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Outline

• Lecture 1 

• How we conduct computational geodynamic modelling


• Lecture 2 

• Practical challenges in computational geodynamic modelling


• Lecture 3 

• How we know our geodynamics models are “correct”
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Lecture 1 Outline

• Why we need geodynamic modelling


• What we model


• How we conduct computational geodynamic modelling


• Commonly used techniques


• Open source geodynamic modelling tools

3
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Locality of observational constraints

4

Gerya, 2014
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Gerya, 2014

Geology

No direct observational data 
available

https://www.pnas.org/doi/10.1073/pnas.1909777116

G
eophysics
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Model motivation
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Model motivation
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Ingredients of a physical model

• A mathematical idealization of the natural world


• Based on physics —> i.e. conservation laws (mass, momentum, energy, …)


• Simplified representation of the complex world is easier to understand


• Requires assumptions


• Capable of describing existing experimental measurements, observations or other 
empirical data


• Capable of predicting new experimental measurements, observations or other 
empirical data

8
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Two classes of solutions to physical models

• Analytical


• Exact solution to the physical model


• Possibly do not require the use of a computer (i.e. only pen-and-paper)


• Numerical


• Approximate solutions to the physical model


• Will almost definitely require the use of a computer

9
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Some reasons not to rely on pen-and-paper solutions

• The simplified (minimum complexity) model may not have an analytic solution


• Dimensionality of the spatial domain


• Non homogenous material properties


• Non-linearity 


• Type of boundary conditions

10
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Long time evolution as viscous flow

11
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http://www.korearth.net/lecture/gen_geo/earth_present/ch03/PlateBoundaries.jpg

• Over million year time scales, we 
assume the following about the mantle-
lithosphere-crust system:


• inertial forces are zero


• material behaves as a fluid


• flow driven by buoyancy variations 
and or imposed velocities
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Geodynamic model problem

12

!1

http://www.le.ac.uk/gl/art/gl209/lecture3

• Conservation of momentum and mass

r ·
�
⌘(ru+ruT )

�
�rp = f

r · u = 0

velocity pressure

shear viscosity volumetric body force
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Geodynamic model problem

13

!1

http://www.le.ac.uk/gl/art/gl209/lecture3 ⇢Cp
DT

Dt
= r · (krT ) +Q

• Conservation of energy

density
heat capacity

temperature

time
thermal conductivity

volumetric heat production



D. A. May  |  ICTP-EAIFR-IUGG, July, 2023

Geodynamic model problem

14
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http://www.le.ac.uk/gl/art/gl209/lecture3

• Coefficient evolution

d 

dt
+ u ·r = 0

velocity

composition / “rock type”
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Geodynamic model problem

15

!1

http://www.le.ac.uk/gl/art/gl209/lecture3

• Conservation of momentum and mass

r ·
�
⌘(ru+ruT )

�
�rp = f

r · u = 0

• Coefficient evolution
d 

dt
+ u ·r = 0

⇢Cp
DT

Dt
= r · (krT ) +Q

• Conservation of energy
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Constitutive behaviour of rocks 
• To first order, temperature  controls the 

viscosity of rocks


• Hot rocks (deep) behave in a ductile 
fashion


• Cool rocks (shallow) behave in a “brittle” 
manner


• Constitutive relationships (power-law, 
visco-plastic)

16
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Constitutive behaviour of rocks 

17
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• To first order, temperature  controls the 
viscosity of rocks


• Brittle-ductile behaviour

<— effective non-linear viscosity
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Boundary conditions

18
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A “minimum” complexity model

19

Deformable*boundaries,*allowing**
material*inflow/ou6low*

Free*surface*+**
surface*processes*

3D*

Extensional**
boundary*
condi?ons*

Temperature*
dependence*

Complex*material*geometry*

Rheological*complexity*

Viscosity*contrasts*

“large deformation”
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General numerical modelling approach
Define a geodynamic model.


Decompose the physical domain into pieces (cells or vertices). This will define a mesh.


Initialize the discrete model inputs.


• for each increment in time


1. Discretize the governing equations in space (and time) over each piece in the 
mesh. At this point you have turned your continuous PDE into a system of discrete 
equations.


2. Solve for the discrete velocity, pressure, temperature.


3. Advect rock type / composition using the computed velocity.

20
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Geodynamic modelling method of choice

21

!1!1

!1

http://www.le.ac.uk/gl/art/gl209/lecture3

• Material Point Method


• Use two different spatial discretizations


• Composition / rock type —> Lagrangian particles


• Velocity, pressure, temperature —> grid
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Geodynamic modelling method of choice

22

!1

!1

• Material Point Method


• Lagrangian particles  

• Store history variables (stress, damage) and 
material type 


• Advected through the mesh


• Reconstruct coefficients (e.g. viscosity)

viscosity, density

[a] Local L2 projection (Q1) [b] Piecewise constant (P0) [c] Piecewise linear (P1)
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Material Point Method

• PARAVOZ / FLAMAR [Podladchikov, Burov, 1993]


• SOPALE [Fullsack, 1995]


• Underworld / GALE [Moresi, 2003]


• DOUAR [Braun, 2008]


• SLIM3D [Popov, 2008]


• FANTOM [Thieulot, 2011]


• ELEFANT [Thieulot, 2013]


• pTatin3d [May, 2014]


• MILAMIN [Dabrowski, 2008]


• I2VIS / I3VIS [Gerya, 2003]


• LaMEM [Kaus, 2014]
23

Finite element variants

Finite difference variants

(Gorczyk, et al, 2007; Gerya, 2011)

L. Moresi et al. / Physics of the Earth and Planetary Interiors 163 (2007) 69–82 79

Fig. 3. Comparison between a highly tilted purely compositional plume conduit (left) in which instabilities grow very rapidly and a thermal plume
conduit (right) plume conduits in which diffusion effectively suppresses instability growth.

shown in Fig. 3. The purely compositional case was
modelled using a 40 × 160 × 160 element mesh with
30 million particles of distinct density used to represent
the two fluids. The thermal case was modelled using
160 × 160 × 320elements—a significantly higher res-
olution needed to resolve the extremely fine thermal
boundary layer which develops around the conduit; in
this example the transition to unstable behaviour has not
yet been reached. As the thermal diffusivity is reduced
further, the thermal boundary layer will become thin-
ner still and a finer mesh resolution will be required to
resolve its structure. However, we know from analysis of
the non-diffusing limit that no further refinement of the
velocity mesh is required to resolve the developing insta-
bility. In order to determine the point at which diffusion
is no longer able to suppress the growth of the instability
in the conduit, we plan to refine only the mesh for the
energy equation.

6.2. Basin extension model

The following models are motivated by a prelimi-
nary study of the difference between 2D and 3D studies
of basin-forming processes in extending lithosphere
(Moresi et al., 2007). Two-dimensional models are well
understood, and, with sufficient resolution, can be reli-
ably reproduced using different numerical techniques
(Buiter et al., 2006). Some uncertainty remains, however,
in application of 2D models to both real geological set-
tings and analogue laboratory experiments designed to
illuminate the geology; the formation of truly 3D struc-
ture cannot be understood from purely 2D experiments.

Fig. 4 shows 2 × 2 × 1 box (96 × 96 × 48 elements)
extending in the x1 direction at a dimensionless velocity
of 1, in which a viscoplastic layer with a Mohr-Coulomb
failure model as described by (18) with η = 10, tan ϕ =

0.5, C = 10–20 lies on top of a viscous layer with η = 1.
In 2D it is well established that varying the “integrated
strength” of the upper layer (thickness, angle of friction,
cohesion) relative to that of the lower layer produces a
systematic change in the characteristic spacing of the
shear bands (Montesi and Zuber, 2000; Huismans et al.,
2005).

The principal challenge in 3D is to achieve a meaning-
ful resolution, given the very large number of additional
mesh points, and the additional degree of freedom at each
mesh point. Fig. 5 shows a comparison between 2D sim-

Fig. 4. The extension of a viscoplastic layer overlying a viscous sub-
strate for a range of values of the cohesion of the viscoplastic layer. The
shear bands which develop have been highlighted by hand sketching
where they meet the free surface and the edge of the box using the
output movies for reference.

(Moresi et al, PEPI, 2007)

204 H. Schmeling et al. / Physics of the Earth and Planetary Interiors 171 (2008) 198–223

(software DIAna Image Analysis). The measurement error was
±0.1 cm.

The laboratory setup is taken to define a corresponding 2D
numerical setup (Fig. 2b). As these experiments are carried out by
both the codes with a free surface and with a soft surface layer
(“sticky air”), both alternative setups are depicted in Fig. 2b. Based
on the photograph of the laboratory model at time equal zero, the
initial dip angle and length of the leading edge of the slab are chosen
as 34◦ and 6 cm, respectively.

4. Results

We first present results of case 1 with a weak decoupling layer
(1019 Pa s), which leads to the entrainment of weak material and
effective lubrication of the upper side of the subducting slab. We
then show the results of the free surface runs. This will be fol-
lowed by the non-lubrication models (case 2) with a “weak layer” of
1021 Pa s. Finally (case 3) the laboratory result and the correspond-
ing numerical runs will be shown.

4.1. Models with weak decoupling layer (case 1)

These models have been run with different resolutions by the
codes and are summarized in Table 2. The typical behaviour of a case
1 model is shown in Fig. 3. At time 0 instantaneously high vertical
flow velocities of the order of 5.4 cm/a are observed as the originally
flat mantle/lithosphere surface relaxes towards an isostatic equilib-
rium. This equilibrium is approached after about 100–200 kyears,
and is associated with a vertical offset at the trench of about 4 km.
This isostatic relaxation is confirmed by the codes FDCON (3.8 km
after 180 kyears), CITCOM (3.9 km after 183 kyears), I2ELVIS (4.7 km

Fig. 3. Typical behaviour of a case 1 model (here FDCON-4 is shown). Streamlines
are also shown.

after 400 kyears) with an accuracy of approximately 100 m, as well
as by the free surface models LaMEM and FEMS-2D (both 4 km
after 200 kyears) and LAPEX-2D (5.2 km after 2 Myears). During
the following 20 Mio years vertical velocities are small (order of
0.25 cm/year). It takes a few tens of Mio years until the slab suc-
cessfully detaches from the surface. Rapidly it subducts through
the upper mantle and reaches the bottom of the box after some
tens of Mio years. As the slab is fixed at the right side of the model
box, subduction is accompanied by considerable roll back with a
horizontal velocity of the order of 1 cm/year.

4.1.1. Comparison of slab shapes
First we compare the shapes of the subducting slabs. As the

temporal behaviour is different (see below) we chose snapshots
for stages at which the subducting slab has reached a depth of
approximately 400 km. As can be seen in Fig. 4, the similar stages
are reached at different times. The geometries are quite similar on
first order, but a detailed examination reveals some differences: the
FDCON case shows a slightly stronger thickening of the horizontal
part of the plate, associated with a larger trench retreat compared to
the I2ELVIS-model. In the FDCON-model the originally right angles
at the edges of the slab front are less deformed than in the I2ELVIS
case. The CITCOM model has already subducted to a slightly greater

Fig. 4. Shapes of different case 1 models at similar stages: FDCON: 40 Myears,
I2ELVIS: 34.7 Myears, CITCOM: 38.1 Myears. Viscosity averaging: geometric mean
in all cases.

(Schmeling etal, PEPI, 2008)advection of the cloud points takes 0.034 s in the low resolution
case and 0.4 s in the high-resolution one. In both cases, these oper-
ations represent only a fraction of the solving time and of the total
running time.

FANTOM allows for the accurate tracking of the amount of
memory that it allocates all through the run (outside of the solver).
In the low resolution case, it does not exceed 30 Mb, and in the
high resolution case 520 Mb. Given the amount of memory avail-
able on which the code is set to run (typically between 2 and
32 Gb on modern desktop computers), this allows to assess how
much memory is left available to the direct solver, whose memory
needs are difficultly predictible.

In the low resolution case, the measured dip angles are about
53 ± 2! on each side, while in the high resolution case the mea-
sured dip angles are 54 ± 1! on each side and are therefore steeper.
In both cases, the measurements are within the values expected for
pressure-dependent non-dilational Mohr–Coulomb shear zones
(Kaus, 2010).

Finally, an observation can be made about the density of the
shear band network which grows with each increase in resolution:
sandbox experiments do not show such a high density network of
shear band and this probably implies that the implemented plastic
rheology is too simple and lacks constitutive parameters defining
the band spacing (Chemenda, 2007).

4.2. FANTOM2Dp: lithospheric extension

This experiment is nearly identical to the one discussed in Huis-
mans and Beaumont (2007) in which plane strain thermo-mechan-
ical finite-element model experiments have been used to
investigate the effects of frictional plastic strain softening and
inherited weakness on the style of lithospheric extension.

The setup, shown in Fig. 8, consists of three layers:

! The top layer is the crust, consisting of wet quartz. It is 35 km
thick and is characterised by a visco-plastic rheology. q0 =
2800 kg m"3, cqt = 20 # 106 Pa, nqt = 4.0, Qqt = 223 # 103J mol"1,
Aqt = 1.10 # 10"28 Pa"n s"1, Vqt = 0 m3 mol"1, / = 7!, /sw = 1!,
!1 = 0.5, !2 = 1.5.

! The middle layer is the lithosphere and sublithospheric mantle,
composed of dry olivine. It is 85 km thick and its rheology is
also visco-plastic. q0 = 3300 kg m"3, col = 20 # 106 Pa, nol = 3.5,
Qol = 540 # 103 J mol"1, Aol = 2.4168 # 10"15 Pa"n s"1, Vol = 25 #
10"6 m3 mol"1, / = 7!, /sw = 1!, !1 = 0.5, !2 = 1.5.

! The bottom layer is the mantle, characterised by a purely vis-
cous rheology. q0 = 3300 kg m"3, l = 1021 Pa s.

The size of the numerical domain is Lx = 1200 km, Ly = 600 km
and the boundary conditions are as follows: the temperature is
set to T = 1330 !C at the base of the model and to 0 !C at the top.
At startup, a constant geotherm T = 550 !C is placed at the base
of the crust.

The extensional velocity applied to the sides of the crust is
vext = 0.5 cm yr"1 and a re-entrant velocity field is applied on the
rest of the boundary so as to lead to a zero net-flux through the
vertical sides of the box. A weak seed is placed in the upper part
of the lithosphere and represents the weakest zone of inherited
damage, therefore controlling the strain localisation process. All
materials see their density depend on the temperature field with
a thermal expansion coefficient a = 3.1 # 10"5 !C"1.

This experiment is run with a 2000 # 1000 grid, leading to a
resolution of 600 m per element. This results in a large matrix:
N = 4,006,002 with over 38 million non-zero terms in its upper
half. 16 cores are used and an average solve takes 17.9 s for the

(a)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

(b)

Fig. 7. Numerical sandbox experiments results at low resolution (left column) and high resolution (right column) after 2 cm of extension. (a and b) Materials, (c and d) strain-
rate (logarithmic scale), (e and f) pressure, (g and h) effective viscosity (logarithmic scale), (i and j) horizontal component of the velocity field.

10 C. Thieulot / Physics of the Earth and Planetary Interiors xxx (2011) xxx–xxx

Please cite this article in press as: Thieulot, C. FANTOM: Two- and three-dimensional numerical modelling of creeping flows for the solution of geological
problems. Phys. Earth Planet. In. (2011), doi:10.1016/j.pepi.2011.06.011

(Thieulot, PEPI, 2011)
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Grid based spatial discretizations

• Two most popular approaches


• Staggered-grid Finite Difference (StagFD) method


• Mixed Finite Element (FE) method


• We will overview both approaches applied to solve the viscous flow problem

24
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Finite Differences 

• Fundamental building blocks


• All partial derivatives can be approximated via 
differencing between neighbouring points.


• Simple difference approximation leads to the 
requirement of a structured grid, moreover a grid 
defined by an orthogonal coordinate system.


• Apply the finite difference approximation to all 
terms in the governing equation, and apply to all 
grid points in the mesh.

25
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Staggered-grid Finite Differences 

• Special layout of variables for the x, y components 
of velocity and pressure (and more)

26
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Staggered-grid Finite Differences 

• Special layout of variables for the x, y components 
of velocity and pressure (and more)

27
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Advantages

• Conservative.


• Suitable for 2D and 3D.


• Very few degrees of freedom (unknowns).


• Few unknowns —> 


• low memory required .


• fast to compute solutions.


• Robust with respect to the model configuration.

28
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Disadvantages
• Evaluating the discrete solution (or its gradient) at 

arbitrary locations in the mesh is not natural.


• Imposing Dirichlet and Neumann (natural) boundary 
conditions is not completely natural.


• Geometrically inflexible.


• Free surface evolution is not natural.


• Extensions to other governing equations, and or 
coupling with other governing equations is not always 
straight forward.


• Generic software implementations are challenging.


• Non-linear problems result in stencil growth.
29
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Finite Element Method

• Fundamental building blocks


• Seeks solutions to the weak form.


• Spatial domain decomposed into 
cells (finite elements).


• Approximate unknown field (e.g. T) 
by a cell-wise defined polynomial.

30
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Mixed Finite Elements

31

• Discretize velocity and pressure using 
different polynomials. Pressure may use 
a discontinuous function across 
elements.


• Low order elements, e.g. velocity (linear) 
and pressure (constant) are unstable 
and result in poor pressure solutions.


• Stabilization techniques often not 
suitable for geodynamics applications.


• Arguably the best “all round” choice is 
to use a quadratic polynomial for 
velocity and linear discontinuous 
polynomial for pressure
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Advantages
• Geometrically flexible.


• Wide range of cell geometries and domain 
geometries can be used.


• Suitable for 2D and 3D.


• Imposing Dirichlet and Neumann (natural) boundary 
conditions is trivial.


• Suitable for problems with discontinuous coefficients 


• Simple to write modular code that is extensible to 
new physics.


• Evaluating the discrete solution (or its gradient) at 
arbitrary locations in the mesh is trivial.


• Rich mathematical analysis exists.
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Disadvantages

• Not naturally conservative.


• Many more degrees of freedom (unknowns) —> expensive in 
terms of memory and time.


• Too many element choices to think about.


• Solution stability mandates the usage of high-order (expensive) 
elements, however solution characteristics do not benefit from 
high-order accuracy.

33
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Material Point Method

• PARAVOZ / FLAMAR [Podladchikov, Burov, 1993]


• SOPALE [Fullsack, 1995]


• Underworld / GALE [Moresi, 2003]


• DOUAR [Braun, 2008]


• SLIM3D [Popov, 2008]


• FANTOM [Thieulot, 2011]


• ELEFANT [Thieulot, 2013]


• pTatin3d [May, 2014]


• MILAMIN [Dabrowski, 2008]


• I2VIS / I3VIS [Gerya, 2003]


• LaMEM [Kaus, 2014]
34

Finite element variants

Finite difference variants

(Gorczyk, et al, 2007; Gerya, 2011)

L. Moresi et al. / Physics of the Earth and Planetary Interiors 163 (2007) 69–82 79

Fig. 3. Comparison between a highly tilted purely compositional plume conduit (left) in which instabilities grow very rapidly and a thermal plume
conduit (right) plume conduits in which diffusion effectively suppresses instability growth.

shown in Fig. 3. The purely compositional case was
modelled using a 40 × 160 × 160 element mesh with
30 million particles of distinct density used to represent
the two fluids. The thermal case was modelled using
160 × 160 × 320elements—a significantly higher res-
olution needed to resolve the extremely fine thermal
boundary layer which develops around the conduit; in
this example the transition to unstable behaviour has not
yet been reached. As the thermal diffusivity is reduced
further, the thermal boundary layer will become thin-
ner still and a finer mesh resolution will be required to
resolve its structure. However, we know from analysis of
the non-diffusing limit that no further refinement of the
velocity mesh is required to resolve the developing insta-
bility. In order to determine the point at which diffusion
is no longer able to suppress the growth of the instability
in the conduit, we plan to refine only the mesh for the
energy equation.

6.2. Basin extension model

The following models are motivated by a prelimi-
nary study of the difference between 2D and 3D studies
of basin-forming processes in extending lithosphere
(Moresi et al., 2007). Two-dimensional models are well
understood, and, with sufficient resolution, can be reli-
ably reproduced using different numerical techniques
(Buiter et al., 2006). Some uncertainty remains, however,
in application of 2D models to both real geological set-
tings and analogue laboratory experiments designed to
illuminate the geology; the formation of truly 3D struc-
ture cannot be understood from purely 2D experiments.

Fig. 4 shows 2 × 2 × 1 box (96 × 96 × 48 elements)
extending in the x1 direction at a dimensionless velocity
of 1, in which a viscoplastic layer with a Mohr-Coulomb
failure model as described by (18) with η = 10, tan ϕ =

0.5, C = 10–20 lies on top of a viscous layer with η = 1.
In 2D it is well established that varying the “integrated
strength” of the upper layer (thickness, angle of friction,
cohesion) relative to that of the lower layer produces a
systematic change in the characteristic spacing of the
shear bands (Montesi and Zuber, 2000; Huismans et al.,
2005).

The principal challenge in 3D is to achieve a meaning-
ful resolution, given the very large number of additional
mesh points, and the additional degree of freedom at each
mesh point. Fig. 5 shows a comparison between 2D sim-

Fig. 4. The extension of a viscoplastic layer overlying a viscous sub-
strate for a range of values of the cohesion of the viscoplastic layer. The
shear bands which develop have been highlighted by hand sketching
where they meet the free surface and the edge of the box using the
output movies for reference.

(Moresi et al, PEPI, 2007)
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(software DIAna Image Analysis). The measurement error was
±0.1 cm.

The laboratory setup is taken to define a corresponding 2D
numerical setup (Fig. 2b). As these experiments are carried out by
both the codes with a free surface and with a soft surface layer
(“sticky air”), both alternative setups are depicted in Fig. 2b. Based
on the photograph of the laboratory model at time equal zero, the
initial dip angle and length of the leading edge of the slab are chosen
as 34◦ and 6 cm, respectively.

4. Results

We first present results of case 1 with a weak decoupling layer
(1019 Pa s), which leads to the entrainment of weak material and
effective lubrication of the upper side of the subducting slab. We
then show the results of the free surface runs. This will be fol-
lowed by the non-lubrication models (case 2) with a “weak layer” of
1021 Pa s. Finally (case 3) the laboratory result and the correspond-
ing numerical runs will be shown.

4.1. Models with weak decoupling layer (case 1)

These models have been run with different resolutions by the
codes and are summarized in Table 2. The typical behaviour of a case
1 model is shown in Fig. 3. At time 0 instantaneously high vertical
flow velocities of the order of 5.4 cm/a are observed as the originally
flat mantle/lithosphere surface relaxes towards an isostatic equilib-
rium. This equilibrium is approached after about 100–200 kyears,
and is associated with a vertical offset at the trench of about 4 km.
This isostatic relaxation is confirmed by the codes FDCON (3.8 km
after 180 kyears), CITCOM (3.9 km after 183 kyears), I2ELVIS (4.7 km

Fig. 3. Typical behaviour of a case 1 model (here FDCON-4 is shown). Streamlines
are also shown.

after 400 kyears) with an accuracy of approximately 100 m, as well
as by the free surface models LaMEM and FEMS-2D (both 4 km
after 200 kyears) and LAPEX-2D (5.2 km after 2 Myears). During
the following 20 Mio years vertical velocities are small (order of
0.25 cm/year). It takes a few tens of Mio years until the slab suc-
cessfully detaches from the surface. Rapidly it subducts through
the upper mantle and reaches the bottom of the box after some
tens of Mio years. As the slab is fixed at the right side of the model
box, subduction is accompanied by considerable roll back with a
horizontal velocity of the order of 1 cm/year.

4.1.1. Comparison of slab shapes
First we compare the shapes of the subducting slabs. As the

temporal behaviour is different (see below) we chose snapshots
for stages at which the subducting slab has reached a depth of
approximately 400 km. As can be seen in Fig. 4, the similar stages
are reached at different times. The geometries are quite similar on
first order, but a detailed examination reveals some differences: the
FDCON case shows a slightly stronger thickening of the horizontal
part of the plate, associated with a larger trench retreat compared to
the I2ELVIS-model. In the FDCON-model the originally right angles
at the edges of the slab front are less deformed than in the I2ELVIS
case. The CITCOM model has already subducted to a slightly greater

Fig. 4. Shapes of different case 1 models at similar stages: FDCON: 40 Myears,
I2ELVIS: 34.7 Myears, CITCOM: 38.1 Myears. Viscosity averaging: geometric mean
in all cases.

(Schmeling etal, PEPI, 2008)advection of the cloud points takes 0.034 s in the low resolution
case and 0.4 s in the high-resolution one. In both cases, these oper-
ations represent only a fraction of the solving time and of the total
running time.

FANTOM allows for the accurate tracking of the amount of
memory that it allocates all through the run (outside of the solver).
In the low resolution case, it does not exceed 30 Mb, and in the
high resolution case 520 Mb. Given the amount of memory avail-
able on which the code is set to run (typically between 2 and
32 Gb on modern desktop computers), this allows to assess how
much memory is left available to the direct solver, whose memory
needs are difficultly predictible.

In the low resolution case, the measured dip angles are about
53 ± 2! on each side, while in the high resolution case the mea-
sured dip angles are 54 ± 1! on each side and are therefore steeper.
In both cases, the measurements are within the values expected for
pressure-dependent non-dilational Mohr–Coulomb shear zones
(Kaus, 2010).

Finally, an observation can be made about the density of the
shear band network which grows with each increase in resolution:
sandbox experiments do not show such a high density network of
shear band and this probably implies that the implemented plastic
rheology is too simple and lacks constitutive parameters defining
the band spacing (Chemenda, 2007).

4.2. FANTOM2Dp: lithospheric extension

This experiment is nearly identical to the one discussed in Huis-
mans and Beaumont (2007) in which plane strain thermo-mechan-
ical finite-element model experiments have been used to
investigate the effects of frictional plastic strain softening and
inherited weakness on the style of lithospheric extension.

The setup, shown in Fig. 8, consists of three layers:

! The top layer is the crust, consisting of wet quartz. It is 35 km
thick and is characterised by a visco-plastic rheology. q0 =
2800 kg m"3, cqt = 20 # 106 Pa, nqt = 4.0, Qqt = 223 # 103J mol"1,
Aqt = 1.10 # 10"28 Pa"n s"1, Vqt = 0 m3 mol"1, / = 7!, /sw = 1!,
!1 = 0.5, !2 = 1.5.

! The middle layer is the lithosphere and sublithospheric mantle,
composed of dry olivine. It is 85 km thick and its rheology is
also visco-plastic. q0 = 3300 kg m"3, col = 20 # 106 Pa, nol = 3.5,
Qol = 540 # 103 J mol"1, Aol = 2.4168 # 10"15 Pa"n s"1, Vol = 25 #
10"6 m3 mol"1, / = 7!, /sw = 1!, !1 = 0.5, !2 = 1.5.

! The bottom layer is the mantle, characterised by a purely vis-
cous rheology. q0 = 3300 kg m"3, l = 1021 Pa s.

The size of the numerical domain is Lx = 1200 km, Ly = 600 km
and the boundary conditions are as follows: the temperature is
set to T = 1330 !C at the base of the model and to 0 !C at the top.
At startup, a constant geotherm T = 550 !C is placed at the base
of the crust.

The extensional velocity applied to the sides of the crust is
vext = 0.5 cm yr"1 and a re-entrant velocity field is applied on the
rest of the boundary so as to lead to a zero net-flux through the
vertical sides of the box. A weak seed is placed in the upper part
of the lithosphere and represents the weakest zone of inherited
damage, therefore controlling the strain localisation process. All
materials see their density depend on the temperature field with
a thermal expansion coefficient a = 3.1 # 10"5 !C"1.

This experiment is run with a 2000 # 1000 grid, leading to a
resolution of 600 m per element. This results in a large matrix:
N = 4,006,002 with over 38 million non-zero terms in its upper
half. 16 cores are used and an average solve takes 17.9 s for the

(a)

(c) (d)

(e) (f )

(g) (h)

(i) (j)

(b)

Fig. 7. Numerical sandbox experiments results at low resolution (left column) and high resolution (right column) after 2 cm of extension. (a and b) Materials, (c and d) strain-
rate (logarithmic scale), (e and f) pressure, (g and h) effective viscosity (logarithmic scale), (i and j) horizontal component of the velocity field.

10 C. Thieulot / Physics of the Earth and Planetary Interiors xxx (2011) xxx–xxx

Please cite this article in press as: Thieulot, C. FANTOM: Two- and three-dimensional numerical modelling of creeping flows for the solution of geological
problems. Phys. Earth Planet. In. (2011), doi:10.1016/j.pepi.2011.06.011

(Thieulot, PEPI, 2011)
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Open source geodynamic software

• LaMEM - Lithosphere and Mantle 
Evolution Model 


• A parallel 3D numerical code that can 
be used to model various 
thermomechanical geodynamical 
processes such as mantle-lithosphere 
interaction for rocks that have visco-
elasto-plastic rheologies. The code is 
build on top of PETSc package and 
the current version of the code uses a 
marker-in-cell approach with a 
staggered finite difference 
discretization. 

35

https://github.com/UniMainzGeo/LaMEM

LaMEM

3D only, staggered finite difference, 
large scale HPC support, particles, 
Julia interfaces, flexible solver 
configuration
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Open source geodynamic software

• Underworld2 is a Python API which 
provides functionality for the modelling 
of geodynamics processes. The API 
also provides the tools required for 
inline analysis and data management.


• Designed to work seamlessly across 
PC, cloud and HPC infrastructure.


• A primary aim of Underworld2 is to 
enable rapid prototyping of models, 
and to this end embedded 
visualisation (LavaVu) and modern 
development environments such as 
Jupyter Notebooks have been

36

https://underworld2.readthedocs.io/en/v2.14.0b/

2D or 3D, finite elements, HPC 
support, particles, plug-and-play 
physics modules, python API to 
design experiments, flexible solver 
configuration
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Open source geodynamic software

• What it is: An extensible code written in 
C++ to support research in simulating 
convection in the Earth's mantle and 
elsewhere.


• Mission: To provide the geosciences 
with a well-documented and extensible 
code base for their research needs.


• Vision: To create an open, inclusive, 
participatory community providing 
users and developers with a state-of-
the-art, comprehensive software that 
performs well while being simple to 
extend.
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https://aspect.geodynamics.org/

2D or 3D, finite elements, large scale 
HPC support, adaptive mesh 
refinement, particles, grid based 
advection, plug-and-play physics 
modules
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Choices and tradeoffs - An example
• Is the geometry of your model domain complex?


• Yes —> mixed FE


• Does your model require a free-surface to evolve?


• Yes —> mixed FE


• Does you model have simple boundary 
conditions?


• Yes —> StagFD 


• Are your compute resources limited?


• Yes —> StagFD

38



D. A. May  |  ICTP-EAIFR-IUGG, July, 2023

Choices and tradeoffs - An example
• Is the geometry of your model domain complex?


• Yes —> mixed FE


• Does your model require a free-surface to evolve?


• Yes —> mixed FE


• Does you model have simple boundary 
conditions?


• Yes —> StagFD 


• Are your compute resources limited?


• Yes —> StagFD
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• Incompatible choices may 
require you change your model 
design philosophy.


• Think about the model 
problem you want to solve, 
then choose a method.


        or


• Think about the model 
problem you can solve with 
the methods at hand.
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Summary
• There are many reasons we want to consider using computational models to 

understand the Earth.


• The underlying equations for a minimum complexity problem are still challenging 
to solve numerically.


• Most geodynamic models employ a variant of the material point method. 


• Major differences between packages occur in how the flow and energy problems 
are discretized.


• The two main approaches are Staggered-grid Finite Differences and the mixed 
Finite Element method.


• You will use both methods in your tutorials in the coming days.
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Geodynamic Modelling Resources
• Gerya, T., 2019. Introduction to numerical geodynamic modelling. Cambridge 

University Press.


• Elman, H.C., Silvester, D.J. and Wathen, A.J., 2014. Finite elements and fast iterative 
solvers: with applications in incompressible fluid dynamics. Oxford university press.


• May, D. A., and Gerya, T. V. 2021. Physics-based numerical modeling of geological 
processes. In D. Alderton, & S. A. Elias (Eds.), Encyclopedia of geology (2nd ed., pp. 
868–883). Acadamic Press, USA. https://doi.org/10.1016/
b978-0-12-409548-9.12520-5


• May, D.A. and Knepley, M.G., 2023. Numerical Modeling of Subduction. In Dynamics 
of Plate Tectonics and Mantle Convection (pp. 539-571). Elsevier.


• van Zelst, I., Crameri, F., Pusok, A.E., Glerum, A., Dannberg, J. and Thieulot, C., 
2021. 101 geodynamic modelling: How to design, carry out, and interpret numerical 
studies. Solid Earth Discussions, 2021, pp.1-80.
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Resources | Software

• A non-exhaustive list


• Designed specifically for geodynamics  

• https://github.com/UniMainzGeo/LaMEM


• https://underworld2.readthedocs.io/en/v2.14.0b/


• https://aspect.geodynamics.org/


• General design, but used for geodynamics 

• https://www.firedrakeproject.org/


• https://fluidityproject.github.io/
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https://github.com/UniMainzGeo/LaMEM
https://underworld2.readthedocs.io/en/v2.14.0b/
https://aspect.geodynamics.org/
https://www.firedrakeproject.org/

