Joint CTP-EAFR-UGG Workshop on Computational Geogynamics: Towards Building a New Expertise Across Africa

tectonic forces. university of oxford

AMBASSADE DE FRANCE AU RWANDA Liberté

Égalité

Fraternité

United Nations . ICTP - East African Institute Educational, Scientific and • for Fundamental Research Cultural Organization • under the auspices of UNESCO

Plate tectonic theory in 1965

Heezen & Tharp, PTRSA 1965

How big is Africa, really?

Fake Tectonics, 2023

Plate tectonics as a kinematic theory

Fig. 4. On a sphere, the motion of block 2 relative to block 1 must be a rotation about some pole. All faults on the boundary between 1 and 2 must be small circles concentric about the pole A.

Morgan, *JGR* 1968

Fig. 1. The circuit and its vector diagram show how a ridge and a trench can meet to form a transform fault.

McKenzie, Nature 1967

Plate tectonics controls heat flow

Jaupart & Mareschal

 mW/m^2

The solid mantle is a fluid (on long timescales)

(Solid ice is a fluid too)

Isoviscous thermal convection far above critical Ra

courtesy of S. Labrosse, ENS Lyon

Mantle viscosity, plates and convection

$$\eta(T) = \eta_0 \exp\left[\frac{E^*}{R}\left(\frac{1}{T} - \frac{1}{T_0}\right)\right]$$

Plate tectonics controls sea-floor volcanism

Forces driving and resisting plate motion

Summary of the forces

Force	Form	Direction	Importance, X _s	Relative strength	U	ncertainty	٢	Units
F _{RP}	∝ dl	⊥ strike	0.075	0·3 6	±	0·10	km ⁻¹	
F _{CR}	α dl	opp. rel. motion	0.040	0·16	<u>+</u>	0.09	km ⁻¹	
$F_{\rm TF}$	a dl	opp. rel. motion	0.063	0·36	<u>+</u>	0·13	km ⁻¹	
F _{SP}	∝ dl	⊥ strike	0.745	6.43	\pm	0.19	km ⁻¹	
F _{su}	α dl	上 strike	0.044	0.20	<u>+</u>	0·25	km ^{−1}	
FSR	$\alpha V_{M\perp} d$	″⊥ strike	0.652	0.89	+	0.03	km ⁻¹ c	m^{-1} y
F _{CD}	$\alpha V_{\rm M} dA$	opp. abs. motion	0.026	5.65	<u>+</u>	2.22	10^{-5} k	m^{-2} cr
$F_{\rm DF}$	$\alpha V_{\rm M} dA$	opp. abs. motion	0.061	0.82		0.30	$10^{-5} k$	m ⁻² cr

FIG. 8. Percentage of circumference of plate connected to downgoing slab. Open bar is total length, filled bar is effective length.

 $n^{-1} yr$ $n^{-2} cm^{-1} yr$ $n^{-2} cm^{-1} yr$

Forsyth & Uyeda, JGRAS 1975

Internal heating + T-dependent viscosity + Plastic yield stress = Plate Tectonics

- broad plates with narrow boundaries
 - passive divergent boundaries (MORs)
 - active convergent boundaries (SZs)

Grigne, Labrosse & Tackley 2005

- chemical heterogeneity
- continents and continental rifting
- one-sided subduction
- strike-slip (poloidal) motion
- role of magma in mechanics

Force of slab pull — simple estimate

$F \sim (\Delta \rho)gLH$ $\sim \rho_0 \alpha (\Delta T)gLH$ $\sim \rho_0 \alpha (T_m/2)gLH$ $\approx 3 \times 10^{13} \text{ N/m} = 30 \text{ TN/m}$

Slab pull and plate speed — simple estimate

Newton's 2nd law: $F_D + F_R pprox 0$ $F_D \sim \rho_0 \alpha (T_m/2) g L H$ $F_R \sim 3H(\eta \times 2v/H)$ $\Rightarrow \quad v = \rho_0 \alpha T g L H / 12 \eta$ $\approx 10 \text{ cm/yr}$

Force within lithosphere causing rifting

Ulrova, Brune & Williams GRL 2018

What is happening here in Africa?

Corti, *Tectonophys* 2012

Candidate forces for rifting continents

What is happening here in Africa?

Heezen & Tharp, PTRSA 1965

What is happening here in Africa?

Boyce et al, *G3* 2021

Tsekhmistrenko et al, Nature Geoscience 2021

Basal traction force (from mantle convection)

$F \leq 3 \text{ MPa} \times 1000 \text{ km} = 3 \times 10^{12} \text{ N/m}$

typical convective stress plate application length

GPE gradient force (~same as ridge push force)

Pratt isostasy:
$$\rho_1(L+h) = \rho_0 L$$

Potential energy: $GPE(x) = \int_{-L}^{h(x)} \rho(z)gz \, dz$

Observation: rifting can occur at driving force less than ~5 TN/m

Force per length:
$$F = \Delta \text{GPE} = \frac{\rho_1 g (L+h)^2}{2} - \frac{\rho_0 g R}{2}$$
$$= \frac{\rho_0 g L h}{2}$$

For an upper bound:

$$h = 1 \text{ km}, L = 150 \text{ km}, \rho = 3000 \text{ kg/m}^3$$

 $F \le 5 \times 10^{12} \text{ N/m}$

Rifting by frictional slip on faults

 $F \sim A(\rho_{\text{lith}} - \rho_w)gL^2$

Andersonian faulting strength Hydrostatic pressure

Corti 2009, Buck 2006

Using plasticity to represent faults

 ${\rm Mode \ II}$

- viscous dashpot representing creep deformation extends at a rate $\propto F$
- frictional slider representing fracture and fault slip extends if $F > F_{crit}$

Faulting & frictional slip modelled as plastic deformation

Naliboff et al *Nature Comms* 2017

Consequences of preexisting plastic damage variations ("inheritance")

Phillips et al *Solid Earth* 2023

Influence of orogenic collision inheritance (Mid-Norwegian margin)

Viscosity

Collision & subduction phase

Extension phase

Peron-Pinvidic et al *Tectonophysics* 2022

Ebinger 2005, Corti 2009, Boccaletti et al 1998, Casey et al 2006

stage

Assume zero cohesion (fracture toughness)

$$F = \Delta \text{GPE} = \int_{-L}^{0} [\rho_f - \rho_f] d\rho_f$$

 $\rho_f \approx \rho_c < \rho_m$ Buoyant magma

Magma reduces the stress required for rifting

 $g_{\rm lith}(z)]gz\,{
m d}z$

$$F = \Delta \text{GPE} = \int_{-L}^{0} [\rho_f - \rho_f] d\rho_f$$

 $\rho_f \approx \rho_c < \rho_m$ Buoyant magma

Magma reduces the stress required for rifting

Fluid-driven fracture (e.g., hydrofracture)

Davis et al *JFM* 2023

Using plasticity to represent dikes?

Mode I

dashpot representing creep deformation extends at a rate $\propto F$

spring representing elastic deformation extends by an amount $\propto F$

slider representing *fracture and frictional slip* extends if $F > F_{crit}$ (at a rate determined by dashpot)

3 cases:

$$\eta_K = \begin{cases} 10^{21} \text{ Pa s} \\ 10^{20} \text{ Pa s} \\ 10^{19} \text{ Pa s} \end{cases}$$

Li et al *GJI* 2023

Li et al., GJI, 2023

The force for magmatic rifting

Ebinger 2005, Corti 2009, Boccaletti et al 1998, Casey et al 2006

stage

Summary and questions

- Earth is a *thermal engine* that converts heat (radiogenic, primordial) into work by convection.
- Plate tectonics is the surface expression of mantle convection.
- Continents rift under the convective forces of slab pull, topographic/GPE gradients, and basal drag.
- Tectonic forces are of order 10 TN/m.
- Why do rocks yield and what do they remember of past yielding? What is mechanical role of magma at rifts and mid-ocean ridges? How do faults and dikes interact mechanically?

