Joint ICTP-EAIFR-IUGG Workshop on Computational Geodynamics: Towards Building a New Expertise Across Africa

GEODYNAMIC MODELS & SCALING

Wouter P. Schellart

Department of Earth Sciences Vrije Universiteit Amsterdam Netherlands

w.p.schellart@vu.nl

Outline of lecture

Scaling of models:

- **1. A brief history of geodynamic modelling.**
- **2. Modelling approaches.**
- **3. Geometric, kinematic & dynamic similarity.**
- **4. Scaling of physical parameters (e.g. length, time, density (contrast), stress).**
- **5. Reynolds number & dynamic flow regime.**
- **6. Rheological similarity.**
- **7. Scaling of topography.**

Brief history of geodynamic modelling *1815: First geodynamic models (analogue) to investigate folding of rocks [Hall, 1815]*

Brief history of geodynamic modelling *Other 19th century geodynamic models (analogue) also investigated shortening structures/processes*

Reverse faulting [Daubree, 1879]

Thrust wedge formation [Cadell, 1888]

Fault-propagation folding [Schardt, 1884]

Brief history of geodynamic modelling *First subduction geodynamic model (analogue)*

[Jacoby, Nat. Phys. Sci. 1973]

Experimental set up with thin rubber sheet covered with waterabsorbing foam layer floating on water reservoir.

Side view of buoyancy-driven subduction experiment. Note experimental duration = ~5 s.

Brief history of geodynamic modelling *First subduction geodynamic models (numerical)*

[*Sleep & Toksoz***, Nature 1971]**

*Bottom***: cross-section of 2D subduction experiment with imposed slab geometry and velocity showing stream lines.** *Top***: Shear stress and pressure at base of lithosphere.**

Why geodynamic modelling?

• **Viability**

To test the physical/mechanical viability of a hypothesis or conceptual model.

• **Parametric**

To investigate the influence of a particular parameter on a certain geological process.

• **Time evolution and/or spatial distribution To be able to visualize and quantify the geometry/ structure/flow field/velocity field/stress field of a particular geological process or phenomenon with progressive time and/or in 2D/3D space.**

Geometric models (static models)

-Geological map, structural map, geomorphological map, hydrological map, gravity map, …… -Geological crosssection, ….... -Mantle tomography model, …....

SSW

1600-

1400-

 $1200 -$

1000 800

600

F

20021 **[Schellart, JVE, 2002]** JVE. [Schellart,

Kinematic models (displacements / velocities)

Tectonic reconstructions, restored balanced cross-sections.

-…......

Tectonic reconstruction from Hall [AJES, 2002]

Dynamic models (linking forces, stresses, strain, velocities)

4D numerical subduction model from Schellart and Moresi [JGR 2013]

Approaches in analogue & numerical modelling

CLOSED SYSTEM *Internal:* **All deformation driven by internal energy**

OPEN SYSTEM *External:* **All deformation driven by externally added energy**

Combined:

Deformation driven by internal & external energy

Geodynamic model: Open system external approach *Accretionary wedge simulations*

[Yamato et al. GSSP 2006]

Analogue experiment [Bose et al. J. Geod. 2015]

Geodynamic model: Open system combined approach

India-Eurasia subduction-collision experiment [Bajolet et al., Tect. 2013]

Geodynamic model: Closed system internal approach

Buoyancy-driven subduction models

Numerical model simulating flat slab subduction

Movie of subduction experiment with a free subducting plate and a free overriding plate

Top-view (above): Overriding plate deformation

Side-view (below): Subduction-induced mantle flow

Paremeters: $T_{SP} = 2.0$ cm (scaling to 100 km) T_{OP} = 1.5 cm (scaling to 75 km) $\eta_{SP}/\eta_{U\text{M}}$ = 212

Width of subduction zone = 15 cm (scaling to 750 km)

Chen, Z., W.P. Schellart, V. Strak, and J.C. Duarte, Earth and Planetary Science Letters [2016]

[Schellart & Strak, GJI 2021]

Schellart &

Strak, GJI 2021]

Analogue subducting plate-overriding plate-mantle flow experiment

Geometric similarity: *All corresponding lengths are proportional and all corresponding angles are equal in model and nature.* **Geometric, kinematic & dynamic similarity**

Subduction experiment [Chen et al. G-cubed 2015]

Upper mantle thickness

Calabria subduction zone Plate thickness Upper mantle thickness

Kinematic similarity: *Model & nature have to undergo similar changes of shape and/or position, where the time required for change in the model is proportional to that for the corresponding change in nature.* **Geometric, kinematic & dynamic similarity**

Analogue subduction experiment with free trailing edge [Schellart JGR 2004]

Dynamic similarity: *Similar distribution of driving forces and resistive forces in model and nature.* **Geometric, kinematic & dynamic similarity**

Driving force (F_{BF}) and **resistive forces** (e.g. F_{SR}, F_{BR}, F_{NR}, F_{DF}, F_{FR}) in **a subduction zone.**

For example: $(F_{SR} / F_{BF})^{\text{MODEL}} = (F_{SR} / F_{BF})^{\text{NATURE}}$

Scaling of length & time in mechanical models

Length (*l***) choose a convenient length scale):**

$$
\frac{l_1^m}{l_1^p} = \frac{l_2^m}{l_2^p} = \frac{l_3^m}{l_3^p} = \frac{l_n^m}{l_n^p}
$$

Angles (a**) no choice:**

$$
\frac{\alpha_1^m}{\alpha_1^p} = \frac{\alpha_2^m}{\alpha_2^p} = \frac{\alpha_3^m}{\alpha_3^p} = \frac{\alpha_n^m}{\alpha_n^p} = 1
$$

Time (*t***) choose a convenient time scale:**

$$
\frac{t_1^m}{t_1^p} = \frac{t_2^m}{t_2^p} = \frac{t_3^m}{t_3^p} = \frac{t_n^m}{t_n^p}
$$

Note for time scale: In practice depends on rheology -For brittle only, free choice except that F_i **= negligible. -For viscous, time is scaled from viscosity.**

(superscript *m* **for model, superscript** *p* **for natural prototype)**

Scaling of density or density contrast in mechanical models

Density (ρ) **, choose a convenient density scale:**

$$
\frac{\rho_{CC}^m}{\rho_{CC}^p} = \frac{\rho_{CLM}^m}{\rho_{CLM}^p} = \frac{\rho_{OL}^m}{\rho_{OL}^p} = \frac{\rho_{SLUM}^m}{\rho_{SLUM}^p}
$$

Density contrast ($\Delta \rho$ **), choose a convenient density scale:**

$$
\frac{\left(\rho_{SLUM}^m - \rho_{CC}^m\right)}{\left(\rho_{SLUM}^p - \rho_{CC}^p\right)} = \frac{\left(\rho_{SLUM}^m - \rho_{CLM}^m\right)}{\left(\rho_{SLUM}^p - \rho_{CLM}^p\right)} = \frac{\left(\rho_{SLUM}^m - \rho_{OL}^m\right)}{\left(\rho_{SLUM}^p - \rho_{OL}^p\right)}
$$

In analogue experiments, in practice, rheologically suitable materials are chosen, and densities might be altered through adding dense/light fillers or by diluting.

Scaling of velocity, stresses, viscosity, time in mechanical models using density contrasts

Use Stokes solution for a rising/sinking solid sphere

Exact solution to calculate the vertical velocity *U* **of a solid sphere in an infinite volume, linear-viscous (Newtonian), fluid at low Reynolds number (Re <<1) during steady-state flow:**

$$
U=\frac{2r^2\Delta\rho g}{9\eta}
$$

U **= vertical velocity (upward is positive) [m/s]** *r* **= radius of the sphere [m]** $\Delta \rho$ = density contrast $(\rho_{fluid} - \rho_{sphere})$ [kg/m³] *g* **= gravitational acceleration (~9.8 m/s2)** η = dynamic shear viscosity of surrounding **fluid [Pa s]**

Approximate solution for solid ellipsoid

Stokes-like rising/sinking of a solid ellipsoid in an infinite volume viscous fluid at low Reynolds number (Re << 1) **[***Kerr and Lister***, 1991]:**

$$
u=\frac{S(D^*)^2\Delta\rho g}{18\eta}
$$

$$
S = shape factor
$$

$$
D^* = \text{effective diameter} = (abc)^{1/3}
$$

a,b,c = axes of ellipsoid (normally the convention is: $a ≤ b ≤ c$)

In the special case where *a* **=** *b* **=** *c* **(sphere), then** *S* **= 1 and:**

$$
u = \frac{s([8r^3]^{1/3})^2 \Delta \rho g}{18\eta} = \frac{2r^2 \Delta \rho g}{9\eta}
$$

Solid ellipsoid

*a***-axis is vertical** *c***-axis is vertical**

Contours of the shape factor *S* **for a sinking/rising ellipsoid** with axes $a \le b \le c$ [Kerr and Lister, J Geol. 1991].

Scaling of velocity, stresses, viscosity, time in mechanical models using density contrasts

Approximate Stokes solution for sinking rigid object at Re << 1:

$$
v \sim C \frac{\Delta \rho l^2 g}{\eta}
$$

Writing for model (*m***) and natural prototype (***p***):**

$$
\frac{\Delta \rho^m (l^m)^2 g^m}{\eta^m \nu^m} = \frac{\Delta \rho^p (l^p)^2 g^p}{\eta^p \nu^p}
$$

Writing for velocity (*v***):**

$$
\frac{v^m}{v^p} = \frac{\Delta \rho^m (l^m)^2 g^m \eta^p}{\Delta \rho^p (l^p)^2 g^p \eta^m}
$$

g **= gravitational acceleration** η = dynamic shear viscosity

For lab experiments, with *gm* **=** *gp ^C* **= constant**

Scaling of velocity, stresses, viscosity, time in mechanical models using density contrasts

$$
\frac{\Delta \rho^m (l^m)^2 g^m}{\eta^m \nu^m} = \frac{\Delta \rho^p (l^p)^2 g^p}{\eta^p \nu^p}
$$

Writing for viscosity, with $v \sim l/t$ **:**

Note: Time can be scaled when setting the viscosity ratio

Writing for stress (σ **), with** $\sigma \sim \eta/t$ **:**

$$
\frac{\eta^m}{\eta^p} = \frac{\Delta \rho^m g^m l^m t^m}{\Delta \rho^p g^p l^p t^p}
$$

$$
\frac{\sigma^m}{\sigma^p} = \frac{\Delta \rho^m g^m l^m}{\Delta \rho^p g^{\rho} l^p}
$$

For lab experiments, with $q^m = q^p$

Scaling of stresses in mechanical models using densities

Cauchy's equation of motion:

$$
\sigma \frac{D^2 x_i}{Dt^2} = \frac{\partial \sigma_{ij}}{\partial x_j} + \rho g_i \qquad (i, j = 1, 2, 1)
$$

Negligible inertial forces, resulting in:

$$
\frac{\partial \sigma_{ij}}{\partial x_j} = -\rho g_i
$$

3)

Integrating w.r.t. *x***^j , with boundary conditions** $\sigma_{ii} = 0$ at $x_i = 0$:

Writing for model (*m***) and natural prototype (** p **), with** x_i **being just a length scale** *l***:**

$$
\frac{\sigma_{ij}^m}{\sigma_{ij}^p} = \frac{\rho^m g^m l^m}{\rho^p g^p l^p}
$$

 $\sigma_{ii} = -\rho g_i x_i$

For lab experiments, with $g^m = g^p$

Reynolds number & dynamic flow regime *Dynamic similarity requires same flow regime*

 $Re \equiv d\rho V/\eta$

d **= characteristic length scale (e.g. diameter) of object;** ρ = density of fluid; *v* **is velocity of object w.r.t. fluid;** η = dynamic shear **viscosity of fluid.**

Flow past cylinder

Flow past cylinder Von Karman vortex street

Turbulent flow **(Re = ~104)** *Flow past*

cylinder

Reynolds number & dynamic flow regime $Re = d\rho v/\eta$

For subducted slab on Earth: $d = -10^5$ m ρ = ~3300 kg/m³ *v* **= ~0.1/(3600*24*365) = ~3.2 x 10-9 m/s** $n = -10^{20}$ Pa s.

$Re = ~ 1.0 \times 10^{-20}$ **<<<<<< 1**

Flow past vertical plate [Hudson and Dennis, *J. Fluid Mechanics***, 1985]**

Small asymmetry develops

Asymmetry is well pronounced

Flow separation in wake of plate with formation of eddy

Exercise: *Re & flow regime* **Re =** *d_pv/n*

Re = 0.1 $\psi = 0.4$ 0.2 0.1 ነ 00 0.0001

[Hudson and Dennis, *J. Fluid Mechanics***, 1985]**

Dynamic similarity requires rheological similarity.

For brittle materials: (Coulomb failure envelope)

$$
\tau = \mu \sigma_{\rm n} + C_0
$$

As μ is non-dimensional, then: $\mu^m = \mu^p$

As *C***⁰ has the dimensions [Pa], it scales as stresses.**

 τ = shear stress ^µ **= friction coefficient** σ_{n} = normal stress *C***⁰ = cohesion**

Brittle (frictional-plastic) materials in analogue models

material (right) with increasing angular shear [Lohrmann et al., JSG 2003].

Rocks and granular materials show comparable rheological behaviour.

Faults/shear zones in brittle (frictional-plastic) materials in analogue experiments

Initial shear zone thickness as a function of mean grain size, with initial thickness ~ 11-16 x mean grain size [Panien et al., JSG 2006].

Cross-sections with CT-scanner of thrust experiment showing increasing thickness of shear zones with progressive deformation [Panien et al., JSG 2006].

Faults/shear zones in visco-plastic materials in numerical models

Glarus thrust, Alps: Triassic rocks on top of Eocene rocks

Shear strain g *≥ 10 000 with thrust fault thickness = ~1 m & thrust displacement ≥ 10 km.*

Rheological similarity *Dynamic similarity requires rheological similarity.* **For viscous materials:** τ = stress; *n* **= non-dimensional stress exponent;** *.* \dot{y} = strain rate; η = the dynamic **n** is non-dimensional, so: $n^m = n^p$ shear viscosity **Strain rate [s-1] scales with the inverse of time.** $\tau^n = \eta \dot{\gamma}$ *. Linear viscous for n = 1*

Rheological similarity *Linear viscous (Newtonian) materials in analogue models Glucose syrups & honeys*

Viscosity of several glucose syrups and honeys, showing it is not dependent on shear strain and shear rate. [*Schellart***, JSG 2011]**

Topography in geodynamic models

Model set-up to simulate Pyrenees orogeny [Storti et al., Tectonics 2000]

Topography in geodynamic models

Model results [Storti et al., Tectonics 2000]

Topography in geodynamic models

Final stage [Storti et al., Tectonics 2000] -Width orogen 42 km (42 cm); -Total shortening 52 km (52 cm); -Height central zone 5 km (5 cm).

Difference in topography between model & nature? -Isostatic compensation -Erosion

Pyrenees -Width orogen 150 km; -Total shortening ~150 km; -Height central part ~2.5 km.

Scaling of topography when using ρ **or** $\Delta\rho$

Calculating elevation h of crustal layer assuming local isostacy:

$$
\rho_{CC}gT_{CC}=\rho_{UM}g(T_{CC}-h)+\rho_{AIR}gh
$$

Scaling of topography when using ρ

Rearranging to write for elevation *h***:**

Since $\rho_{\text{AIR}} = -10^{-3}$ **x** ρ_{UM} **&** ρ_{CC} **, this simplifies to:**

Rearranging again:

Writing for model & nature, with $(1-\rho_{\text{CC}}/\rho_{\text{UM}})^{m} = (1-\rho_{\text{CC}}/\rho_{\text{UM}})^{p}$:

As T_{cc} is just a length scale we get:

$$
h = T_{CC} \frac{(\rho_{UM} - \rho_{CC})}{(\rho_{UM} - \rho_{AIR})}
$$

$$
h = T_{CC} \frac{\left(\rho_{UM} - \rho_{CC}\right)}{\rho_{UM}}
$$

$$
h = T_{CC} \left(1 - \frac{\rho_{CC}}{\rho_{UM}} \right)
$$

$$
\frac{h^m}{h^p} = \frac{T_{CC}^m}{T_{CC}^p}
$$

$$
h^p = \frac{l^p}{l^m} h^m
$$

Scaling of topography when using ρ

Analogue 4D model of lithospheric shortening with external velocity boundary condition & isostatic support.

Calignano et al. **[Tectonics 2017]**

Scaling of topography when using ρ

[*Calignano et al.* **Tectonics 2017] Late stage showing surface topography & cross-sectional structure**

hp **= (***l* **p/***l* **m)***h***^m = (20 000/0.01) x 0.011 = 22 km Maximum scaled elevation (red colour):** *Length scaling: 1 cm represents 20 km*

Scaling of topography when using $\Delta\rho$

As earlier, $\rho_{\text{AIR}} = -10^{-3}$ **x** ρ_{UM} & ρ_{cc} , so we have:

$$
h = T_{CC} \frac{\left(\rho_{UM} - \rho_{CC}\right)}{\rho_{UM}}
$$

Writing for model and nature:

$$
\frac{h^m}{h^p} = \frac{T_{CC}^m}{T_{CC}^p} \frac{\rho_{UM}^p \left(\rho_{UM}^m - \rho_{CC}^m\right)}{\rho_{UM}^m \left(\rho_{UM}^p - \rho_{CC}^p\right)}
$$

As T_{cc} is just a length scale we get:

$$
h^p = C_{Topo} \frac{l^p}{l^m} h^m
$$

With the topographic correction factor:

When
$$
(\Delta \rho)^m = (\Delta \rho)^p
$$
 then this
simplifies to:

$$
C_{\text{Topo}} = \frac{\rho_{\text{UM}}^m \left(\rho_{\text{UM}}^P - \rho_{\text{CC}}^P\right)}{\rho_{\text{UM}}^p \left(\rho_{\text{UM}}^M - \rho_{\text{CC}}^M\right)}
$$

$$
C_{Topo} = \frac{\rho_{UM}^m}{\rho_{UM}^p}
$$

Scaling of topography when using $\Delta\rho$

Laboratory model set-up of South American subduction experiment with aseismic ridge subduction [Martinod et al., Tectonophysics 2013]

Model results [Martinod et al., Tectonophysics 2013]

Scaling of topography when using $\Delta \rho$

Topographic evolution during subduction & ridge subduction

Length scaling: **1 mm scales to 6.6 km**

Topo forearc-arc: **6 mm scales to ~40 km** *Topo backarc:* **-3 mm scales to ~ -20 km** *Andes:* **Max. elevation plateau = ~4 km**

With a topographic correction factor $C_{\text{Topo}} = -0.2$, then: **Topo forearc-arc = ~8 km & topo backarc = ~ -4 km**

Summary scaling of geodynamic models

•**Different modelling approaches: internal, external and combined.**

•**Scaling requires: geometric, kinematic & dynamic similarity.**

•**Scaling of models: length, time, density (contrast), velocity, viscosity, stress, appropriate rheology.**

•**Scaling requires: Same flow regime as determined by Reynolds number.**

•**Dynamic similarity requires rheological similarity.**

•**Scaling of topography: Different scaling of topography for density and density contrasts (topographic correction).**

Thank you!