ICTP Summer School on Particle Physics ICTP, Trieste, June 2023

DARK MATTER

Laura Covi

Institute for Theoretical Physics Georg-August-University Göttingen

OUTLINE

- Lecture 1: Introduction to Dark Matter evidence
- Lecture 2 & 3:
 Boltzmann equation and DM as Weakly Interacting Particles

Lecture 4: Asymmetric/FIMP/SuperWIMP DM

ZELDOVICH-LEE-WEINBERG BOUND

Two possibilities for obtaining the "right" value of $\Omega_{\nu}h^2$: decoupling as relativistic species or as non-relativistic ! In-between the density is too large ! $m_{\nu} > 4(12) \text{GeV}$

for Dirac (Majorana)

THE WIMP MECHANISM

Primordial abundance of stable massive species

[see e.g. Kolb & Turner '90]

The number density of a stable particle X in an expanding Universe is given by the Bolzmann equation

$$rac{dn_X}{dt} + 3Hn_X = \langle \sigma(X + X
ightarrow ext{anything}) v
angle \left(n_{eq}^2 - n_X^2
ight)$$

Hubble expansion Collision integral

The particles stay in thermal equilibrium until the interactions are fast enough, then they freeze-out at $x_f = m_X/T_f$ defined by $n_{eq} \langle \sigma_A v \rangle_{x_f} = H(x_f)$ and that gives $\Omega_X = m_X n_X(t_{now}) \propto \frac{1}{\langle \sigma_A v \rangle_{x_f}}$ Abundance \Leftrightarrow Particle properties For $m_X \simeq 100$ GeV a WEAK cross-section is needed !

Weakly Interacting Massive Particle

For weaker interactions need lighter masses HOT DM !

BOLTZMANN EQUATION [Gondolo & Gelmini 91] $\frac{dY}{dx} = -\frac{2\pi g_S}{15} \left(\frac{10}{q_o}\right)^{1/2} \frac{M_P}{m} \langle \sigma v \rangle_x \left(Y^2 - Y_{eq}^2\right)$ where Y = n/s, x = m/T, g_rho denote the number of degrees of freedom for entropy and energy density and $\langle \sigma v \rangle_x = \frac{1}{4x^4 K_2^2(x)} \int_{2x}^{\infty} dz z^2 \tilde{\sigma} \left(\frac{x}{z}\right) K_1(z)$ where we defined $\tilde{\sigma}\left(rac{m}{\sqrt{s}}
ight) = (s - 4m^2)\sigma(m, s) = s\beta^2\sigma(\beta)$ K_i (x) are modified Bessel functions coming and

from Maxwell-Boltzmann statistics

THE WIMP MECHANISM II

Approximate solution of the Boltzmann equation

Rewrite the equation in terms of $Y = \frac{n}{s}$ and $\frac{d}{dt} = Hx\frac{d}{dx}$ for $x = \frac{m_X}{T}$:

$$rac{dY_X}{dx} = -rac{s\langle \sigma(X+X
ightarrow ext{anything})v
angle}{xH} \left(Y_X^2 - Y_{eq}^2
ight)$$

Until x_f we have $Y_X = Y_{eq}$, after that we can neglect Y_{eq} that decreases exponentially and then

$$\frac{dY_X}{Y_X^2} = -\frac{s(x)\langle \sigma(X + X \to \text{anything})v\rangle(x)}{xH(x)}dx$$

which has the solution

$$Y_X(x) = \frac{Y_X(x_f)}{1 + Y_X(x_f) \frac{s(m_X)}{H(m_X)} \int_{x_f}^x \frac{dx}{x^2} \langle \sigma(X + X \to \text{anything}) v \rangle(x)}$$

so when σ is sufficiently large after freeze-out

$$Y_X(x) \simeq rac{1}{rac{s(m_X)}{H(m_X)} \int_{x_f}^x rac{dx}{x^2} \langle \sigma(X + X o ext{anything}) v
angle(x)}$$

very weakly dependent on x_f ; otherwise $Y_X(x) = Y_X(x_f)$.

Well-tempered Neutralino

Relic density strongly dependent on neutralino nature !!!

SUSY MODELS STILL ALIVE

[Barr & Liu 2016]

pMSSM points surviving after LHC-13 data

Higgsino band Wino band

Wino DM challenged by Indirect Detection, but Higgsino parameter space still viable (and also some Bino-like...)

HOW TO DETECT A WIMP

THE WIMP CONNECTION

Colliders: LHC/ILC

Indirect Detection: DM e, q, W, Z, γ DM e, q, W, Z, γ

3 different ways to check this hypothesis !!!

3 different ways to check this hypothesis !!!

DIRECT WIMP DETECTION

© Elastic scattering of a WIMP on nuclei. The recoil energy is in the keV range:

with $\Delta E = \frac{4m_{DM}m_N}{(m_{DM} + m_N)^2} E_{kin}^{DM}$ $E_{kin}^{DM} \sim \frac{1}{2} m_{DM} v^2 \sim 50 \text{ keV} \frac{m_{DM}}{100 \text{GeV}}$ Need very low threshold ! [©] The rate is $\frac{dR}{dE_R} \propto \sigma_n F^2(E_R) \frac{\rho_{DM}}{m_{DM}} \int_{v_{min}}^{\infty} \frac{dv}{v} f(v)$

Particle Physics Halo physics Galactic center lune 30 km/sec 30 km/sec Dec. Sun 230 km/sec

Rate depends on v in lab frame → annual modulation !

DIRECT WIMP DETECTION

How large are the cross-sections that we expect from thermal consideration or the exchange of (known) EW particles ?

• Thermal relic cross-section to give $\Omega_{DM}h^2 \sim 0.1$ $\langle \sigma v \rangle \sim 3 \times 10^{-26} cm^3/s \longrightarrow \sigma \sim 10^{-36} cm^2 = 1 \text{ pb}$ • Exchange of Z boson:

 $\sigma \sim \lambda_{Z\chi}^2 G_F^2 m_p^2 \sim 10^{-38} \lambda_{Z\chi}^2 cm^2 = 10^{-2} \lambda_{Z\chi}^2 \text{ pb}$

© Exchange of Higgs boson:

 $\sigma_p \sim \lambda_{h\chi}^2 m_p^2 / m_h^4 \sim 10^{-44} \lambda_{h\chi}^2 cm^2 = 10^{-8} \lambda_{h\chi}^2 \text{ pb}$

DIRECT DETECTION OF DM

A large part of parameter space already excluded by searches: Z-type cross-section is out, now we are exploring Higgs-type

NOW STRONGER BOUNDS

The XENON1T experiment results, new XENONnT appeared this year, with small improvement:

[Phys.Rev.Lett. 121 (2018) 11, 111302, arXiv: 1805.12562]

FUTURE OF DM DD

Neutrino background limits how far one can go. But there are already ideas on ways to suppress this background...

LOW MASS WIMPS

The DD searches are being extended to low masses via new technologies and sensitivity to electron scatterings:

THE WIMP CONNECTION

3 different ways to check this hypothesis !!!

THE HOPE: DETECT DM !

• The flux in a species i is given by $\Phi(\theta, E) = \sigma v \frac{dN_i}{dE} \frac{1}{4\pi m_{DM}^2} \int_{l.o.s.} ds \ \rho^2(r(s, \theta))$

Strongly dependent on the halo model/density via J and the DM clumping: BOOST factor !

Particle Physics Halo property $J(\theta)$

- Spectrum in gamma-rays determined by particle physics ! Smoking gun: gamma line...
- For other species also the propagation plays a role.

DECAYING DM

 The flux from DM decay in a species i is given by
 Φ(θ, E) = ¹/_{τ_{DM}} ^{dN_i}/_{dE} ¹/_{4πm_{DM}} ¹/_{μ.o.s.} ds ρ(r(s, θ))
 Particle Physics Halo property J(θ)

 Very weak dependence on the Halo profile; what

matters is the DM lifetime...

- Galactic & extragalactic signals are comparable...
- Spectrum in gamma-rays given by the decay channel!
 Smoking gun: gamma line...

DM SPECTRAL FEATURES

Depending on the model, different features could appear and stick out from the continuum spectrum, helping to see the signal and disentangle the model ! Smoking guns !

BOUNDS ON LINE FROM DM

New limits on the possible observation of a photon line from the FERMI data, reaching down to 3 orders of magnitude below the thermal cross-section:

Note lifetime much longer than the age of the Universe !!!

BOUNDS ON WIMP DM Strong limits are obtained from dwarf satellite galaxies, considering measured J-factors: Fermi-LAT & DES 1611.03184] 10^{-23} b bAckermann et al. (2015) Nominal sample Median Expected 10^{-24} 68% Containment [Di Mauro & Winkler 2101.11027] 95% Containment $\left({{{{{{{{{{{}}}}}}}_{{{}^{-25}}}}}_{{{}^{-25}}}} {{10}^{-25}} \right)$ 10-23 GCE, Syst. DM density GCE, Syst. IEMs dSphs ULs, 68% CL 10^{-24} dSphs ULs, 95% CL dSphs ULs, 99% CL (σv) [cm³/s] 10^{-27} 10^{2} 10¹ DM Mass (GeV) 10-26 bb 10-27 10² 10³ 104 10^{1} MDM [GeV]

WIMP DM ID: P-WAVE

For a cuspy profile the centre of the galaxy can constrain also p-wave annihilation:

GALACTIC PARTICLE'S RANGES

THE WIMP CONNECTION

Early Universe: $\Omega_{CDM}h^2$ DM any $\langle \sigma v \rangle \sim 1 \text{ pb}$

Colliders: LHC/ILC

e, q

e, q

Direct Detection: DM DM Q

Indirect Detection:

e, q,W,Z, γ e, q,W,Z, γ

3 different ways to check this hypothesis !!!

DM

MISSING ENERGY SIGNATURE

The direct production of two DM particles in a collider gives unfortunately no signal !
 The energy just disappears...

DM

Dark Matter:

Missing energy

 How is it possible to tag such events: Thanks to Initial State Radiation !
 i.e. either a single photon or gluon emitted by the initial parton, recoiling against the DM particle(s)

Trouble: need sufficient rate of DM production... signature

EFT FOR DARK MATTER

[Beltram et al 2000, Goodman et al 2000 & 2001, Bai et al 2001,....] Consider the production of a pair of DM particles together with ISR of a SM particle: gluon, photon, W/Z, top, etc... EFT: Many different effective operators are possible !

LHC: SIMPLIFIED MODELS I

[CMS, EXO-16-039-pas]

Very strong bounds for the axial vector case, which gives spin dependent scattering !

LHC: SIMPLIFIED MODELS II

[ATLAS 2102.10874 hep-ex]

Very strong bounds for the axial vector case !