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Dirac eqn. Massless fermions
We choose an explicit representation for the gamma matrices. The Bjorken and
Drell representation is,

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
0 1

1 0

)
,

The Weyl representation is more suitable at high energy (this is the definition used
in Peskin and Schroder)

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 = iγ0γ1γ2γ3 =

(
−1 0

0 1

)
,

In the Weyl representation upper and lower components have different helicities.

γL =
1

2
(1− γ5) =

(
1 0

0 0

)
, γR =

1

2
(1 + γ5) = =

(
0 0

0 1

)
,
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Weyl representation
Both representations satisfy the same commutation relations.
γµγν + γνγµ = 2gµν

in the Weyl representation γ0γi =

(
−σi 0

0 σi

)
. σ are the Pauli matrices.

The fermions involved in high energy processes can often be taken to be
massless.

To derive an explicit solution for the massless Dirac equation �pu(p) = 0, write out
an explicit expression for �p = γ0p0 − γ1p1 − γ2p2 − γ3p3 in the Weyl
representation, NB p± = p0 ± p3, and for a massless particle
p+p− = (p1)2 + (p2)2

�p =




0 0 p− −p1 + ip2

0 0 −p1 − ip2 p+

p+ p1 − ip2 0 0

p1 + ip2 p− 0 0


 .




0 0 p− −p1 + ip2

0 0 −p1 − ip2 p+

p+ p1 − ip2 0 0

p1 + ip2 p− 0 0





−p1 + ip2

p+

0

0


 =



0

0

0

0



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Spinor solutions of Dirac equation
The normalized massless spinor solns of Dirac eqn are

u−(p) =
1√
p+



−p1 + ip2

p+

0

0


 , u+(p) =

1√
p+




0

0

p+

p1 + ip2


 ,

For massless particles charge conjugation is almost trivial; u±(p) = v∓(p)

In the Weyl representation the conjugate spinors are

u†
−(p) =

1√
p+

[−p1 − ip2, p
+, 0, 0

]

u†
+(p) =

1√
p+

[
0, 0, p+, p1 − ip2

]
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Parton branching - kinematics

pa = (Ea +
p2a
4Ea

, 0, 0, Ea − p2a
4Ea

)

pb = (Eb,+Eb sin θb, 0,+Eb cos θb)

pc = (Ec,−Ec sin θc, 0,+Ec cos θc)

the kinematics and notation for the branching of parton a into b+ c. We assume
that

p2b , p
2
c � p2a ≡ t

a is an outgoing parton, which is called timelike branching since t > 0.

The opening angle is θ = θb + θc. Defining the energy fraction as

z = Eb/Ea = 1− Ec/Ea ,

we have for small angles, t = 2EbEc(1− cos θ) = z(1− z)E2
aθ

2 so that√
t =

√
EbEcθ.

using transverse momentum conservation Ebθb = Ecθc

θ =
θb

1− z
=

θc

z
, θb − θc = (1− 2z)θ
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Branching probabilities g → qq̄
Consider the case where

pa = (Ea +
p2a
4Ea

, 0, 0, Ea − p2a
4Ea

)

pb ∼ (Eb,+Ebθb, 0,+Eb) pc ∼ (Ec,−Ecθc, 0,+Ec)

Thus for example

u†
+(pb) =

√
2Eb

[
0, 0, 1,

θb

2

]
, u+(pc) ≡ v−(pc) =

√
2Ec




0

0

1

− θc
2




Hence for polarization vectors εin = (0, 1, 0, 0), εout = (0, 0, 1, 0)

−gu†
+(pb) γ

0γ1 v−(pc) = −g
√

4EbEc

(
1,

θb

2

)(
0 1

1 0

)(
1

− θc
2

)
= −g

√
EbEc(θb − θc)

−gu†
+(pb) γ

0γ2 v−(pc) = −g
√

4EbEc

(
1,

θb

2

)(
0 −i

i 0

)(
1

− θc
2

)
= −ig

√
EbEc(θb + θc)
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Branching probabilities g → qq̄

−gū+(pb)�εinv−(pc) = −g
√

EbEc(θb − θc) = −g(1− 2z)
√
t

−gūb
+�εoutv−(pc) = −ig

√
EbEc(θb + θc) = −ig

√
z(1− z)Eaθ = −ig

√
t

and the matrix element relation for the branching is

|Mn+1|2 ∼ g2

t
TRF (z; εa, λb, λc)|Mn|2

where the colour factor is now Tr(tAtA)/8 = TR = 1/2. The non-vanishing functions
F (z; εa, λb, λc) for quark and antiquark helicities λb and λc are

εa λb λc F (z; εa, λb, λc)

in ± ∓ (1− 2z)2

out ± ∓ 1

Summing over the polarizations we get

2
[
(1− 2z)2 + 1

]
= 4(z2 + (1− z)2).

Angular momentum argument for vanishing of amplitude in forward direction.
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Branching probabilities
The spin averaged splitting function integrated over azimuthal angle is,

∫ dφ
2π

F = P̂ba(z).

P̂ba(z) is the appropriate splitting function

dσn+1 = dσn
dt

t
dz

αS

2π
P̂ba(z) + (non− logarithmically enhanced terms)

Including all the color factors we find the results for the unregulated branching
probabilities.

P̂qq(z) = CF

[
1 + z2

(1− z)

]
,

P̂qg(z) = TR

[
z2 + (1− z)2

]
, TR =

1

2
,

P̂gq(z) = CF

[
1 + (1− z)2

z

]
,

P̂gg(z) = CA

[
z

(1− z)
+

1− z

z
+ z (1− z)

]
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DGLAP equation
Consider enhancement of higher-order contributions due to multiple small-angle
parton emission, for example in deep inelastic scattering ( DIS)

Incoming quark from target hadron, initially with low virtual mass-squared −t0 and
carrying a fraction x0 of hadron’s momentum, moves to more virtual masses and
lower momentum fractions by successive small-angle emissions, and is finally
struck by photon of virtual mass-squared q2 = −Q2.

Cross section will depend on Q2 and on momentum fraction distribution of partons
seen by virtual photon at this scale, D(x,Q2).
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Branching paths
To derive evolution equation for Q2-dependence of D(x,Q2), first introduce
pictorial representation of evolution.

Represent sequence of branchings by path in (t, x)-space. Each branching is a
step downwards in x, at a value of t equal to (minus) the virtual mass-squared
after the branching.

At t = t0, paths have distribution of starting points D(x0, t0) characteristic of
target hadron at that scale. Then distribution D(x, t) of partons at scale t is just
the x-distribution of paths at that scale.
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Change in parton distribution
Consider change in the parton distribution D(x, t) when t is increased to t+ δt.
This is number of paths arriving in element (δt, δx) minus number leaving that
element, divided by δx.

Number arriving is branching probability times parton density integrated over all
higher momenta x′ = x/z,

δDin(x, t) =
δt

t

∫ 1

x
dx′ dz

αS

2π
P̂ (z)D(x′, t) δ(x− zx′)

=
δt

t

∫ 1

0

dz

z

αS

2π
P̂ (z)D(x/z, t)

For the number leaving element, must integrate over lower momenta x′ = zx:

δDout(x, t) =
δt

t
D(x, t)

∫ x

0
dx′ dz

αS

2π
P̂ (z) δ(x′ − zx)

=
δt

t
D(x, t)

∫ 1

0
dz

αS

2π
P̂ (z)
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Change in parton distribution – DGLAP equation
Change in population of element is

δD(x, t) = δDin − δDout =
δt

t

∫ 1

0
dz

αS

2π
P̂ (z)

[
1

z
D(x/z, t)−D(x, t)

]
.

Introduce plus-prescription with definition∫ 1

0
dx f(x) [g(x)]+ =

∫ 1

0
dx [f(x)− f(1)] g(x) .

Using this we can define regularized splitting function

P (z) = [P̂ (z)]+ ,

Plus-prescription, like the Dirac-delta function, is only defined under integral sign.

Plus-prescription includes some of the effects of virtual diagrams.

We obtain the Dokshitzer-Gribov-Lipatov-Altarelli-Parisi ( DGLAP) evolution
equation:

t
∂

∂t
D(x, t) =

∫ 1

x

dz

z

αS

2π
P (z)D(x/z, t) .

Here D(x, t) represents parton momentum fraction distribution inside incoming
hadron probed at scale t.

In timelike branching, it represents instead hadron momentum fraction distribution
produced by an outgoing parton. Boundary conditions and direction of evolution
are different, but evolution equation remains the same.
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Quarks and gluons
For several different types of partons, must take into account different processes
by which parton of type i can enter or leave the element (δt, δx). This leads to
coupled DGLAP evolution equations of form

t
∂

∂t
Di(x, t) =

∑
j

∫ 1

x

dz

z

αS

2π
Pij(z)Dj(x/z, t) .

Quark (i = q) can enter element via either q → qg or g → qq̄, but can only leave
via q → qg. Thus plus-prescription applies only to q → qg part, giving

Pqq(z) = P̂qq(z)+ = CF

(
1 + z2

1− z

)
+

Pqg(z) = P̂qg(z) = TR [z2 + (1− z)2]

Pgg(z) = 2CA

[(
z

1− z
+

1

2
z(1− z)

)
+

+
1− z

z
+

1

2
z(1− z)

]
− 2

3
NfTR δ(1− z) ,

Pgq(z) = Pgq̄(z) = P̂qq(1− z) = CF
1 + (1− z)2

z
.

QCD and Collider PhysicsLecture III: Parton branching, DGLAP and shower Monte Carlo – p.14/39



Using definition of the plus-prescription, Pqq and Pgg can be written in more
common forms

Pqq(z) = CF

[
1 + z2

(1− z)+
+

3

2
δ(1− z)

]

Pgg(z) = 2CA

[
z

(1− z)+
+

1− z

z
+ z(1− z)

]
+

1

6
(11CA − 4NfTR) δ(1− z) .

QCD and Collider PhysicsLecture III: Parton branching, DGLAP and shower Monte Carlo – p.15/39



Solution by moments
Given fi(x, t) at some scale t = t0, factorized structure of DGLAP equation
means we can compute its form at any other scale.

One strategy for doing this is to take moments (Mellin transforms) with respect to x:

f̃i(N, t) =

∫ 1

0
dx xN−1 fi(x, t) .

Inverse Mellin transform is fi(x, t) =
1

2πi

∫
C dN x−N f̃i(N, t). where contour C

is parallel to imaginary axis to right of all singularities of integrand.

After Mellin transformation, convolution in DGLAP equation becomes simply a
product:

t
∂

∂t
f̃i(N, t) =

∑
j

γij(N,αS)f̃j(N, t)

Using the lowest order approximation for γ defined as

γ
(0)
ij (N) =

∫ 1
0 dx xN−1Pij(x)

t
∂

∂t
f̃i(N, t) =

αS

2π

∑
j

γ
(0)
ij (N)f̃j(N, t)
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Anomalous dimension matrix in moment space

Behaviour of anomalous dimensions for real N ;

At lowest order γqq(1) = 0;

behaviour of diagonal elements for large N is negative -ln(N)
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Scaling violation
Consider combination of parton distributions which is flavour non-singlet, e.g.
DV = Dqi −Dq̄i or Dqi −Dqj . Then mixing with the flavour-singlet gluons drops
out and solution for fixed αS is

D̃V (N, t) = D̃V (N, t0)

(
t

t0

)γqq(N,αS)

,

We see that dimensionless function DV , instead of being scale-independent
function of x as expected from dimensional analysis, has scaling violation: its
moments vary like powers of scale t (hence the name anomalous dimensions).

For running coupling αS(t), scaling violation is power-behaved in ln t rather than t.
Using leading-order formula αS(t) = 1/b ln(t/Λ2), we find

D̃V (N, t) = D̃V (N, t0)

(
αS(t)

αS(t0)

)−dqq(N)

where dqq(N) = γ
(0)
qq (N)/2πb.

γ0
qq = CF

[
− 1

2
+

1

(N(N + 1)
− 2

N∑
k=2

1

k

]
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Combined data on F2 proton
HERA F2

0

1

2

3

4

5

1 10 10
2

10
3

10
4

10
5

F
2 em

-l
og

10
(x

)

Q2(GeV2)

ZEUS NLO QCD fit

H1 PDF 2000 fit

H1 94-00

H1 (prel.) 99/00

ZEUS 96/97

BCDMS

E665

NMC

x=6.32E-5 x=0.000102
x=0.000161

x=0.000253

x=0.0004
x=0.0005

x=0.000632
x=0.0008

x=0.0013

x=0.0021

x=0.0032

x=0.005

x=0.008

x=0.013

x=0.021

x=0.032

x=0.05

x=0.08

x=0.13

x=0.18

x=0.25

x=0.4

x=0.65

Now dqq(1) = 0 and dqq(N) < 0 for all N > 1. Thus as t increases
V decreases at large x and increases at small x. Physically, this is due to
increase in the phase space for gluon emission by quarks as t increases,
leading to loss of momentum. This is clearly visible in data:
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Sudakov form factor
DGLAP equations are convenient for evolution of parton distributions. Expressed
in terms of the unregulated branching probability we have,

t
∂

∂t
D(x, t) =

∫ 1

x

dz

z

αS

2π
P̂ (z)D(x/z, t)−

∫ 1

0
dz

αS

2π
P̂ (z)D(x, t)

To study structure of final states, slightly different form is useful. Consider again
simplified treatment with only one type of branching. Introduce Sudakov form
factor:

∆(t) ≡ exp

[
−
∫ t

t0

dt′

t′

∫
dz

αS

2π
P̂ (z)

]
,

t
∂

∂t
D(x, t) =

∫
dz

z

αS

2π
P̂ (z)D(x/z, t) +

D(x, t)

∆(t)
t
∂

∂t
∆(t) ,

t
∂

∂t

(
D

∆

)
=

1

∆

∫
dz

z

αS

2π
P̂ (z)D(x/z, t) .
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Sudakov form factor
This is similar to DGLAP, except D replaced by D/∆ and regularized splitting
function P replaced by unregularized P̂ . Integrating,

D(x, t) = ∆(t)D(x, t0) +

∫ t

t0

dt′

t′
∆(t)

∆(t′)

∫
dz

z

αS

2π
P̂ (z)D(x/z, t′) .

This has simple interpretation. First term is contribution from paths that do not
branch between scales t0 and t. Thus Sudakov form factor ∆(t) is probability of
evolving from t0 to t without branching. Second term is contribution from paths
which have their last branching at scale t′. Factor of ∆(t)/∆(t′) is probability of
evolving from t′ to t without branching.

Generalization to several species of partons straightforward. Species i has
Sudakov form factor

∆i(t) ≡ exp


−∑

j

∫ t

t0

dt′

t′

∫
dz

αS

2π
P̂ji(z)


 ,

which is probability of it evolving from t0 to t without branching. Then

t
∂

∂t

(
Di

∆i

)
=

1

∆i

∑
j

∫
dz

z

αS

2π
P̂ij(z)Dj(x/z, t) .
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Monte Carlo method
Monte Carlo branching algorithm operates as follows: given virtual mass scale and
momentum fraction (t1, x1) after some step of the evolution, or as initial
conditions, it generates values (t2, x2) after the next step.


 Since probability of evolving from t1 to t2 without branching is ∆(t2)/∆(t1),

t2 can be generated with the correct distribution by solving ∆(t2)
∆(t1)

= R where

R is random number (uniform on [0, 1]).


 If t2 is higher than hard process scale Q2, this means branching has finished.

 Otherwise, generate z = x2/x1 with distribution proportional to

(αS/2π)P (z), where P (z) is appropriate splitting function, using a second
random number R′

∫ x2/x1

ε
dz

αS

2π
P (z) = R′

∫ 1−ε

ε
dz

αS

2π
P (z)

where ε is cutoff for resolvable branching.
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In DIS, (ti, xi) values generated define virtual masses and momentum fractions of
exchanged quark, from which momenta of emitted gluons can be computed.
Azimuthal emission angles are then generated uniformly in the range [0, 2π]. More
generally, e.g. when exchanged parton is a gluon, azimuths must be generated
with polarization angular correlations.

Each emitted (timelike) parton can itself branch. In that case t evolves downwards
towards cutoff value t0, rather than upwards towards hard process scale Q2.
Probability of evolving downwards without branching between t1 and t2 is now
given by

∆(t1)

∆(t2)
= R .

Thus branching stops when R < ∆(t1).
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Parton Cascade

Due to successive branching, parton cascade or shower develops. Each outgoing
line is source of new cascade, until all outgoing lines have stopped branching. At
this stage, which depends on cutoff scale t0, outgoing partons have to be
converted into hadrons via a hadronization model.
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Soft gluon emission
Parton branching formalism discussed so far takes account of collinear
enhancements to all orders in PT. There are also soft enhancements: When
external line with momentum p and mass m (not necessarily small) emits a gluon
with momentum q, the propagator factor is

1

(p± q)2 −m2
=

±1

2p · q =
±1

2ωE(1− v cos θ)

where ω is emitted gluon energy, E and v are energy and velocity of parton
emitting it, and θ is angle of emission. This diverges as ω → 0, for any velocity and
emission angle.

Including numerator, soft gluon emission gives a colour factor times universal,
spin-independent factor in amplitude

Fsoft =
p · ε
p · q

where ε is polarization of emitted gluon. For example, emission from quark gives
numerator factor N · ε, where
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Soft gluon emission (continued)

Nµ

D
=

(�p+ �q +m)

D
γµu(p) → (2pµ − γµ �p+ γµm)

D
u(p) = pµu(p)/p · q .

(using Dirac equation for on-mass-shell spinor u(p) and D = (p+ q)2 −m2 → 2p · q).

Universal factor Fsoft coincides with classical eikonal formula for radiation from

current pµ, valid in long-wavelength limit.

No soft enhancement of radiation from off-mass-shell internal lines, since
associated denominator factor (p+ q)2 −m2 → p2 −m2 �= 0 as ω → 0.

Enhancement factor in amplitude for each external line implies cross section
enhancement is sum over all pairs of external lines {i, j}:

dσn+1 = dσn
dω

ω

dΩ

2π

αS

2π

∑
i,j

CijWij

where dΩ is element of solid angle for emitted gluon, Cij is a colour factor, and
radiation function Wij is given by

Wij =
ω2pi · pj
pi · q pj · q =

1− vivj cos θij

(1− vi cos θiq)(1− vj cos θjq)
.
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Soft-Gluon emission (continued)
Radiation function can be separated into two parts containing collinear
singularities along lines i and j. Consider for simplicity massless particles,
vi,j = 1. Then Wij = W i

ij +W j
ij where

W i
ij =

1

2

(
Wij +

1

1− cos θiq
− 1

1− cos θjq

)
.

This function has remarkable property of angular ordering. Write angular
integration in polar coordinates w.r.t. direction of i, dΩ = d cos θiq dφiq . Performing
azimuthal integration, we find

∫ 2π

0

dφiq

2π
W i

ij =
1

1− cos θiq
if θiq < θij , otherwise 0.

i

j

Thus, after azimuthal averaging, con-
tribution from W i

ij is confined to cone,
centred on direction of i, extending in
angle to direction of j. Similarly, W j

ij ,
averaged over φjq , is confined to cone
centred on line j extending to direction
of i.
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Angular ordering
To prove angular ordering property, write

1− cos θjq = a− b cosφiq

where
a = 1− cos θij cos θiq , b = sin θij sin θiq .

Defining z = exp(iφiq), we have

Iiij ≡
∫ 2π

0

dφiq

2π

1

1− cos θjq
=

1

iπb

∮
dz

(z+ − z)(z − z−)

where z-integration contour the unit circle and z± = a
b
±
√

a2

b2
− 1 Now only pole

at z = z− can lie inside unit circle, so

Iiij =

√
1

a2 − b2
=

1

| cos θiq − cos θij |
.
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Angular ordering (continued)

∫ 2π

0

dφiq

2π
W i

ij =
1

2(1− cos θiq)
[1 + (cos θiq − cos θij)I

i
ij ]

=
1

1− cos θiq
if θiq < θij , otherwise 0.

Angular ordering is coherence effect common to all gauge theories. In QED it
causes Chudakov effect – suppression of soft bremsstrahlung from e+e− pairs,
which has simple explanation in old-fashioned (time-ordered) perturbation theory.
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Chudakov effect

Consider emission of soft photon at angle θ from electron in pair with opening
angle θee < θ. For simplicity assume θee, θ � 1.

Transverse momentum of photon is kT ∼ zpθ and energy imbalance at e → eγ
vertex is

∆E ∼ k2T /zp ∼ zpθ2 .

Time available for emission is ∆t ∼ 1/∆E. In this time transverse separation of
pair will be ∆b ∼ θee∆t.

For non-negligible probability of emission, photon must resolve this transverse
separation of pair, so

∆b > λ/θ ∼ (zpθ)−1

where λ is photon wavelength.
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Chudakov effect (continued)
This implies that θee(zpθ2)−1 > (zpθ)−1 , and hence θee > θ.
Thus soft photon emission is suppressed at angles larger than opening angle of
pair, which is angular ordering.

Photons at larger angles cannot resolve electron and positron charges separately
– they see only total charge of pair, which is zero, implying no emission.

More generally, if i and j come from branching of parton k, with (colour) charge
Qk = Qi +Qk, then radiation outside angular-ordered cones is emitted
coherently by i and j and can be treated as coming directly from (colour) charge of
k.
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Coherent branching
Angular ordering provides basis for coherent parton branching formalism, which
includes leading soft gluon enhancements to all orders.

In place of virtual mass-squared variable t in earlier treatment, use angular
variable

ζ =
pb · pc
Eb Ec

� 1− cos θ

as evolution variable for branching a → bc, and impose angular ordering ζ′ < ζ for
successive branchings. Iterative formula for n-parton emission becomes

dσn+1 = dσn
dζ

ζ
dz

αS

2π
P̂ba(z) .

Thus for the coherent branching process, the Sudakov form factor of the quark, for
example, takes the form

∆̃q(t̃) = exp

{
−
∫ t̃

4t0

dt′

t′

∫ 1−
√

t0/t′

√
t0/t′

dz

2π
αS

(
z2(1− z)2t′

)
P̂qq(z)

}
.

At large t̃ this falls more slowly than the Sudakov factor without angular ordering,
but still faster than any negative power of t̃.

The slower fall implies less branching, which is due to the suppression of soft
gluon emission by angular ordering.
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Hadronization models/Underlying event
Real events consist of partons, not hadrons;

Since this is a non-perturbative process at low momentum scale, Monte Carlo
generators use hadronization models;

One widely-used model involves stretching a colour string across quarks and
gluons, and breaking it up into hadrons. This string type of hadronization is
implemented in the Pythia event generator;

Another model breaks each gluon into a qq̄ pair and then groups quarks and
anti-quarks into colourless ‘clusters’, which then give the hadrons. This cluster
type hadronization is implemented in the Herwig event generator;

A final detail needed in Monte Carlo is the underlying event. This is normally
modelled through multiple extra 2 → 2 scatterings.
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Ingredients for a parton calculation at LHC

Factorization formula

σ(S) =
∑
i,j

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σ̂ij(ŝ = x1x2S, αS(µ

2), Q2/µ2)

Non-perturbative parton distributions fi(x, µ
2) with calculable scale dependence.

Short distance cross section that depends on αs and factorization scale µ.

Value of the coupling αs with known scale dependence.
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Parton distributions
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Extrapolation to LHC energies
Determination of parton distribution
functions requires fitting to data.

Production of an object of Mass M
and rapidity y probes parton
distribution functions at
x1,2 = M/

√
s exp(±y).

p1 =

√
s

2
(x1, 0, 0,+x1)

p2 =

√
s

2
(x2, 0, 0,−x2)

p3 = (M cosh y, 0, 0,M sinh y)

Large extrapolation from
HERA/fixed target to LHC, per-
formed using DGLAP evolution.
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Gluon distribution at LHC energies
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The left-hand figure shows the change in the gluon distribution going from
Q = 2 GeV to Q = 100 GeV.

The right-hand figure shows the theoretical uncertainty band estimated using a
scale variations of Q/2, Q, 2Q with LO, NLO and NNLO evolution.
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Gluon distribution and its errors

Left figure shows the change from 2014 to 2020 (MHST) from 2012.04684.

Data sets included are final HERA combined data on total and heavy flavour
structure functions, final Tevatron data and a significant number of new LHC 7 and
8 TeV data sets on vector boson production, inclusive jets and top quark
distributions.

NNLO QCD corrections included for most data sets.

NNLO fit is strongly favoured over the NLO.

Modern parton distributions come with procedures to estimate errors;

Through most of the range the errors on the gluon distribution at the level of a few
percent.
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Recap
Spinor solutions of the massless Dirac equation are classified by helicity and are
simple.

Parton evolution can be represented as a branching process from higher values of
x;

Amplitudes for parton branching are proportional to
√
t leading to dt/t behavior for

branching probability.

DGLAP equation controls the change of parton distributions with scale. It predicts
growth at small x and shrinkage at large x with increasing Q2.

The Sudakov factor ∆(t, t0) predicts the probability of no-branching between t0
and t

Angular ordering of soft radiation put a further dynamical constraint on the parton
shower.

Parton distributions for LHC involve extrapolations from HERA and fixed target
energies, performed using the DGLAP equation and also LHC data. Errors below
5%.
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