Joint ICTP-EAIFR-IUGG Workshop on Computational Geodynamics: Towards Building a New Expertise Across Africa

PLATE TECTONICS

Wouter P. Schellart

Department of Earth Sciences Vrije Universiteit Amsterdam Netherlands

w.p.schellart@vu.nl

Outline of lecture

- 1. Rocky planets in the solar system.
- 2. Main surface features of planet Earth.
- 3. Viscous & petrological layering of the Earth.
- 4. Plate tectonics & mantle convection.
- 5. Plate and plate boundary kinematics.
- 6. Plate kinematics & reference frames.
- 7. Plate tectonics and geodynamics.

Eight planets in the solar system

- 4 rocky planets (Mercury, Venus, Earth, Mars) (metallic core + silicate mantle)

- 2 gas giants (Jupiter, Saturn) (mostly hydrogen & helium)
- 2 ice giants (Uranus, Neptune) (mostly heavy volatiles)
- 1 dwarf planet (Pluto) (and possibly many more)

- Several rocky satellites (e.g. Moon, lo)

Topography of rocky planets: Mercury, Venus, Earth, Mars

-Many impact craters -Reverse faults

-Volcanic features -Some impact craters -Faults due to volcanism

-Volcanoes -Impact craters -Rift with normal faults

Rocky planet: Earth

Surface features

- Bimodal topography (deep ocean basins and high continents)
- Linear mountain ranges
- Linear deep sea trenches
- Faults (normal, strike-slip, thrust)
- Volcanoes (often aligned along linear zones)
- Only a few impact craters

Peculiarities

- Linear zones of seismicity
- Biosphere (life)
- Abundant water (liquid, ice, gas)

Topography on Earth

Linear mountain ranges & deep sea trenches, bimodal topography.

Rocky planet: Earth (earthquakes)

Linear belts of seismicity (earthquakes with moment magnitude ≥ 5.0 during the period 2005-2007). [Schellart & Rawlinson, Tectonophysics 2010]

Rocky planet: Earth (volcanoes)

Linear belts of volcanoes [D. Prentiss, U. California, Santa Barbara]

Faults on Earth (normal, strike-slip, reverse)

Strike-slip fault, California, USA

Normal faults, Spain

Thrust fault, SE Oregon, USA

Earth & Plate Tectonics

Surface features

- **Bimodal topography (deep ocean basins** ulletand high continents)
- Linear mountain ranges ullet
- Linear deep sea trenches \bullet
- Faults (normal, strike-slip, reverse) \bullet
- Volcanoes (often aligned along linear zones) ullet
- **Only a few impact craters** ullet

Result of plate tectonics

Peculiarities

- \bullet
- ightarrow
- Biosphere (life) ullet

Linear zones of seismicity —> Result of plate tectonics Abundant water — Requirement for plate tectonics **Plate tectonics required?**

Theory of plate tectonics

The outer shell (lithosphere) of the Earth is broken up into "plates", on average some 100 km thick, that move across the globe over a lower viscosity sub-lithospheric mantle at cm/year.

4 rocky planets: Surface activity & mantle convection

Stagnant

Inactive planet (Mercury)

Mobile

Active planets -volcanism, volcano-tectonics (Mars)

-volcanism, volcano-tectonics, resurfacing (Venus)

-Tectonics, volcanism (Earth)

Episodic

Stagnant-lid convection

Episodic overturn Mobile-lid convection (plate tectonics)

[Laurenço & Rozel, 2023]

Rocky planet: Earth

Physical layering of the Earth: Viscosity

*Inner core (solid) (iron-nickel)
 (η = 10¹⁴-10¹⁵ Pa·s, 1220 km)
 *Outer core (liquid) (iron-nickel)
 (η = 10⁻²-10² Pa·s, 2250 km)

*Sub-lithospheric mantle

(peridotite) (s.l. upper mantle η = 10¹⁹-10²⁰ Pa·s, ~560 km, lower mantle η = 10²¹-10²² Pa·s, 2230 km)

*Lithosphere (plates)

(crust + uppermost mantle) (η = 10²²-10²⁵ Pa·s, ~100 km)

*Hydrosphere (water)

(η = 10⁻³ Pa·s)

*<mark>Atmosphere</mark> (air) (η = 10⁻⁵ Pa·s)

Rocky planet: Earth

Petrological/chemical layering of the Earth

*Core (iron-nickel) (10-13 g/cm³, ~3470 km) *Mantle (peridotite) (3.3-5.7 g/cm³, ~2890 km)

*Crust:

- -Continental (granite) (2.7 g/cm³, ~35 km) -Oceanic (basalt) (2.9 g/cm³, ~7 km) *Hydrosphere (H₂O)
- *Atmosphere (N₂, O₂)

Plate tectonics & plate boundaries

Convergent plate boundary

Divergent plate boundary

Transform plate boundary

[Duarte and Schellart, Geoph. Monograph 219, 2016]

Divergent plate boundaries Creation of new tectonic plate material

Transform plate boundaries Conservation of tectonic plate material

Convergent plate boundaries Destruction of tectonic plate material

Ocean-ocean subduction

Ocean-continent subduction

Tectonic plates and their velocities

Indo-Atlantic hotspot reference frame

Modified from Schellart [Dynamics of plate tectonics and mantle convection, Chapter 14, 2023]

Plate velocities on a sphere

*Are described with Euler poles (rotation poles) and rotation rates. An Euler pole can be thought of as the intersection of a rotation axis (that goes through the centre of the Earth) and the Earth's surface.

Plate velocities on a sphere

*Plate velocities maximum at 90° from Euler pole (great circle). *Plate velocity = 0 at Euler pole and anti-pole. *Velocity trajectories along small circles (great circle at 90°).

Plate velocities on a sphere

Plate & plate boundary velocities on Earth

Indo-Atlantic hotspot reference frame

Modified from Schellart [Dynamics of plate tectonics and mantle convection, Chapter 14, 2023]

Plate boundary velocities: trench migration [Elsasser, JGR 1971]

Plate boundary velocities: trench migration for all active subduction zones (total of 51,600 km)

About 70.5% of trenches retreat, ~29.5% advance

scaled laboratory models of subduction

Schellart [G³, 2008]

Relative and absolute velocities in plate tectonics

Convergence velocity Divergence velocity Transform velocity

Relative velocities (between two plates) (independent of reference frame)

Relative and absolute velocities in plate tectonics

Overriding plate velocity (v_{OP}) Subducting plate velocity (v_{SP}) Trench velocity (v_T) Plate velocity

"Absolute velocities" (depend on reference frame)

Plate velocities and trench velocities (in different "absolute" global reference frames)

[Schellart et al., ESR 2008]

Plate velocities and trench velocities (in different "absolute" global reference frames)

[Schellart et al., ESR 2008]

Different "absolute" global reference frames

Pacific hotspot Indo-Atlantic hotspot Global hotspot

Jellinek & Manga [RG, 2004]

Experimental mantle plume

Different "absolute" global reference frames

- Pacific hotspot
 Indo-Atlantic hotspot
 Global hotspot
- 4. No-net-rotation
- **5. Antarctic plate**
- 6. Minimum dissipation
- 7. Paleomagnetic
- 8. Subduction / slab

Plumes / hotspots move in a convecting mantle

- Not the same as no-net-torque
- Not only spreading ridges along boundaries, variable basal drag
 - **Difficult to constrain**
- No constraint on longitude
- Assumes vertical sinking of slabs

All have limitations / problems!

Plate kinematics & Geodynamics

Slabs as the major driver of plate tectonics [Forsyth and Uyeda, GJRAS, 1975]

Potential limitation with diagrams?

Subduction kinematics and slab geometry in buoyancy-driven geodynamic models

Schellart [GRL, 2011]

Subduction kinematics in nature

Schellart [GRL, 2011]

Slab geometry in nature

Schellart [GRL, 2011]

Take home points

- Earth is the only planet in the solar system that is characterised by *plate tectonics-style mantle convection*.
- In plate tectonics, the outer shell (lithosphere) of the Earth is broken up into "plates", on average some 100 km thick.
- The plates move across the globe over a lower viscosity sublithospheric mantle at several cm/yr.
- Plate boundaries also move across the globe at several cm/yr.
- Plate & plate boundary velocities are dependent on the choice of "absolute" global reference frame.
- Plate kinematics can help us to inform the debate on plate driving forces and geodynamics!
- Geodynamics & geodynamic modelling can inform us on plate kinematics and different "absolute" global reference frames!

Thank you!