0.01. This shows that a large

degree of neutrality is necessary for the universe to become transparent to photon propagation.

Eventually H atoms form

Soon after photons decouple
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We wish to follow the free electron fraction defined as the ratio

Xe ⌘
ne

nb

, (3.3.105)

where nb is the baryon density. We may write the baryon density as

nb = ⌘b n� = ⌘b ⇥
2⇣(3)

⇡2
T
3
, (3.3.106)

where ⌘b = 5.5⇥10�10(⌦bh
2
/0.020) is the baryon-to-photon ratio. To simplify the discussion, let

us ignore all nuclei other than protons (over 90% (by number) of the nuclei are protons). The

total baryon number density can then be approximated as nb ⇡ np + nH = ne + nH and hence

1�Xe

X2
e

=
nH

n2
e

nb . (3.3.107)

Substituting (3.3.104) and (3.3.106), we arrive at the so-called Saha equation,
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. (3.3.108)
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Figure 3.8: Free electron fraction as a function of redshift.

Fig. 3.8 shows the redshift evolution of the free electron fraction as predicted both by the

Saha approximation (3.3.108) and by a more exact numerical treatment (see below). The Saha

approximation correctly identifies the onset of recombination, but it is clearly insu�cient if the

aim is to determine the relic density of electrons after freeze-out.

Hydrogen Recombination

Let us define the recombination temperature Trec as the temperature where21 Xe = 10�1

in (3.3.108), i.e. when 90% of the electrons have combined with protons to form hydrogen.

We find

Trec ⇡ 0.3 eV ' 3600K . (3.3.109)

21There is nothing deep about the choice Xe(Trec) = 10�1. It is as arbitrary as it looks.

recombination

photon decoupling

credit D. Baumann
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CMB forms at redshift z~1100

Temperature of the photons today ~2.7 K

Penzias and Wilson (~1965)
COBE (1992)
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Implications of large ηb

Sakharov conditions for baryogenesis

B
C

CP
equilibrium

In SM possible in principle, but  is way too smallηb

New physics must operate in the early universe to create 

this large matter-antimatter asymmetry!



Implications of large ηb

CMB temperature gives number density of photons

Given  we can compute number density of baryonsηb

Not enough baryons for structure formation! 
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The rest of matter must be non-baryonic. Can it be neutrinos? No

We need non-baryonic cold dark matter (CDM in )ΛCDM


