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Ingredients for a parton calculation

Factorization formula

σ(S) =
∑
i,j

∫
dx1dx2fi(x1, µ

2)fj(x2, µ
2)σ̂ij(ŝ = x1x2S, αs(µ

2), Q2/µ2)

Non-perturbative parton distributions fi(x, µ2) with calculable scale dependence.

Short distance cross section that depends on αs and factorization scale µ.

Value of the coupling αs with known scale dependence.
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Hadron-hadron processes
In hard hadron-hadron scattering, constituent partons from each incoming hadron
interact at short distance (large momentum transfer Q2).
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For hadron momenta P1, P2 (S = 2P1 · P2), form of cross section is

σ(S) =
∑
i,j

∫
dx1dx2Di(x1, µ

2)Dj(x2, µ
2)σ̂ij(ŝ = x1x2S, αs(µ

2), Q2/µ2)

where µ2 is factorization scale and σ̂ij is subprocess cross section for parton
types i, j.
� Notice that factorization scale is in principle arbitrary: affects only what we call

part of subprocess or part of initial-state evolution (parton shower).

� Unlike e+e− or ep, we may have interaction between spectator partons,
leading to soft underlying event and/or multiple hard scattering.
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Factorization of the cross section
Why does the factorization property hold and when it should fail?

For a heuristic argument Consider the simplest hard process involving two hadrons

H1(P1) +H2(P2)→ V +X.

Do the partons in hadron H1, through the influence of their colour fields, change
the distribution of partons in hadron H2 before the vector boson is produced? Soft
gluons which are emitted long before the collision are potentially troublesome.

A simple model from classical electrodynamics. The vector potential due to an
electromagnetic current density J is given by

Aµ(t, �x) =

∫
dt′d�x′

Jµ(t′, �x′)
|�x− �x′| δ(t′ + |�x− �x′| − t) ,

where the delta function provides the retarded behaviour required by causality.
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Consider a particle with charge e travelling in the positive z direction with constant
velocity β. The non-zero components of the current density are

Jt(t′, �x′) = eδ(�x′ − �r(t′)) ,
Jz(t′, �x′) = eβδ(�x′ − �r(t′)), �r(t′) = βt′ẑ,

ẑ is a unit vector in the z direction. At an observation point (the supposed position
of hadron H2) described by coordinates x, y and z, the vector potential (either
performing the integrations using the current density given above, or by Lorentz
transformation of the scalar potential in the rest frame of the particle) is

At(t, �x) =
eγ√

[x2 + y2 + γ2(βt− z)2]
Ax(t, �x) = 0

Ay(t, �x) = 0

Az(t, �x) =
eγβ√

[x2 + y2 + γ2(βt− z)2] ,

where γ2 = 1/(1− β2). Target hadron H2 is at rest near the origin, so that
γ ≈ s/m2.
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Note that for large γ and fixed non-zero (βt− z) some components of the potential
tend to a constant independent of γ, suggesting that there will be non-zero fields
which are not in coincidence with the arrival of the particle, even at high energy.

However at large γ the potential is a pure gauge piece, Aµ = ∂µχ where χ is a
scalar function

Covariant formulation using the vector potential A has large fields which have no
effect.

For example, the electric field along the z direction is

Ez(t, �x) = F tz ≡ ∂Az

∂t
+
∂At

∂z
=

eγ(βt− z)
[x2 + y2 + γ2(βt− z)2] 32

.

The leading terms in γ cancel and the field strengths are of order 1/γ2 and hence
of order m4/s2. The model suggests the force experienced by a charge in the
hadron H2, at any fixed time before the arrival of the quark, decreases as m4/s2.
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Parton luminosity
Parton luminosity is determined by the parton distribution functions, fi(x1, µ2) and
fj(x2, µ

2).

fj(xi, µ
2) need to be determined by data.

the available centre-of-mass energy-squared of the parton-parton collision, ŝ, is
less than the overall hadron-hadron collision energy, s, by a factor of x1x2 ≡ τ .

Define differential parton luminosities

τ
dLij

dτ
=

1

1 + δij

∫ 1

0
dx1dx2

×
[(
x1fi(x1, µ

2) x2fj(x2, µ
2)
)
+
(
1↔ 2

)]
δ(τ − x1x2).

The collider luminosity is quite distinct from the parton luminosity. The former is a
property of a machine, whereas the latter is a property of the proton.

We now assume that σ̂ depends only on ŝ.

σ(s) =
∑
{ij}

∫ 1

τ0

dτ

τ

[
1

s

dLij

dτ

][
ŝσ̂ij

]
,
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Parton luminosity
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Ratios of luminosities

QCD and Collider PhysicsLecture IV: Applications of the QCD parton model and modern techniques for tree graphs – p. 10/63



Boson rules
3 and 4 point vertices determined by the non-abelian term in the field strength.
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Fermion rules

The propagators are shown in the
Unitary gauge.

This gauge eliminates fields that do
not correspond to physical
particles.

In this gauge the propagators have
worse ultra-violet behaviour.

The Weinberg angle fixes the
coupling to the Z boson.

Measurements of the Weinberg an-
gle fix the ratio of the Z and W
masses
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Lepton-pair production
Mechanism for Lepton
pair production,
W -production,
Z-production,
Vector-boson pairs, . . .

Collectively known as the
Drell-Yan process.

Colour average 1/N .

dσ̂

dQ2
=
σ0

N
Q2

q δ(ŝ−Q2), σ0 =
4πα2

3Q2
, cf e+e− annihilation.

In the CM frame of the two hadrons, the momenta of the incoming partons are

p1 =

√
s

2
(x1, 0, 0, x1), p2 =

√
s

2
(x2, 0, 0,−x2) .
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The square of the qq̄ collision energy ŝ is related to the overall hadron-hadron collision
energy by ŝ = (p1 + p2)2 = x1x2s. The parton-model cross section for this process is:

dσ

dM2
=

∫ 1

0
dx1dx2

∑
q

{fq(x1)fq̄(x2) + (q ↔ q̄)} dσ̂

dM2
(qq̄ → l+l−)

=
σ0

Ns

∫ 1

0

dx1

x1

dx2

x2
δ(1− z)


∑

q

Q2
q {fq(x1)fq̄(x2) + (q ↔ q̄)}


 .

For later convenience we have introduced the variable z = Q2

ŝ
= Q2

x1x2s
.

The sum here is over quarks only and the q̄q contributions are indicated explicitly.

QCD and Collider PhysicsLecture IV: Applications of the QCD parton model and modern techniques for tree graphs – p. 14/63



Next-to-leading order

The contribution of the real diagrams (in four dimensions) is

|M |2 ∼ g2CF

[
u

t
+
t

u
+

2Q2s

ut

]
= g2CF

[(1 + z2

1− z
)(−s

t
+
−s
u

)
− 2

]

where z = Q2/s, s+ t+ u = Q2.

Note that the real diagrams contain collinear singularities, u→ 0, t→ 0 and soft
singularities, z → 1.

The coefficient of the divergence is the unregulated branching probability P̂qq(z).

Ignore for simplicity the diagrams with incoming gluons.
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Control the divergences by continuing the dimensionality of space-time,
d = 4− 2ε, (technically this is dimensional reduction). Performing the phase space
integration, the total contribution of the real diagrams is

σR =
αs

2π
CF

(
µ2

Q2

)ε

cΓ

[( 2

ε2
+

3

ε
− π2

3

)
δ(1− z)− 2

ε
Pqq(z)

− 2(1− z) + 4(1 + z2)
[ ln(1− z)

1− z
]
+
− 2

1 + z2

(1− z) ln z
]

with cΓ = (4π)ε/Γ(1− ε).
The contribution of the virtual diagrams is

σV = δ(1− z)
[
1 +

αs

2π
CF

(
µ2

Q2

)ε

c′Γ
(
− 2

ε2
− 3

ε
− 6 + π2

)]

c′Γ = cΓ +O(ε3)
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Adding it up we get in dim-reduction

σR+V =
αs

2π
CF

(
µ2

Q2

)ε

cΓ

[(2π2

3
− 6

)
δ(1− z)− 2

ε
Pqq(z)− 2(1− z)

+ 4(1 + z2)
[ ln(1− z)

1− z
]
+
− 2

1 + z2

(1− z) ln z
]

The divergences, proportional to the branching probability , are universal.

We will factorize them into the parton distributions. We perform the mass
factorization by subtracting the counterterm

2
αs

2π
CF

[
−cΓ
ε
Pqq(z)− (1− z) + δ(1− z)

]

(The finite terms are necessary to get us to the MS-scheme).

σ̂ =
αs

2π
CF

[(2π2

3
−8
)
δ(1−z)+4(1+z2)

[ ln(1− z)
1− z

]
+
−2 1 + z2

(1− z) ln z+2Pqq(z) ln
Q2

µ2

]

Similar correction for incoming gluons.
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Application to W,Z production

Agreement with NLO theory is good.

LO curves lie about 25% too low.

NNLO results are also known and lead to a further modest (4%) increase at the
Tevatron.
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Why top?
The top quark cross section is large at LHC energies, one event in 107

Since mt > MW +mb a top quark decays predominantly into a b quark and an
on-shell W boson

t → W+ + b
|→ l+ + ν

t → W+ + b
|→ q + q̄

In the limit mt �MW the result for the total width is

Γ(t→ bW ) =
GFm

3
t

8π
√
2
|Vtb|2 ≈ 1.76 GeV

(
mt

175 GeV

)3

.

Vtb ≈ 1 as suggested by the unitarity relation |Vtb|2 + |Vcb|2 + |Vub|2 = 1.

The top quark decays before it has time to hadronize.

The top is a copious source of b’s and W ’s
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LO Top production
The leading-order processes for the production of a heavy quark Q of mass m in
hadron-hadron collisions

(a) q(p1) + q(p2)→ Q(p3) +Q(p4)

(b) g(p1) + g(p2)→ Q(p3) +Q(p4)

where the four-momenta of the partons are given in brackets (ρ = 4m2/s).

Process
∑|M|2/g4

q q → Q Q 4
9

(
τ21 + τ22 + ρ

2

)
g g → Q Q

(
1

6τ1τ2
− 3

8

)(
τ21 + τ22 + ρ− ρ2

4τ1τ2

)

The matrix elements
squared have been
averaged (summed)
over initial (final)
colours and spins,
as indicated by

∑
.

Notation for the
ratios of scalar
products:

τ1 =
2p1.p3

ŝ
, τ2 =

2p2.p3

ŝ

ρ =
4m2

ŝ
, ŝ = (p1 + p2)

2.
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Differential distributions
The short-distance cross section is obtained from the invariant matrix element in
the usual way:

dσ̂ij =
1

2ŝ

d3p3

(2π)32E3

d3p4

(2π)32E4
(2π)4δ4(p1 + p2 − p3 − p4)

∑
|Mij |2.

The first factor is the flux factor for massless incoming particles. The other terms
come from the phase space for 2→ 2 scattering.

In terms of the rapidity y = 1
2
ln((E + pz)/(E − pz)) and transverse momentum,

pT , the relativistically invariant phase space volume element of the final-state
heavy quarks is

d3p

E
= dy d2pT .

The result for the invariant cross section may be written as

dσ

dy3dy4d2pT
=

1

16π2ŝ2

∑
ij

x1fi(x1, µ
2) x2fj(x2, µ

2)
∑
|Mij |2.

x1 and x2 are fixed if we know the transverse momenta and rapidity of the
outgoing heavy quarks.
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Differential distributions
In the centre-of-mass system of the incoming hadrons we may write

p1 =
1

2

√
s(x1, 0, 0, x1)

p2 =
1

2

√
s(x2, 0, 0,−x2)

p3 = (mT cosh y3, pT , 0,mT sinh y3)

p4 = (mT cosh y4,−pT , 0,mT sinh y4).

Applying energy and momentum conservation, we obtain

x1 =
mT√
s

(
ey3 + ey4

)
x2 =

mT√
s

(
e−y3 + e−y4

)
ŝ = 2m2

T (1 + cosh∆y).

The quantity mT =
√
(m2 + p2T ) is the transverse mass of the heavy quarks and

∆y = y3 − y4 is the rapidity difference between them.
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Differential distributions
In these variables the leading order cross section is

dσ

dy3dy4d2pT
=

1

64π2m4
T (1 + cosh(∆y))2

×
∑
ij

x1fi(x1, µ
2) x2fj(x2, µ

2)
∑
|Mij |2.

Expressed in terms of m,mT and ∆y, the matrix elements for the two processes
are ∑

|Mqq|2 =
4g4

9

( 1

1 + cosh(∆y)

)(
cosh(∆y) +

m2

m2
T

)
,

∑
|Mgg |2 =

g4

24

(8 cosh(∆y)− 1

1 + cosh(∆y)

)(
cosh(∆y) + 2

m2

m2
T

− 2
m4

m4
T

)
.

As the rapidity separation ∆y between the two heavy quarks becomes large

∑
|Mqq|2 ∼ constant,

∑
|Mgg|2 ∼ exp∆y .

The cross section is damped at large ∆y and heavy quarks produced by qq̄
annihilation are more closely correlated in rapidity those produced by gg fusion.
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NLO Heavy quark production
In NLO heavy quark production m is the heavy quark mass.

σ(S) =
∑
i,j

∫
dx1dx2 σ̂ij(x1x2S,m

2, µ2)fi(x1, µ
2)fj(x2, µ

2), σ̂i,j(ŝ,m
2, µ2) = σ0cij(ρ̂, µ

2)

where ρ̂ = 4m2/ŝ, µ̄2 = µ2/m2, σ0 = α2
s(µ

2)/m2 and ŝ in the parton total c-of-m
energy squared. The coupling satisfies

dαs

d lnµ2
= −b0 α

2
s

2π
+O(α3

s), b0 =
11N − 2nf

6

cij

(
ρ,
µ2

m2

)
= c

(0)
ij (ρ) + 4παs(µ

2)
[
c
(1)
ij (ρ) + c

(1)
ij (ρ) ln(

µ2

m2
)
]
+O(α2

s)

The lowest-order functions c(0)ij are obtained by integrating the lowest order matrix
elements

c
(0)
gg (ρ) =

πβρ

192

[
1

β

[
ρ2 + 16ρ+ 16

]
ln
(1 + β

1− β
)
− 28− 31ρ

]
,

c
(0)
qq (ρ) =

πβρ

27

[
(2 + ρ)

]
, c

(0)
gq (ρ) = c

(0)
gq (ρ) = 0
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NLO Heavy quark production
The functions c(1)ij are also known

In order to calculate the cij in perturbation theory we must perform both
renormalization and factorization of mass singularities. The subtractions required
for renormalization and factorization are done at mass scale µ.
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Scale dependence
The scale µ is an unphysical parameter. The physical predictions should be invariant
under changes of µ at the appropriate order in perturbation theory. If we have performed
a calculation to O(α3

s), variations of the scale µ will lead to corrections of O(α4
s),

µ2
d

dµ2
σ = O(α4

s).

The term c(1), which controls the µ dependence of the higher-order perturbative
contributions, is fixed in terms of the lower-order result c(0):

c
(1)
ij (ρ) =

1

8π2

[
4πbc

(0)
ij (ρ)−

∫ 1

ρ
dz1

∑
k

c
(0)
kj (

ρ

z1
)P

(0)
ki (z1)

−
∫ 1

ρ
dz2

∑
k

c
(0)
ik (

ρ

z2
)P

(0)
kj (z2)

]
.
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Scale dependence
In obtaining this result we have used the renormalization group equation for the
running coupling

µ2
d

dµ2
αs(µ

2) = −bα2
s + . . .

and the lowest-order form of the DGLAP equation

µ2
d

dµ2
fi(x, µ

2) =
αs(µ2)

2π

∑
k

∫ 1

x

dz

z
P

(0)
ik (z)fk(

x

z
, µ2) + . . . .

This illustrates an important point which is a general feature of renormalization
group improved perturbation series in QCD.

The coefficient of the perturbative correction depends on the choice made for the
scale µ, but the scale dependence changes the result in such a way that the
physical result is independent of that choice.

Thus the scale dependence is formally small because it is of higher order in αs.

This does not assure us that the scale dependence is actually numerically small
for all series.

A pronounced dependence on the scale µ is a signal of an untrustworthy
perturbation series.
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Scale dependence of top cross section

Note that despite the fact that αS is of order 10%, we do not obtain 10%
predictions at NLO.

This is ‘feature’ of renormalization group improved perturbation theory.
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Top at NNLO
Challenge is not the calculation of the individual diagrams, but rather the assembly
of pieces that individually contain infrared divergences

Tension between the need to cancel infra-red divergences, which for the higher
multiplicity processes are only manifest after integration and the desire to have a
fully differential prediction.
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Top at NNLO
Collider σtot [pb] scales [pb] pdf [pb]

Tevatron 7.164
+0.110(1.5%)
−0.200(2.8%)

+0.169(2.4%)
−0.122(1.7%)

LHC 7 TeV 172.0
+4.4(2.6%)
−5.8(3.4%)

+4.7(2.7%)
−4.8(2.8%)

LHC 8 TeV 245.8
+6.2(2.5%)
−8.4(3.4%)

+6.2(2.5%)
−6.4(2.6%)

LHC 14 TeV 953.6
+22.7(2.4%)
−33.9(3.6%)

+16.2(1.7%)
−17.8(1.9%)

Best NNLO+NNLL theoretical predictions for various colliders and c.m. energies.

c.f. scale uncertainty at NLO +12%− 26%
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Higgs production at LHC

The dominant production mechanism is gg → H, via an intermediate top quark
loop;

Averaged over spins and colours of the initial gluons we have

∑
|M(H → gg)|2 =

GFα
2
sM

4
H

512
√
2π2

|
∑
q

F1/2(τq) |2 ,

where τf = 4m2
f/M

2
H
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Gluon-fusion production of Higgs
The function F1/2 is a dimensionless functions given by

F1/2(τ) = −2τ[1 + (1− τ)f(τ)] (1)

f(τ) = −1

4
θ(1− τ)

[
ln

(
1 +
√
1− τ

1−√1− τ

)
− iπ

]2

+θ(τ − 1)
[
sin−1(1/

√
τ)
]2

. (2)

τt = 4m2
t /m

2
H ,τb = 4m2

b/m
2
H ,
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Higgs effective field theory
The function f is related to the scalar triangle integral

C0(p1, p2,m,m,m) =
1

iπ2

∫
d4l

1

(l −m2) ((l+ p1)2 −m2) ((l + p1 + p2)2 −m2)

= −
∫
da1

∫
da2

∫
da3

δ(1− a1 − a2 − a3)
(m2 − a1a2s)

Exploiting the exact relation between C0 and f allows us to perform a large mass
(=large τ ) expansion

f(τ) = − s
2
C0(p1, p2,m,m,m) , τ =

4m2

s

=
s

2

∫ 1

0
da1

∫ 1−a1

0
da2

1

(m2 − a1a2s)

=
2

τ

∫ 1

0
da1

∫ 1−a1

0
da2

1

(1− 4a1a2
τ

)

=
1

τ
+

1

3 τ2
+O(

1

τ3
)

For a heavy quark, τq →∞, and F1/2(τq)→ − 4
3

.
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Higgs effective field theory
In the large top quark limit, the
effective Lagrangian is,

Lgg = −1

4

C

v
Gµν

a Gµν a h

This effective Lagrangian can be
used to derive an approximate
result for Higgs pair production

Using the Feynman rules of we see
that that matrix element squared for
H → g(p1) + g(p2) (summed over
polarisations and colours) is V = 8,

∑
|M|2 = V C2 (

M2
H

2
)2

C2 =
α2
s

9π2

1

v2
=

α2
s

9π2

GF

2
√
2

for physical top mass, corrctions to
heavy top limit are of order 3% in
amplitude.
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Cross section
The lowest order partonic cross section is given by

σ0
gg→h =

1

2ŝ

1

22(N2 − 1)2

∑
|M|2dPS2→1

In the centre of mass frame of the gluons, (ŝ = (p1 + p2)2)

p1 =

√
ŝ

2
(1, 0, 0,+1), p2 =

√
ŝ

2
(1, 0, 0,−1)

so that

The 2→ 1 phase space factor is

dPS2→1 =
d4ph

(2π)3
(2π)4δ(p1+p2−ph)δ(p2h−m2

h) =
2π

M2
H

δ(1−z), for z =M2
H/ŝ

The result for the Higgs production cross section is,

σ0
gg→h =

1

2ŝ

1

162
4C2M4

H

2π

M2
H

δ(1− z)

=
α2
s

576πv2
M2

H

ŝ
δ(1− z) = σ0δ(1− z)
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Higher order results
pp→ H + X |√ s = 13 TeV |PDF4LHC15

δs
ca
le
σ
/σ

µF [GeV ]

pp→ H + X |√ s = 13 TeV |PDF4LHC15

δs
ca
le
σ
/σ

µR [GeV ]

Left plot shows factorization scale dependence in LO,NLO,NNLO,NNNLO.

Right plot shows renormalization scale dependence in LO,NLO,NNLO,NNNLO.

From 2209.06138
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Recap 1
The factorization formula of the QCD parton model provides a systematically
improvable framework to calculate hard scattering cross sections in QCD.

Renormalization and scale dependence is formally of higher order, but not always
numerically insignificant.

The Drell Yan process is the simplest process to examine in QCD parton model

Top quark production has been calculated through to NNLO

Higgs production can be calculated using an effective lagrangian, valid in the
mt →∞ limit. Correction for physical top mass are of order 6%. This calculation
has been performed at N3LO in the effective theory.
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Spinor helicity methods
Z. Xu, Da-Hua Zhang and L. Chang, Tsinghua University Preprints, Beijing, The People’s
Republic of China, TUTP–84/4, TUTP–84/5, TUTP–84/6 and Nucl. Phys. B291 (1987),
392.
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Dirac equation
The Lagrangian for a free massive 4-component Dirac field Ψ is

L = iΨγµ∂µΨ−mΨΨ .

The equation of motion for Ψ gives the Dirac equation

(i 	∂ −m)Ψ = 0 .

Multiplying the Dirac equation by (i 	∂ +m) gives the Klein-Gordon equation,
(∂µ∂µ +m2)Ψ = 0., if γµγν + γνγµ = 2gµν1. It is solved by a plane-wave
expansion

Ψ(x) ∼ u(p) eip.x + v(p) e−ip.x

provided p2 ≡ pµpµ = m2. This Ψ(x) will also solve the Dirac equation if

( 	p−m)u(p) = 0 and (	p+m)v(p) = 0 .

These equations give the momentum space form of the Dirac equation. Each of
the equations has two independent solutions.
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Definition of Gamma Matrices
We choose an explicit representation for the gamma matrices. The Bjorken and
Drell representation is,

γ0 =

(
1 0

0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1

1 0

)
,

The Weyl representation is more suitable at high energy. This is Peskin’s definition
of the Weyl representation.

γ0 =

(
0 1

1 0

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
−1 0

0 1

)
,

In the Weyl representation upper and lower components have different chiralities
(≡ helicity for massless particles).

γL =
1

2
(1− γ5) =

(
1 0

0 0

)
, γR =

1

2
(1 + γ5) =

(
0 0

0 1

)
.
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Definition of Gamma Matrices
Both representations satisfy the same commutation relations.

γµγν + γνγµ = 2gµν1

in the Weyl representation

γ0γi =

(
−σi 0

0 σi

)

σ are the Pauli matrices.

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
,
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Solution to massless Dirac equation
We now specialize to the m = 0 case appropriate at high energy.

In order to derive an explicit solution for the massless Dirac equation 	pu(p) = 0 it
is useful to write out an explicit expression for 	p = γ0p0 − γ1p1 − γ2p2 − γ3p3 in
the Weyl representation. To keep this compact we introduce the notation

σ = (1, σ1, σ2, σ3), σ̄ = (1,−σ1,−σ2,−σ3)

	p =

(
0 EI− �σ.p

EI+ �σ.p 0

)
,=

(
0 σ̄.p

σ.p 0

)
,

	p =




0 0 p− −p1 + ip2

0 0 −p1 − ip2 p+

p+ p1 − ip2 0 0

p1 + ip2 p− 0 0


 ,

where p± = p0 ± p3.
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Dirac equation massless solutions
The massless spinors solns of Dirac eqn are

u−(p) =
1√
p+



(−p1 + ip2)

p+

0

0


 , u+(p) =

1√
p+




0

0

p+

(p1 + ip2)


 ,

u−(p) =



−
√
p−e−iϕp√
p+

0

0


 , u+(p) =




0

0√
p+√

p−eiϕp


 ,

where

e±iϕp ≡ p1 ± ip2√
(p1)2 + (p2)2

=
p1 ± ip2√
p+p−

, p± = p0 ± p3.
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Dirac conjugate spinors
In this representation the Dirac conjugate spinors are

u−(p) ≡ u†−(p)γ0 ≡ 〈p| = 1√
p+

[
0, 0,−p1 − ip2, p+]

u+(p) ≡ u†+(p)γ0 ≡ [p| = 1√
p+

[
p+, p1 − ip2, 0, 0]

With these in hand, we define spinor products,

〈p q〉 = u−(p)u+(q) = u−(p)v−(q) =

√
p+

q+
(q1 + iq2)−

√
q+

p+
(p1 + ip2)

[q p] = u+(q)u−(p) = u+(q)v+(p) =

√
p+

q+
(q1 − iq2)−

√
q+

p+
(p1 − ip2)

〈p q〉 [q p] = 2p · q, 〈p q〉 ∼
√

2p.q, [q p] ∼
√

2p.q

The spinors are normalized so that,

u†±u± = 2p0
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Spinor notation
It is customary in amplitude calculations to consider all particles as outgoing

Feynman rules for outgoing massless (anti)fermions:

� Outgoing fermion with h = +1/2: u+ ←→
(
[p|a , 0 )

� Outgoing fermion with h = −1/2: u− ←→
(
0 , 〈p|ȧ

)
� Outgoing anti-fermion with h = +1/2: v+ ←→

( |p]a
0

)

� Outgoing anti-fermion with h = −1/2: v− ←→
(

0

|p〉ȧ

)

Since the left-handed and right-handed spinors occupy different subspaces, we
write them in terms of two-index (Weyl) spinors, (also called holomorphic and
anti-holomorphic spinors), with dotted and undotted indices.
|q〉α̇ = (λ̃q)α̇, |q]α = (λq)α, 〈p|α̇ = λ̃α̇, [p|α = λα

The spinor products in terms of these spinors are, (εαβ is the antisymmetric tensor
in two dimensions).

〈p q〉 = εα̇β̇(λ̃p)
β̇(λ̃q)

α̇ = (λ̃p)α̇(λ̃q)
α̇, [p q] = εαβ(λp)β(λq)α = (λp)

α(λq)α

εαβ = εα̇β̇ =

(
0 1

−1 0

)
= −εαβ = −εα̇β̇
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Charge conjugation
In QED we have

(
(+i∂µ + eAµ)γµ −m

)
ψ = 0

Taking the complex conjugate
(
(−i∂µ + eAµ)γ∗µ −m

)
ψ∗ = 0

The equation satisfied by the charge conjugate state is

(
(+i∂µ − eAµ)γµ −m

)
ψc = 0

The operation of charge conjugation is therefore given by ψc = Cγ0ψ∗ where the
matrix C is determined up to a phase by the condition (Cγ0)γµ∗(Cγ0)−1 = −γµ.
Since for our representation γ0γµ ∗γ0 = γµ T the defining condition on matrix C
can be written C−1γµC = −γµT
We choose the phase such that

C = iγ2γ0 =

(
iσ2 0

0 −iσ2

)
=




0 −1 0 0

+1 0 0 0

0 0 0 +1

0 0 −1 0


 ,

so that CT = C−1 = −C.
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Antiparticle spinors
For free particle spinors we have that

v±(p) = CuT±(p),

Thus in the massless case we get

v+(p) ≡ |p〉 =



−
√
p−e−iϕp√
p+

0

0


 , v−(p) ≡ |p] =




0

0√
p+√

p−eiϕp


 ,

We note that for the case of massless spinors v±(p) = u∓(p)
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Schouten identity
The Schouten identity exploits the fact that in two dimensions, the tensor
antisymmetric in three indices is equal to zero

εαβεγδ − εαγεβδ − εγβεαδ = 0

Thus using the forms for the spinor products in terms of Weyl spinors we can show
that

〈AB〉 〈C D〉 − 〈AC〉 〈BD〉 − 〈C B〉 〈AD〉 = 0

We can check this relation by setting 〈C| = α〈A|+ β〈B|
Alternatively by explicit construction we can show that

|B+〉〈C − | − |C+〉〈B − | = 〈C − |B+〉γR

Thus we get the Schouten identity

〈A− |B+〉〈C − |D+〉 − 〈A− |C+〉〈B − |D+〉 = 〈C − |B+〉〈A− |D+〉

or written more concisely,

〈AB〉 〈C D〉−〈AC〉 〈BD〉 = 〈C B〉 〈AD〉 , [AB] [C D]−[AC] [BD] = [C B] [AD]
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Charge conjugation identity
We want to show the charge conjugation identity,

〈A|γµ|B] = [B|γµ|A〉
〈A−, k|(γµγL)kl|B−, l〉 = 〈B+, k|(γµγR)kl|A+, l〉

We shall now show that this equation follows as a consequence of the relations
obeyed under charge conjugation by massless spinors.

u− = CūT+, u+ = CūT−

and hence that
ūT+ = −Cu−

since C−1 = −C = CT . Thus for massless spinors we have that

ū−(pA)γµu−(pB) = −uT+(pA)C−1γµCūT+(pB)

The defining equation for charge conjugation is C−1γµC = −(γµ)T
This allows us to prove that

〈A|γµ|B] = [B|γµ|A〉
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Fierz transformation
By forming products of the γ matrices, we can construct 16 linearly independent
4× 4 matrices, Λi where Λi = (1, γµ, σµν/

√
2, γµγ5, γ5) and σµν = i

2
[γµ, γν ].

These matrices obey a crossing relation

Λ
(i)
32 ⊗ Λ

(i)
14 =

5∑
j=1

λij Λ
(j)
12 ⊗ Λ

(j)
34

λij =
1

4




+1 +1 +1 −1 +1

+4 −2 0 −2 −4
+6 0 −2 0 +6

−4 −2 0 −2 +4

+1 −1 +1 +1 +1


 ,

Using this relation it is easy to show that

(γµγL)32 ⊗ (γµγL)14 = −(γµγL)12 ⊗ (γµγL)34

and that
(γµγR)32 ⊗ (γµγL)14 = 2(γR)12 ⊗ (γL)34
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Fierz+Charge conjugation identity

We want to show the identity, γµ ⊗ 〈C − |γµ|D−〉 = 2

[
|C+〉〈D + |+ |D−〉〈C − |

]
it is

helpful to make the indices explicit, so we can rewrite this as

γµij 〈C−, k|(γµγL)kl|D−, l〉 = 2

[
|C+, i〉〈D+, j|+ |D−, i〉〈C−, j|

]

The indices have been added to the bras and kets which remind us that these are four
component objects. The relation can be written as two separate equations, where in the
second we exploit the charge conjugation identity,

(γµγR)ij 〈C−, k|(γµγL)kl|D−, l〉 = 2

[
|D−, i〉〈C−, j|

]

(γµγL)ij 〈D+, k|(γµγR)kl|C+, l〉 = 2

[
|C+, i〉〈D+, j|

]

Both of these relations then follow as a consequence of the Fierz identity

(γµγR)ij ⊗ (γµγL)kl = 2(γL)il ⊗ (γR)kj
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Conventions for massless spinor products

〈pq〉 = 〈p− |q+〉, [pq] = 〈p+ |q−〉

〈p| = 〈p− |, [p| = 〈p+ |, |q+〉 = |q〉, |q−〉 = |q]

〈pq〉 = 〈p− |q+〉, [pq] = 〈p+ |q−〉

〈p|γµ|p] = [p|γµ|p〉 = 2pµ

〈p+ |q+〉 = 〈p− |q−〉 = 〈pp〉 = [pp] = 0

〈pq〉 = −〈qp〉, [pq] = −[qp]

2|p±〉〈q ± | = 1
2
(1± γ5)γµ〈q ± |γµ|p±〉

〈pq〉∗ = −sign(p · q)[pq] = sign(p · q)[qp]

|〈pq〉|2 = 〈pq〉〈pq〉∗ = 2|p · q| ≡ |spq|

〈pq〉[qp] = 2p · q ≡ spq
〈p± |γµ1 . . . γµ2n+1 |q±〉 = 〈q ∓ |γµ2n+1 . . . γµ1 |p∓〉

〈p± |γµ1 . . . γµ2n |q∓〉 = −〈q ± |γµ2n . . . γµ1 |p∓〉

〈AB〉〈CD〉 = 〈AD〉〈CB〉+ 〈AC〉〈BD〉

〈A+ |γµ|B+〉〈C − |γµ|D−〉 = 2[AD]〈CB〉
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cs̄ → W+ → νe+

Consider the crossed process

ν + s← e− + c

The matrix element is given by

M =
(−igW )2

2

(−i)
PW (seν)

〈ν|γα|e] 〈s|γα|c] ≡
ig2W

PW (seν)
〈νs〉 [ce]

where PX(p) = p2 −m2
X + imXΓX .

We see that the answer is immediate.

We have assumed that all fermions, including
the charmed quark are massless.

|M|2 =
g4W

|PW (seν)|2
2ν · s 2e · c

since 〈ij〉[ji] = 2i · j.
Matrix element is largest when e and c (ν and
s) are antiparallel

QCD and Collider PhysicsLecture IV: Applications of the QCD parton model and modern techniques for tree graphs – p. 53/63



cs̄ → W+ → νe+

Compare the calculation performed using the traditional method with the traces,
setting u(s)ū(s) = 	s etc. The matrix element is given by

M∝ ū(ν)γαγLu(e) ū(s)γαγLu(c)

|M|2 = Tr{	νγαγL 	eγβγL}{	sγαγL 	cγβγL}
= 4 {ναeβ + νβeα − gαβe · ν + iεαβγδνγeδ}
× {sαcβ + sβcα − gαβc · s+ iεαβρσs

ρcσ}
= 4 e · c s · ν

where we have used

εαβγδεαβρσ = −2
[
gγρ g

δ
σ − gγσgδρ

]

Using the spinor method the γ-matrix algebra simply disappears.
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Definition of gluon (photon) polarization
We can define the photon polarization in terms of massless spinors

For polarization with momentum k and gauge vector b

ε±µ (k, b) = ±〈k ± |γµ|b±〉√
2〈b∓ |k±〉

Hence we have that ε±µ (k, b) · k = 0 and ε±µ (k, b) · b = 0

ε+µ (k, b) =
〈k + |γµ|b+〉√

2〈bk〉 ≡ [k|γµ|b〉√
2〈bk〉

ε−µ (k, b) =
〈k − |γµ|b−〉√

2[kb]
≡ 〈k|γµ|b]√

2[kb]

and

γµε+µ (k, b) =

√
2
[
|k−〉〈b− |+ |b+〉〈k + |

]
〈bk〉 ≡

√
2
[
|k]〈b|+ |b〉[k|

]
〈bk〉

γµε−µ (k, b) =

√
2
[
|k+〉〈b+ |+ |b−〉〈k − |

]
[kb]

≡
√
2
[
|k〉[b|+ |b]〈k|

]
[kb]

QCD and Collider PhysicsLecture IV: Applications of the QCD parton model and modern techniques for tree graphs – p. 55/63



Auxiliary vector
Different choices of the auxiliary vector b correspond to different choices of gauge. Thus

ε+µ (k, b)− ε+µ (k, c) =
[k|γµ|b〉√

2〈bk〉 −
[k|γµ|c〉√

2〈ck〉

=
1√

2〈bk〉〈ck〉
[
[k|γµ|b〉〈ck〉 − [k|γµ|c〉〈bk〉

]

=
1√

2〈bk〉〈ck〉
[
[k|γµ|k〉〈cb〉

]
=

√
2〈cb〉

〈bk〉〈ck〉kµ (3)

where we have used the Schouten identity

[k|γµ|b〉〈ck〉 = [k|γµ|k〉〈cb〉+ [k|γµ|c〉〈bk〉
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1−e 2
+
γ 3

+
γ 4

+
ē

The relevant diagram is shown. We shall consider only the case of a left-handed electron
line.

M = (−ie)2i
[ 〈1− |	ε2(	1 + 	2)	ε3|4−〉

〈1 2〉 [2 1] +
〈1− |	ε3(	1 + 	3)	ε2|4−〉

〈1 3〉 [3 1]
]

Using our form for the polarization vectors we obtain the result where both polarizations
are positive

M(1−e , 2
+
γ , 3

+
γ , 4

+
ē ) =

−2ie2
〈b2 2〉 〈b3 3〉

[ 〈1 b2〉 [2 1] 〈1 b3〉 [3 4]
〈1 2〉 [2 1] +

〈1 b3〉 [3 1] 〈1 b2〉 [2 4]
〈1 3〉 [3 1]

]

Making the gauge choice b2 = b3 = 1 this gives zero.
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1−e 2
+
γ 3

−
γ 4

+
ē

Inserting the case where the polarizations are (+−) we get

M(1−e , 2
+
γ , 3

−
γ , 4

+
ē ) =

−2ie2
〈b2 2〉 [3 b3]

[ 〈1 b2〉 [2 1] 〈1 3〉 [b3 4]
〈1 2〉 [2 1] +

〈1 3〉 〈b3 + |(	1 + 	3)|b2+〉 [2 4]
〈1 3〉 [3 1]

]

Making the gauge choice b2 = 1, b3 = 4, the first diagram gives no contribution this gives

M(1−e , 2
+
γ , 3

−
γ , 4

+
ē ) =

−2ie2
〈1 2〉 [3 4]

〈1 3〉 [4 3] 〈3 1〉 [2 4]
〈1 3〉 [3 1] = 2ie2

〈3 1〉 [2 4]
〈1 2〉 [3 1] ≡ 2ie2

[2 4]2

[3 4] [3 1]

In deriving the latter formula we have used momentum conservation. Note that the result
is of second degree in |2+〉 and |3−〉 as it must be for a (+-) amplitude, and also of first
degree in |1−〉 and |4+〉.
In summary we find

M(1−e , 2
−
γ , 3

+
γ , 4

+
ē ) = 2ie2

[2 4]2

[3 4] [3 1]

M(1−e , 2
+
γ , 3

−
γ , 4

+
ē ) = 2ie2

[3 4]2

[2 4] [2 1]

M(1−e , 2
+
γ , 3

+
γ , 4

+
ē ) = 0

M(1−e , 2
−
γ , 3

−
γ , 4

+
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Color decomposition of gluon amplitudes
In the amplitude literature it is usual to define the normalization of the color
matrices as

Tr{τa1τa2} = δa1a2

so that τa =
√
2Ta.

We can eliminate the structure constants Fabc in favor of the τa’s, using

Fabc = − i√
2

(
Tr
(
τaτbτc

)− (τaτcτb)),

This leads to the color decomposition of the the n-gluon tree amplitude,

An({ki, λi, ai}) = gn−2
∑

σinSn/Zn

Tr(τaσ(1) · · · τaσ(n)) An(σ(1
λ1), . . . , σ(nλn)).

The color ordered amplitudes are gauge invariant,
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A4(1
±
g 2

+
g 3

+
g 4

+
g )

A4(1
+
g , 2

+
g , 3

+
g , 4

+
g ) = 0, This is demonstrated by choosing common auxiliary

vector b for all polarizations εn · εm = 0 for all m and n.

A4(1
−
g , 2

+
g , 3

+
g , 4

+
g ) = 0 choose b1 = p4 and b2 = b3 = b4 = p1, so that we

εn · εm = 0 for all m and n.

These results generalize to all gluon multiplicities, since a n multiplicity diagram
has at most n− 2 vertices linear in the momenta, leaving at least two polarization
vectors which must be contracted.

A4(1
−
g , 2

−
g , 3

+
g , 4

+
g ) 	= 0: This is the maximally helicity violating amplitude; which

we shall now calculate.
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A4(1
−, 2−, 3+, 4+), MHV

Next we turn to the (nonzero) helicity amplitude A4(1−, 2−, 3+, 4+), choosing the
auxiliary momenta b1 = b2 = p4, b3 = b4 = p1, so that only the contraction ε−2 · ε+3 is
nonzero. Only one of the four potential graphs contributes, to the color-ordering
Tr{τa1τa2τa3τa4}, the one with a gluon exchange in the s12 channel.

A4(1
−, 2−, 3+, 4+) =

( −i√
2

)2 ( −i
s12

)

×
[
ε−1 · ε−2 (p1 − p2)µ + (ε−2 )µε−1 · (2p2 + p1) + (ε−1 )µε−2 · (−2p1 − p2)

]
×
[
ε+3 · ε+4 (p3 − p4)µ + (ε+4 )µε

+
3 · (2p4 + p3) + (ε+3 )µε

+
4 · (−2p3 − p4)

]

= − 2i

s12

(
ε−2 · ε+3

)(
ε−1 · p2

)(
ε+4 · p3

)

= − 2i

s12

(
−2

2

[4 3] 〈1 2〉
[4 2] 〈1 3〉

)(
− [4 2] 〈2 1〉√

2 [4 1]

)(
+
〈1 3〉 [3 4]√

2 〈1 4〉

)
= −i 〈1 2〉 [3 4]

2

[1 2] 〈1 4〉 [1 4] .

The answer can be simplified using antisymmetry, momentum conservation, and
s34 = s12,

A4(1
−, 2−, 3+, 4+) = −i 〈1 2〉 ([3 4] 〈3 4〉)(〈2 3〉 [3 4])

[1 2] 〈2 3〉 〈3 4〉 〈1 4〉 [1 4] = i
〈1 2〉 ([1 2] 〈1 2〉)(−〈2 1〉 [1 4])

[1 2] 〈2 3〉 〈3 4〉 〈4 1〉 [1 4]
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Maximally helicity violating amplitude
the final result for the four point amplitude is,

A4(1
−, 2−, 3+, 4+) = i

〈1 2〉3
〈2 3〉 〈3 4〉 〈4 1〉 , = i

〈1 2〉4
〈1 2〉 〈2 3〉 〈3 4〉 〈4 1〉 .

An all n expression for the MHV amplitude was found by Parke and Taylor

The full n-gluon amplitude including the color decomposition is

An(1
−
g , 2

−
g , 3

+
g , . . . , n

+
g ) = ign−2

∑
{1,2,... }′

Tr{τ1τ2 · · · τn} 〈12〉4
〈12〉〈23〉 · · · 〈n1〉

where the sum is taken over the (n− 1)! non-cyclic permutations of the indices.
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Recap
The solutions massless Dirac equation can be divided into holomorphic and
antiholomorphic solution, compactly represented by angle and square brackets.

Charge conjugation for massless particles is particularly simple v±(p) = u∓(p)

Polarization vectors for photons (gluons) are expressed in terms of massless
spinors of the photon (gluon) momenta and an additional spinor of an auxiliary
momentum.

Different choices of auxiliary momentum correspond to different gauge choices.

Amplitudes involving massless particles are naturally expressed in terms of spinor
products.

Using gluon polarizations expressed in terms of massless spinors, the gamma
matrix algebra often disappears.
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