Joint ICTP-EAIFR-IUGG Workshop on Computational ICTP Geodynamics: Towards Building a New Expertise Across Africa

tectonic forces. richard katz university of oxford

SEA AMBASSADE DE FRANCE AU RWANDA Liberté

Égalité

Fraternité

Educational, Scientific and • for Fundamental Research

United Nations . ICTP - East African Institute Cultural Organization . under the auspices of UNESCO

Plate tectonic theory in 1965

Heezen & Tharp, *PTRSA* 1965

How big is Africa, really?

Fake Tectonics, 2023

Plate tectonics as a *kinematic* theory 21562202, 1968, 6, Downloaded from https://agupubs.onlinelibrary.wiley.com/doi/10.1029/JB073i006p01959 by Oxford University, Wiley Online Library on [19/06/2023]. See the Terms and Conditions (https://onlinelibrary.wiley.com/terms-and-conditions) on Wiley Online Library for rules of use; OA articles are governed by the applicable Creative Commons License

Fig. 4. On a sphere, the motion of block 2 relative to block I must be a rotation about some pole. All faults on the boundary between I and 2 must be small circles concentric about the pole A.

Morgan, *JGR* 1968 McKenzie, *Nature* 1967

Fig. 1. The circuit and its vector diagram show how a ridge and a trench can meet to form a transform fault.

Plate tectonics controls heat flow

Mareschal

The solid mantle is a fluid (on long timescales)

(Solid ice is a fluid too)

Isoviscous thermal convection far above critical Ra

courtesy of S. Labrosse, ENS Lyon

Mantle viscosity, plates and convection

$$
\eta(T) = \eta_0 \exp\left[\frac{E^*}{R} \left(\frac{1}{T} - \frac{1}{T_0}\right)\right]
$$

Plate tectonics controls sea-floor volcanism

FIG. 8. Percentage of circumference of plate connected to downgoing slab. Open bar is total length, filled bar is effective length.

Forsyth & Uyeda, *JGRAS* 1975

Forces driving and resisting plate motion

Summary of the forces

Grigne, Labrosse & Tackley 2005

Internal heating + T-dependent viscosity + Plastic yield stress = Plate Tectonics

- •broad plates with narrow boundaries
	- •passive divergent boundaries (MORs)
	- •active convergent boundaries (SZs)

- •chemical heterogeneity
- •continents and continental rifting
- •one-sided subduction
- •strike-slip (poloidal) motion
- •role of magma in mechanics

Force of slab pull — simple estimate

$F \sim (\Delta \rho) g L H$ $\sim \rho_0 \alpha(\Delta T) gL$ $\sim \rho_0 \alpha (T_m/2) gL$ $\approx 3 \times 10^{13}$ N/m $= 30$ TN/m

Slab pull and plate speed — simple estimate

 $F_D \sim \rho_0 \alpha (T_m/2) gL$ $F_R \sim 3H(\eta \times 2v/H)$ $\Rightarrow v = \rho_0 \alpha T g L H / 12 \eta$ $\approx 10 \text{ cm}/\text{yr}$ Newton's 2nd law: $F_D + F_R \approx 0$

Ulrova, Brune & Williams *GRL* 2018

Force within lithosphere causing rifting

What is happening here in Africa? stages of the continental extension process, being characterised by \mathbf{f} are defined to \mathbf{f} and deformation, timing of volcanism and deformation, \mathbf{f} 1. nara

Γ ault Γ ault Γ ault Γ ansforman Ridge. B) Relative velocities along the EARS and adjoining areas in adjoining areas in adjoining and adjoining areas in adjoining areas in adjoining and adjoining areas in adjoinin Nubia-fixed reference frame (after Stamps et al., 2008). Thin black arrows indicate modelled velocities along plate or block boundaries; thick black arrows indicate motions at GPS Corti, *Tectonophys* 2012

sites (both modelled and measured velocities are reported). Relative rotation poles are shown with black stars. The first plate rotates counter-clockwise with respect to the second,

Candidate forces for rifting continents

What is happening here in Africa?

Heezen & Tharp, PTRSA 1965 McGill University

What is happening here in Africa?

Boyce et al, *G3* 2021 Tsekhmistrenko et al, *Nature Geoscience* 2021

typical convective stress

plate application length

Basal traction force (from mantle convection)

$F \leq 3 \text{ MPa} \times 1000 \text{ km} = 3 \times 10^{12} \text{ N/m}$

due to the topography and that due to the density variations in the half-space. In the limit of

Pratt isostasy:

\n
$$
\rho_1(L+h) = \rho_0 L
$$
\nPotential energy:

\n
$$
\text{GPE}(x) = \int_{-L}^{h(x)} \rho(z)gz \, dz
$$

GPE gradient force (~same as ridge push force)

Force per length:
$$
F = \Delta \text{GPE} = \frac{\rho_1 g (L + h)^2}{2} - \frac{\rho_0 g L^2}{2}
$$

= $\frac{\rho_0 g L h}{2}$

Observation: rifting can occur at driving force less than ~5 TN/m

$$
h = 1 \text{ km}, L = 150 \text{ km}, \rho = 3000 \text{ kg/m}^3
$$

$$
F \le 5 \times 10^{12} \text{ N/m}
$$

For an upper bound:

Corti 2009, Buck 2006

Rifting by frictional slip on faults

 $F \sim A(\rho_{\text{lift}} - \rho_w)gL^2$

Andersonian faulting strength Hydrostatic pressure

- viscous dashpot representing *creep deformation* extends at a rate $\propto F$
- frictional slider representing *fracture and fault slip* extends if $F > F_{\text{crit}}$

Using plasticity to represent faults punctuated upwellings in the manufacture of the man northwards beneath the Afar depression where break-up and spreading are in a more advanced stage (Bastow et al., 2008).

Mode II

Naliboff et al *Nature Comms* 2017

[Faulting & frictional slip modelled as plastic deformation](https://www.youtube.com/watch?v=kkOqCLoF-Fw)

Plastic Strain at 0 Myr 1.5 \vert 0.75 $|1.0$

Philliips et al *Solid Earth* 2023

Consequences of preexisting plastic damage variations ("inheritance")

Collision & subduction phase

Extension phase

Influence of orogenic collision inheritance (Mid-Norwegian margin)

Peron-Pinvidic et al *Tectonophysics* 2022

Ebinger 2005, Corti 2009, Boccaletti et al 1998, Casey *et al* 2006

 \mathbf{A} and with and with and with and with and with \mathbf{A} Assume zero cohesion (fracture toughness)

Magma reduces the stress required for rifting

 $\mathcal{D}_{\text{lith}}(z)]$ *gz* d*z*

$$
F = \Delta \text{GPE} = \int_{-L}^{0} [\rho_f - \rho
$$

 $\rho_f \approx \rho_c < \rho_m$ Buoyant magma

Magma reduces the stress required for rifting

$$
F = \Delta \text{GPE} = \int_{-L}^{0} [\rho_f - \rho
$$

 $\rho_f \approx \rho_c < \rho_m$ Buoyant magma

Fluid-driven fracture (e.g., hydrofracture)

Davis et al *JFM* 2023

Using plasticity to represent dikes?

Mode I

dashpot representing *creep deformation* extends at a rate $\propto F$

spring representing *elastic deformation* extends by an amount $\propto F$

slider representing *fracture and frictional slip* extends if $F>F_{\rm crit}$ (at a rate determined by dashpot)

$$
\eta_K = \begin{cases} 10^{21} \text{ Pa s} \\ 10^{20} \text{ Pa s} \\ 10^{19} \text{ Pa s} \end{cases}
$$

3 cases:

Li et al *GJI* 2023

Li $et~al.,$ GJI, 2023

Li et al., GJI, 2023

Li et al., GJI, 2023

The force for magmatic rifting

Ebinger 2005, Corti 2009, Boccaletti et al 1998, Casey *et al* 2006

- Earth is a *thermal engine* that converts heat (radiogenic, primordial) into work by *convection*.
- Plate tectonics is the surface expression of mantle convection.
- Continents rift under the convective forces of slab pull, topographic/GPE gradients, and basal drag.
- Tectonic forces are of order 10 TN/m.
- Why do rocks yield and what do they remember of past yielding? What is mechanical role of magma at rifts and mid-ocean ridges? How do faults and dikes interact mechanically?

Summary and questions

