Teaching TinyML and supervising capstone projects

Prof. Ronald Criollo

rrcrioll@espol.edu.ec

Prof. Ronald Criollo

- Lecturer at Faculty of Electrical and Computer Engineering, ESPOL.
 - Computer Science (Undergraduate)
 - Coordinator of Computer Science Capstone Course
 - Master in Telecommunications (Graduate)
 - Internet of Things
- Researcher at Center for Industrial Digital Transformation, CTD-ESPOL.
- Coordinator of track "IoT Machine Learning", Workshop for Latin America and the Caribbean, Foundation EsLaRed.
- Tutor of an open source community "KOKOA", ESPOL.
- Instructor at Cisco Networking Academy.

How to motivate undergraduate/graduate students to learn TinyML?

• Undergraduate (Computer Science Program)

Motivate and involve students in learning TinyML workshops, webinars

As tutor of open source community

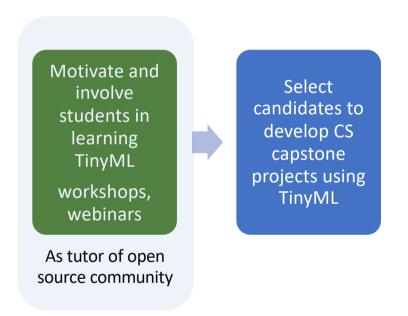
Teaching TinyML

• Tutor of open source community "KOKOA"

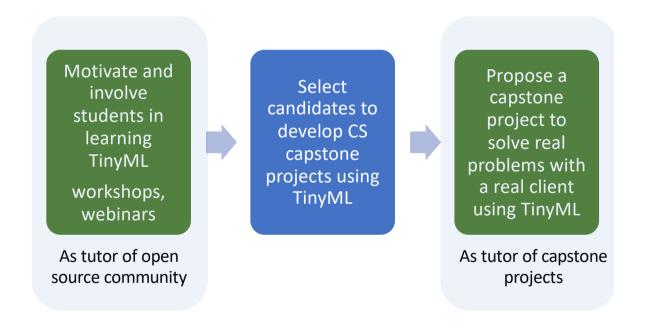
Teaching TinyML (open source community)

Challenges

Motivate students of first semesters


Variety of the students backgrounds

Opportunities


Increase members of the student club

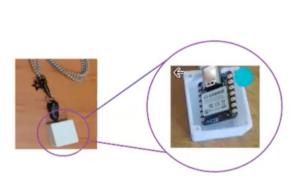
Recruit future students to develop capstone projects using TinyML

• Undergraduate (Computer Science Program)

Undergraduate (Computer Science Program)

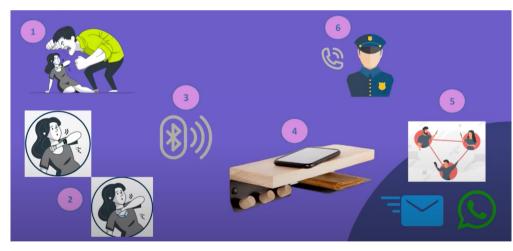
Methodology CS Capstone Course

Organization	Course Name	Date of Course	Target Audience	Language of Instruction	Language of Materials	Links
₩ ed X	edX tinyML Specialization by Harvard University	Launched 2020-2022	Everyone	English	English	Course 1-3 Website Course 4 Website All Materials All Colabs Arduino Library
=Θ	Embedded Machine Learning on Coursera by Edge Impulse	Launched 2021-2022	Everyone	English	English	Course 1 Course 2 All Materials
*	ESE3600: Tiny Machine Learning by the University of Pennsylvania	Fall 2022	Undergraduate and Graduate Students	English	English	Website and Materials
PliT	MIT 6.S965 TinyML and Efficient Deep Learning	Fall 2022	Graduate Students	English	English	Website Materials
@	UNIFELIESTIO1 TinyML - Machine Learning for Embedding Devices	Jan 2021 - Present	Undergraduate Students	Portuguese	English	2022.1 Website and Materials 2021.2 Website and Materials 2021.1 Website and Materials
₩	Harvard CS249r Tiny Machine Learning	Sept 2020 - Present	Graduate Students	English	English	2022 Website and Assignments 2020 Website 2020 Assignments


Desing Thinking

+

TinyML Edu resources

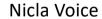

Supervising Capstone Projects

Audio processing to prevent possible femicides

Supervising Capstone Projects

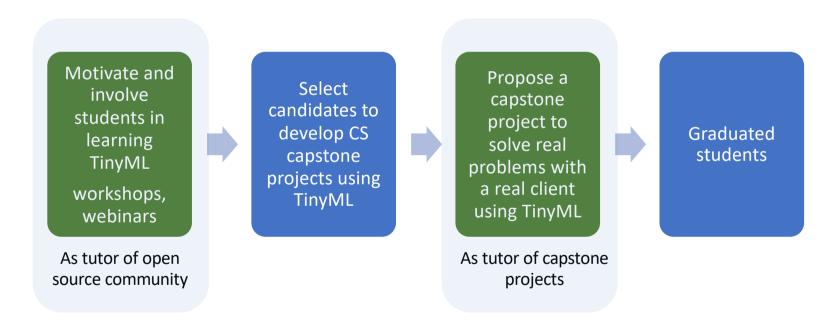
• Audio processing to detect possible speaking problems in children

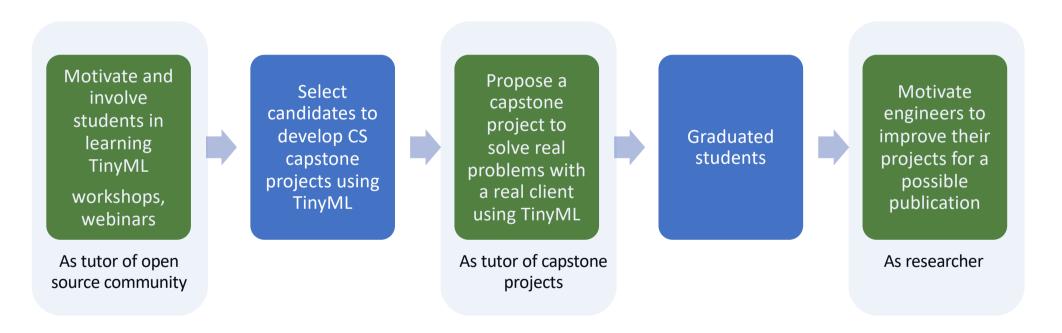
Wio Terminal

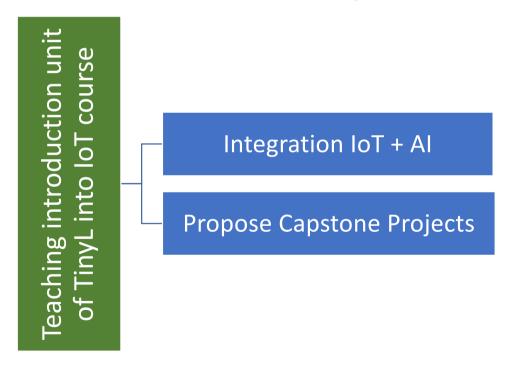


Supervising Capstone Projects

• Audio processing to send instantaneous notification for safety issues

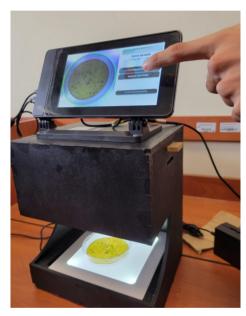





Undergraduate (Computer Science Program)

Undergraduate (Computer Science Program)

• Graduate (Master in Telecommunications)



Teaching TinyML

Master in Telecommunications

Future Research

Counting microorganisms in petri dish

Portable radar speed camera

Low cost analyzer of mango quality

Conclusions

- The experience using resources like TinyML Edu empower the students in the rapid prototyping of proof of concepts.
- It is absolutely possible to involve students in the early stages of their careers developing proof of concepts using TinyML.
- The participation of students into open source communities or academic clubs during early stages of their careers could give them an overview of their future profession.

Thanks

Ronald Criollo

rrcrioll@espol.edu.ec