Giambiagi Summer School, Buenos Aires, 17-21.07.2023

CMB physics

J. Lesgourgues Institut für Theoretische Teilchenphysik und Kosmologie (TTK), RWTH Aachen University

Cosmic Microwave Background: an early prediction!

Cosmic photons with blackbody spectrum and $T \sim O(10)K$ predicted on basis of models of Nucleosynthesis by Gamow, Alpher, Hermann (40-50's), Zel'dovitch (60's),

Dicke, Peebles (60's)...

The CMB is no pigeon shit!

Dicke, Peebles (60's)...

While discussing about dedicated experiment...

... contacted thanks to luck and coffee room discussions by...

Penzias & Wilson (1964)

Nobel prize Penzias & Wilson (1978)

Prediction of non-trivial correlations in CMB anisotropies! 70-80's : Peebles, Silk, Sunyaev and respective collaborators (70-80's)...

...discuss information contain in CMB temperature spectrum and acoustic oscillations !

90's: precise prediction of CMB spectra: Bertschinger, Hu, Kamionkowski, Ma, Seljak, Sujiyama, White, Zaldarriga + many others...

Confirmation by COBE, Boomerang, WMAP, Planck .. ↓ Nobel prize Mather & Smoot 2006 Nobel prize Peebles 2019

The CMB is the Rosetta Stone of cosmology

 00000440
 08 80 45 72 72 6f 72 20
 72 75 6e 6e 69 6e 67 20
 00000626 69 6e 20 6c 65 6e 3
 09000626 69 6e 20 72 72 6f 72 20 6f 72 72 6f 72 20 6f 72 72 6f 72 20 6f 75 73 8a 69 69 74 26 65 2e 20 6c 65 6e 39 74 20 74 74 73 20 69 3d 3e 25 73 8a 69 69 74 2e 65 2e 20 6c 65 6e 19 76 74 74 74 75 72 6f 65 2e 20 6c 65 6e 20 6c 65 6e 19 74 74 74 75 72 6f 65 2e 20 6c 65 6e 20 74 2e 20 72 72 6f 72 72

Plan

- Thomson scattering
- Linear theory of stochastic cosmological perturbations
- Spectrum of temperature anisotropies
- Polarisation and tensors
- Observation summary; Planck results for ΛCDM model
- Why can we measure independently the ΛCDM parameters ?
- Beyond ΛCDM: CMB & neutrino masses, N_{eff}, inflation, DM ...
- Future CMB surveys

...following:

The Young Universe: Primordial Cosmology, edited by R. Taillet (John Wiley & Sons, 2022) ISBN : 1789450322 → Chapter 2: Cosmological Microwave Background, by JL

(also: Chapter 5 of: Neutrino Cosmology, JL et al., CUP 2013)

Ionisation fraction in the Universe

Mean free path and diffusion length

$$\lambda_{\rm d}(\eta) = a(\eta) \, r_{\rm d}(\eta) \simeq a(\eta) \left[\int_{\eta_{\rm ini}}^{\eta} d\tilde{\eta} \, c \, \Gamma_{\gamma}^{-1}(\tilde{\eta}) \right]^{1/2}$$

Bardeen decomposition

$$g_{\mu\nu}(\eta,\vec{x}) = \bar{g}_{\mu\nu}(\eta) + \delta g_{\mu\nu}(\eta,\vec{x}) \text{ and } T^{\mu\nu}(\eta,\vec{x}) = \bar{T}^{\mu\nu}(\eta) + \delta T^{\mu\nu}(\eta,\vec{x})$$

$$background_{perturbations} \qquad \text{(for each species!)}$$

James Bardeen 1986

FLRW background invariant under spatial rotations
⇒ irreducible representations of SO(3) → decoupled sectors
⇒ Bardeen | scalars (gravity forces) : 4 d.o.f.
vectors (graviton magnetism) : 2 d.o.f.
tensors (gravitational waves) : 2 d.o.f.

Newtonian gauge

Gauge freedom: perturbations depends on choice of coordinates ↓

Newtonian gauge: eliminate 2 scalar d.o.f. to stick to diagonal $\delta g_{\mu
u}$

$$ds^{2} = -(1+2\psi)dt^{2} + (1-2\phi)a^{2}(t)d\vec{x}^{2}$$
$$= a^{2}(\eta) \left[-(1+2\psi)d\eta^{2} + (1-2\phi)d\vec{x}^{2} \right]$$

Local distorsion of time = generalised gravitational potential Local distorsion of expansion rate

Matter perturbations

$$\delta T_{\mu
u,X}$$
 : still 4 d.o.f. per species X

₩

 δ_X : relative fluctuation of energy density θ_X : divergence of bulk velocity δp_X : fluctuation of (isotropic) pressure σ_X : anisotropic stress = quadrupole of (anisotropic) pressure

Perfect fluids (strong interactions)

$$\downarrow$$

Pressure is isotropic ($\sigma_X = 0$)
Local pressure relates to local density (e.g. $\delta p_X \leftrightarrow \delta_X$)
 \downarrow
only 2 d.o.f.

Comoving Fourier space

Thereafter: only flat cosmologies for simplicity

17

moving Fourier space

$$\delta_X(\eta,\vec{k}) = \int \frac{d^3\vec{x}}{(2\pi)^{3/2}} \delta_X(\eta,\vec{x}) e^{-i\vec{k}\cdot\vec{x}}$$

Wavelengths $\lambda(\eta) = a(\eta) 2\pi/k$

Decelerated expansion \Rightarrow grow slower than Hubble radius $R_H(\eta) = c a(\eta)/\dot{a}(\eta)$

Linearised Einstein Equations

• from
$$G_0^0 = 8\pi G T_0^0$$
:

$$\frac{2}{a^2} \left[k^2 \phi + 3 \frac{a'}{a} \left(\phi' + \frac{a'}{a} \psi \right) \right] = -8\pi G \sum_X \bar{\rho}_X \delta_X$$
dominates on sub-Hubble dominates on super-Hubble ψ
Poisson equation :
 $-\frac{k^2}{a^2} \phi = 4\pi G \bar{\rho}_{\text{total}} \delta_{\text{total}}$
Using Friedmann :
 $-\frac{k^2}{a^2} \phi = 4\pi G \bar{\rho}_{\text{total}} \delta_{\text{total}}$
 $2\psi = -\delta_{\text{total}}$
• from $G_j^i = 8\pi G T_j^i$:
 $\frac{2}{3} \frac{k^2}{a^2} (\phi - \psi) = 8\pi G \sum_X (\bar{\rho}_X + \bar{p}_X) \sigma_X$
perfect fluids $\Rightarrow \sigma_X = 0 \Rightarrow \phi = \psi$

• other scalar equations redundant with upcoming equations of motion (Bianchi identity)

Equations of motion

Without details: each decoupled species fulfils energy/momentum conservation:

continuity equation:

$$\delta'_X = -(1+w_X)(\theta_X - 3\phi') - 3\frac{a'}{a}(c_{sX}^2 - w_X)\delta_X$$

Euler equation:

$$\theta'_X = -\frac{a'}{a}(1 - 3c_{a X}^2)\theta_X + \frac{c_{s X}^2}{1 + w_X}k^2\delta_X - k^2\sigma_X + k^2\psi$$
(featuring sound speed c_s and adiabatic sound speed c_a)

In Λ CDM:

- CDM : negligible pressure/stress: closed system
- e-/baryons: negligible pressure/stress but Thomson scattering: $+\frac{4}{3}\frac{\bar{\rho}_{\gamma}}{\bar{\rho}_{b}}\tau'(\theta_{b}-\theta_{\gamma})$
- photons, neutrinos: when not strongly coupled, anisotropic stress

 \rightarrow need Boltzmann equation

$$\frac{d}{d\eta}f_{\gamma} = C\left[f_{\gamma}, f_e\right] \qquad \qquad \frac{d}{d\eta}f_{\nu} = 0$$

Photon phase-space distribution

Blackbody shape:
$$f_{\gamma}(\eta, \vec{x}, p, \hat{n}) = \frac{1}{e^{\frac{p}{T(\eta, \vec{x}, \hat{n})}} - 1}$$

Up to very good approximation: preserved even when leaving thermal equilibrium, but becomes direction-dependent due to gravitational interactions:

redshifting along geodesics:

$$\frac{d\ln(a\,p)}{d\eta} = \phi' - \hat{n} \cdot \vec{\nabla}\psi$$

$$\frac{d\ln(a\,p)}{d\eta} = \frac{d\eta'}{d\eta'} - \hat{n} \cdot \vec{\nabla}\psi$$

$$\frac{d\ln(a\,p)}{d\eta'} = \frac{d\eta'}{d\eta'} - \hat{n} \cdot \vec{\nabla}\psi$$

Then:
$$T(\eta, \vec{x}, \hat{n}) = \overline{T}(\eta) \left(1 + \Theta(\eta, \vec{x}, \hat{n})\right)$$

Linearised Boltzmann equation

Monopole and dipole of Θ account for local density & bulk velocity:

$$\Theta(\eta, \vec{x}, \hat{n}) = \frac{1}{4} \delta_{\gamma}(\eta, \vec{x}) + \hat{n} \cdot \vec{v}_{\gamma}(\eta, \vec{x}) + \text{higher multipoles}$$

Thomson scattering wants to align velocity of photons vs. electron/baryons, and to wash out higher multipoles:

$$\Theta' + \hat{n} \cdot \overrightarrow{\nabla} \Theta - \phi' + \hat{n} \cdot \overrightarrow{\nabla} \psi = -\Gamma_{\gamma} \left(\hat{n} \cdot (\vec{v}_{\gamma} - \vec{v}_{b}) + \text{higher multipoles} \right)$$

$$\overset{\text{dilation}}{\overset{\text{oravitational Doppler}}{\overset{\text{oppler}}}{\overset{\text{oppler}}{\overset{\text{oppler}}{\overset{\text{oppler}}{\overset{\text{oppler}}{\overset{\text{oppler}}{\overset{\text{oppler}}}{\overset{\text{oppler}}{\overset{\text{oppler}}}{\overset{\text{oppler}}}{\overset{\text{oppler}}}}}{\overset{\text{oppler}}{\overset{\text{oppler}}{\overset{\text{oppler}}}}}}}}}}}}}}}}}}$$

Boltzmann hierarchy

After:

- Fourier transformation
- Legendre expansion $\Theta(\eta, \vec{k}, \alpha) = \sum_{l} (-i)^{l} (2l+1) \Theta_{l}(\eta, \vec{k}) P_{l}(\cos \alpha)$ one gets:

$$\begin{split} \delta_{\gamma}' &+ \frac{4}{3}\theta_{\gamma} - 4\phi' = 0\\ \theta_{\gamma}' &+ k^2 \left(-\frac{1}{4}\delta_{\gamma} + \sigma_{\gamma} \right) - k^2 \psi = \tau'(\theta_{\gamma} - \theta_{\rm b})\\ \Theta_l' &- \frac{kl}{2l+1}\Theta_{l-1} + \frac{k(l+1)}{2l+1}\Theta_{l+1} = \tau'\Theta_l \quad \forall l \ge 2 \end{split}$$

⇒ Solved together with previous equations by Einstein-Boltzmann solvers (CMBFAST, CAMB, CLASS...)

Stochastic theory of cosmological perturbations

Initial conditions

Canonical single-field inflation guarantees:

- A. stochastic perturbations with independent Fourier modes
- B. gaussian statistics for each Fourier mode / each d.o.f.
 - ⇒ described by variance(wavenumber) = power spectrum
- C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on super-Hubble scales: "adiabatic initial conditions"

e.g. during RD:
$$-2\psi = -2\phi = \delta_{\gamma} = \delta_{\nu} = \frac{4}{3}\delta_{b} = \frac{4}{3}\delta_{c} = \text{constant}$$

Einstein eq. Einstein eq.

(Comes from $A(\eta, \vec{x}) = \bar{A}(\eta + \delta \eta(\vec{x})) = \bar{A}(\eta) + \frac{\bar{A}'(\eta) \delta \eta(\vec{x})}{\bar{A}(\eta) \delta \eta(\vec{x})}$)

perturbation $\delta A(\eta, \vec{x})$ in adiabatic case

Primordial power spectrum

Canonical single-field inflation guarantees:

- A. stochastic perturbations with independent Fourier modes
- B. gaussian statistics for each Fourier mode / each d.o.f.
 - ⇒ described by variance(wavenumber) = power spectrum
- C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on super-Hubble scales: "adiabatic initial conditions"
 - \Rightarrow need power spectrum for single degree

of freedom, e.g. curvature perturbation $\mathcal{R} \equiv \phi - \frac{a'}{a} \frac{v_{\text{tot.}}}{a^2}$ in Newt. Gauge

$$\Rightarrow \text{Primordial spectrum: } \langle \mathcal{R}(\eta_{\text{ini}}, \vec{k}) \mathcal{R}^*(\eta_{\text{ini}}, \vec{k}') \rangle = \delta_D(\vec{k}' - \vec{k}) \left[\frac{2\pi^2}{k^3} \mathcal{P}_{\mathcal{R}}(k) \right]$$

D. Power law, nearly scale-invariant spectrum: $\mathcal{P}_{\mathcal{R}}(k) = A_{s}$

slow rol

Transfer functions

For each Fourier mode \vec{k} :

- all perturbations \rightarrow system of linear coupled differential equations
- adiabatic ICs \rightarrow single constant of integration $\mathcal{R}(\eta_{\text{ini}}, \vec{k})$
- e.g. for densities $\forall X$, $\delta_X(\eta, \vec{k}) = \tilde{\alpha}_X(\eta, k) \mathcal{R}(\eta_{\text{ini}}, \vec{k})$

stochastic Fourier mode -

Deterministic solution of e.o.m. normalised to $\mathcal{R}=1$

= transfer function of δ_X

Isotropic background \Rightarrow depends only on k

 \Rightarrow denoted later as $\delta_X(t,k)$

stochastic IC

Linear transport of probability

Linearity of solutions \Rightarrow probability shape always preserved

(standard model: Gaussian)

 \Rightarrow variance evolves like squared transfer function

Power spectrum

Adiabatic initial conditions

 \Rightarrow for <u>any</u> perturbation at <u>any</u> time:

Temperature multipoles

$$g(\eta) \text{ very peaked at } \eta_{\text{dec}}$$

$$\lim_{last \text{ scattering sphere}} \delta T = (\hat{\eta}_{l}, \hat{\sigma}_{l}, -\hat{\eta}_{l}) = \sum_{lm} a_{lm} Y_{lm}(\hat{n})$$

$$\text{inversion + Fourier + Legendre \Rightarrow } a_{lm} = (-i)^{l} \int \frac{d^{3}\vec{k}}{2\pi^{2}} Y_{lm}(\hat{k}) \Theta_{l}(\eta_{0}, \vec{k})$$

$$\text{stochastic, Gaussian} \longleftarrow \text{ stochastic, Gaussian}$$

$$photon \ primordia \ transfer \ spectrum \ function}$$

$$photon \ primordia \ transfer \ spectrum \ function}$$

$$\text{correlation/variance} \Rightarrow \langle a_{lm}a_{l'm'}^{*} \rangle = \delta_{ll'}^{K} \delta_{mm'}^{K} \left[\frac{1}{2\pi^{2}} \int \frac{dk}{k} \Theta_{l}^{2}(\eta_{0}, k) \mathcal{P}_{\mathcal{R}}(k) \right]$$

Institute for Theoretical

Particle Physics and Cosmology

30 CMB physics - J. Lesgourgues

Temperature power spectrum

Multipole correlation/variance:

$$a_{lm}a_{l'm'}^*\rangle = \delta_{ll'}^K \delta_{mm'}^K \left[\left[\frac{1}{2\pi^2} \int \frac{dk}{k} \Theta_l^2(\eta_0, k) \mathcal{P}_{\mathcal{R}}(k) \right] \right]$$

temperature power spectrum

 $= C_{\ell}$

function

transfer primordial

spectrum

theory \leftrightarrow observations

Physics of temperature anisotropies

"Line-of-sight" integral in Fourier space

Boltzmann hierarchy \Rightarrow formal solution Zaldarriaga & Harari <u>astro-ph/9504085</u>:

$$\Theta_{l}(\eta_{0},\vec{k}) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi\right) j_{l}(k(\eta_{0} - \eta)) + g k^{-1} \theta_{\text{b}} j_{l}'(k(\eta_{0} - \eta)) + e^{-\tau} \left(\phi' + \psi'\right) j_{l}(k(\eta_{0} - \eta)) \right\}$$

valid both for single mode \vec{k} or transfer function with k

structure:
$$\int d\eta \left[f(\eta) A(\eta, \vec{k}) j_{\ell}(k(\eta_0 - \eta)) \right]$$

"Physical effects relevant at times described by $f(\eta)$

imprint CMB photon anisotropies described in Fourier space by $A(\eta, k)$, that project to multipole space according to $j_{\ell}(k(\eta_0 - \eta))$ "

Angular projection of Fourier modes

$$\text{ Role of } j_{\mathcal{C}}(k(\eta_0-\eta)) ? \\$$

Main contribution:
$$\theta = \frac{\pi}{l} = \frac{\lambda/2}{d_a} = \frac{a(\eta) \pi/k}{a(\eta) (\eta_0 - \eta)} \quad \Leftrightarrow \quad l = k(\eta_0 - \eta)$$

Other contributions: harmonics

34 CMB physics - J. Lesgourgues

Sachs-Wolfe term

$$\Theta_{l}(\eta_{0},\vec{k}) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi \right) j_{l}(k(\eta_{0} - \eta)) \right. \\ \left. + g \, k^{-1} \theta_{\text{b}} \, j_{l}'(k(\eta_{0} - \eta)) \right. \\ \left. + e^{-\tau} (\phi' + \psi') j_{l}(k(\eta_{0} - \eta)) \right\}$$

Neglecting reionization: $g(\eta)$ very peaked at η_{dec}

⇒ effect takes place only on last scattering sphere ⇒ mode *k* project to $\ell = k(\eta_0 - \eta_{dec})$

 $\Theta_0(\eta_{dec}, \vec{k}) + \psi(\eta_{dec}, \vec{k}) =$ intrinsic fluctuation + gravitational Doppler shift

super-Hubble modes with adiabatic IC: $\psi = -2\Theta_0$, Sachs-Wolfe effect wins, negative picture of last scattering sphere !

Doppler term

$$\begin{split} \Theta_{l}(\eta_{0},\vec{k}) &= \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi \right) \, j_{l}(k(\eta_{0} - \eta)) \right. \\ &+ g \, k^{-1} \theta_{\text{b}} \, j_{l}'(k(\eta_{0} - \eta)) \\ &+ e^{-\tau} (\phi' + \psi') \, j_{l}(k(\eta_{0} - \eta)) \right\} \end{split}$$

Neglecting reionization: $g(\eta)$ very peaked at η_{dec}

36

 \Rightarrow effect takes place only on last scattering sphere \Rightarrow mode k project to $\ell = k(\eta_0 - \eta_{dec})$ $\vec{v}_{\rm b}^{\rm scalar} \rightarrow k^{-1}\theta_{\rm b}$ = velocity Doppler shift $(j'_{\ell} \text{ from a gradient})$ photons get e.g. redshifted by emission velocity \vec{v}_{b} photons get e.g. blueshifted by emission velocity CMB physics - J. Lesgourgues
Integrated Sachs-Wolfe (ISW) term

$$\Theta_l(\eta_0, \vec{k}) = \dots + e^{-\tau} (\phi' + \psi') j_l(k(\eta_0 - \eta))$$

Neglecting reionization: $e^{-\tau}$ negligible before $\eta_{\rm dec}$, $\simeq 1$ after

 \Rightarrow effect takes place at all times $\eta > \eta_{\rm dec}$ along each line of sight

 \Rightarrow mode k projects from each sphere to $\ell' = k(\eta_0 - \eta)$

 $\partial_{\eta} \{ \phi(\eta, \vec{k}) + \psi(\eta, \vec{k}) \}$ comes from dilation + gravitational Doppler effects

- ϕ, ψ static: no dilation, gravitational Doppler effect is conservative: only $(\psi_{
 m dec} \psi_{
 m obs})$
- ϕ,ψ time-dependent: net effect (e.g. net redshift when crosses deepening potential wells)

Summary

Final goal: compute

with transfer functions

$$C_{l} \equiv \langle |a_{lm}|^{2} \rangle = \frac{1}{2\pi^{2}} \int \frac{dk}{k} \Theta_{l}^{2}(\eta_{0},k) \mathcal{P}_{\mathcal{R}}(k)$$
$$\Theta_{l}(\eta_{0},k) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi \right) j_{l}(k(\eta_{0} - \eta)) + g k^{-1} \theta_{\text{b}} j_{l}'(k(\eta_{0} - \eta)) + e^{-\tau} \left(\phi' + \psi' \right) j_{l}(k(\eta_{0} - \eta)) \right\}$$

article Physics

Tight-Coupling Approximation (TCA)

Tightly coupled baryon-photon fluid:

$$\begin{cases} \Theta_0 = \frac{1}{4}\delta_\gamma = \frac{1}{3}\delta_b \longrightarrow \text{ from thermal equilibrium} \\ 3k\Theta_1 = \theta_\gamma = \theta_b & \text{from efficient} \\ \Theta_{l\geq 2} = 0 & \text{Thomson scattering} \end{cases}$$

Photon Boltzmann hierarchy + baryon e.o.m. —> TCA equation:

Sound speed / baryon-to-photon ratio:
$$c_{
m s}^2=rac{1}{3(1+R)}$$
 , $R\equivrac{3ar
ho_{
m b}}{4ar
ho_{\gamma}}\propto a$

Newtonian gauge with $ds^2 = -(1+2\psi)a^2d\tau^2 + a^2(1-2\phi)\delta_{ij}dx^i dx^j$

Tight-coupling equation

Sound speed / baryon-to-photon ratio: $c_{\rm s}^2 = \frac{1}{3(1+R)}$, $R \equiv \frac{4\bar{\rho}_{\rm b}}{3\bar{\rho}_{\gamma}} \propto a$

Equilibrium point neglecting metric time derivatives:
$$\Theta_0^{\text{equi.}} = -\frac{1}{3c_s^2}\psi = -(1+R)\psi$$

WKB TCA solution """":
$$\Theta_0 = A(1+R)^{-1/4} \cos\left(k \int c_s(\tau) d\tau\right) - (1+R)\psi$$

Very good approximation up to gravity boost + (Silk) damping/diffusion effects

Ψ

Metric damped near Hubble crossing during RD

—> photon pressure, Poisson: $-k^2\phi = 4\pi G a^2 \delta \rho_r \propto a^2 \rho_r \delta_r \sim a^{2-4+0} \sim a^{-2}$

Ψ

Will be important for effect of neutrinos, DR...

rticle Physics

exponentially damped oscillations

(approaching recombination)

Rest for the eyes

Transfer functions at recombination/decoupling

Rest for the brain

Projection effects

Recover it from the CMB equations with $g(\tau) \simeq \delta(\tau - \tau_{\rm rec})$, $j_l(x) \sim \delta(l - x)$:

$$\Theta_{l}(\tau_{0},k) = \int_{\tau_{\rm ini}}^{\tau_{0}} d\tau \left\{ g \left(\Theta_{0} + \psi \right) + \left(g \, k^{-2} \theta_{\rm b} \right)' + \text{ISW} \right\} j_{l}(k(\tau_{0} - \tau))$$

$$\Theta_{l}(\tau_{0},k) = \left\{ \left(\Theta_{0} + \psi \right)_{\rm rec} + \left(\dots \theta_{\rm b}' \right)_{\rm rec} + \left(\dots \theta_{\rm b} + \text{ISW} \right)_{\rm rec} \right\} j_{l}(k(\tau_{0} - \tau_{\rm rec}))$$

$$C_{l} \sim \left(\dots \right) \left\{ \left(\Theta_{0} + \psi \right)_{(\tau_{\rm rec},k=l/(\tau_{0} - \tau_{\rm rec}))}^{2} + \text{Doppler} + \text{ISW} \right\}^{2} \mathcal{P}_{\mathcal{R}}(k)$$

Projection effects:

Projection effects:

Projection effects:

Projection effects

• Thickness of I.s.s produces small-scale smoothing:

observed photons could carry temperature from wherever inside circles

Projection effects

• Thickness of I.s.s produces small-scale smoothing:

• Mathematically, two types of smoothing:

$$\Theta_l(\tau_0, k) = \int_{\tau_{\rm ini}}^{\tau_0} d\tau \left\{ g \left(\Theta_0 + \psi \right) + \left(g \, k^{-2} \theta_{\rm b} \right)' + \text{ISW} \right\} \, j_l(k(\tau_0 - \tau))$$
$$C_l = 4\pi \int dk \, k^2 \left(\Theta_l(\tau_0, k) \right)^2 \mathcal{P}_{\mathcal{R}}(k)$$

 \rightarrow contribution of wide range of *times* and *wavenumber* to single C_l

Projection effects

• Thickness of I.s.s produces small-scale smoothing:

• Mathematically, two types of smoothing:

$$\Theta_l(\tau_0, k) = \int_{\tau_{\rm ini}}^{\tau_0} d\tau \left\{ g \left(\Theta_0 + \psi \right) + \left(g \, k^{-2} \theta_{\rm b} \right)' + \text{ISW} \right\} \, j_l(k(\tau_0 - \tau))$$
$$C_l = 4\pi \int dk \, k^2 \left(\Theta_l(\tau_0, k) \right)^2 \mathcal{P}_{\mathcal{R}}(k)$$

 \rightarrow contribution of wide range of *times* and *wavenumber* to single C_l

 Even in instantaneous limit: Spherical Bessel functions —> effects beyond small angle, effect of smaller non-transverse k, ...: extra smoothing on all scales

Projection effects

Rest for the ears

Evolution for all wavenumbers

Detailed physical understanding of the C_{I}^{TT} shape

	Parameter	PlanckTTTEEE+SIMlow 68 % limits
	$\overline{\Omega_{\mathrm{b}}h^2}$	0.02218 ± 0.00015
	$\Omega_{ m c}h^2$	0.1205 ± 0.0014
- · ·	$100\theta_{\rm MC}$	1.04069 ± 0.00031
Flat prior	au	0.0596 ± 0.0089
	$\ln(10^{10}A_{\rm s})$	3.056 ± 0.018
	$n_{\rm s}$	0.9619 ± 0.0045
	H_0	66.93 ± 0.62
	Ω_{m}	0.3202 ± 0.0087
	σ_8	0.8174 ± 0.0081
	$\sigma_8\Omega_{ m m}^{0.5}$	0.4625 ± 0.0091
Derived	$\sigma_8\Omega_{ m m}^{0.25}$	0.6148 ± 0.0086
	$z_{\rm re}$	8.24 ± 0.88
	$10^9 A_8 e^{-2\tau} \ldots \ldots$	1.886 ± 0.012
	Age/Gyr	13.826 ± 0.025

	Parameter	PlanckTTTEEE+SIMlow 68 % limits		
	$\Omega_{ m b} h^2$	0.02218 ± 0.00015 ←	interesting to compare to BBN	I
Flat prior	$\Omega_{ m c} h^2$	0.1205 ± 0.0014]
	$100\theta_{\rm MC}$	1.04069 ± 0.00031		-
	au	0.0596 ± 0.0089	Aver et al. (2013)	
	$\ln(10^{10}A_{\rm s})$	3.056 ± 0.018	Standard E	BN -
	$n_{\rm s}$	0.9619 ± 0.0045		
	H_0	66.93 ± 0.62	e PlanckTT+low	P+BAO
Derived	$\Omega_{ m m}$	0.3202 ± 0.0087	locco et al. (2008)	-
	σ_8	0.8174 ± 0.0081	Cooke et al. (2014)	
	$\sigma_8\Omega_{ m m}^{0.5}$	0.4625 ± 0.0091	Image: Note of the second se	0.026
	$\sigma_8 \Omega_{ m m}^{0.25}$	0.6148 ± 0.0086	$\omega_{ m b}$	
	$z_{\rm re}$	8.24 ± 0.88		
	$10^9 A_8 e^{-2\tau} \ldots \ldots$	1.886 ± 0.012		
	Age/Gyr	13.826 ± 0.025		

	Parameter	PlanckTTTEEE+SIMlov 68 % limits	
	$\Omega_{ m b}h^2$	0.02218 ± 0.00015	
Flat prior	$\Omega_{\rm c} h^2$	0.1205 ± 0.0014	
	$100\theta_{MC}$	1.04069 ± 0.00031	
	au	0.0596 ± 0.0089	
	$\ln(10^{10}A_{\rm s})\ldots\ldots\ldots$	3.056 ± 0.018	
	$n_{\rm s}$	0.9619 ± 0.0045 ←	interesting for inflation
	H_0	66.93 ± 0.62	0 2 ²
Derived	$\Omega_{\rm m}$	0.3202 ± 0.0087	
	σ_8	0.8174 ± 0.0081	
	$\sigma_8\Omega_{ m m}^{0.5}$	0.4625 ± 0.0091	- Tatio (r. 0.15 0.00)
	$\sigma_8\Omega_{ m m}^{0.25}$	0.6148 ± 0.0086	-to-scalar 0.10
	$z_{\rm re}$	8.24 ± 0.88	J5 Tensor
	$10^9 A_8 e^{-2\tau} \ldots \ldots$	1.886 ± 0.012	
	Age/Gyr	13.826 ± 0.025	

Primordial tilt $(n_{
m s})$

			- 1 10		
	Parameter	PlanckTTTEEE+SIMlc 68 % limits	(1.10)	SDSS MGS	WiggleZ
	$\Omega_{ m b} h^2 \ldots \ldots \ldots$	0.02218 ± 0.00015	λ / r _{draε}		
Flat prior	$\Omega_{\rm c} h^2 \ldots \ldots \ldots$	0.1205 ± 0.0014	g)/(<i>L</i>		
	$100\theta_{\rm MC}$	1.04069 ± 0.00031	0.95	BOSS LOW	BOSS CMASS
	au	0.0596 ± 0.0089	0 0 (D	0DFG5	
	$\ln(10^{10}A_{\rm s})\ldots\ldots\ldots$	3.056 ± 0.018	0.90		
	$n_{\rm s}$	0.9619 ± 0.0045		0.1 0.2 0.0 0.	Z
	H_0	66.93 ± 0.62	←	interesting to	o compare to
Derived	$\Omega_{\rm m}$	0.3202 ± 0.0087		BAO, S	NIa, H_0
	σ_8	0.8174 ± 0.0081			
	$\sigma_8\Omega_{ m m}^{0.5}$	0.4625 ± 0.0091			
	$\sigma_8 \Omega_{ m m}^{0.25}$	0.6148 ± 0.0086		3.2sigma tensior and Planck 20 ⁻	n btw Riess et al. 16 TT + SIMlow
	$z_{\rm re}$	8.24 ± 0.88			
	$10^9 A_8 e^{-2\tau} \ldots \ldots$	1.886 ± 0.012			
	Age/Gyr	13.826 ± 0.025			

	Parameter	PlanckTTTEEE+SIMlov 68 % limits	W	
	$\Omega_{ m b} h^2 \ldots \ldots \ldots$	0.02218 ± 0.00015		
Flat prior	$\Omega_{\rm c} h^2$	0.1205 ± 0.0014		
	$100\theta_{\rm MC}$	1.04069 ± 0.00031	\backslash	
	au	0.0596 ± 0.0089		
	$\ln(10^{10}A_{\rm s})\ldots\ldots\ldots$	3.056 ± 0.018		
	$n_{\rm s}$	0.9619 ± 0.0045	interesting to co	interesting to compare to
	H_0	66.93 ± 0.62		(RSD, P(k), cosmic shear,
Derived	$\Omega_{ m m}$	0.3202 ± 0.0087		cluster mass function,
	σ_8	0.8174 ± 0.0081		Lyman-alpha,)
	$\sigma_8\Omega_{ m m}^{0.5}$	0.4625 ± 0.0091		
	$\sigma_8\Omega_{ m m}^{0.25}$	0.6148 ± 0.0086		
	$z_{\rm re}$	8.24 ± 0.88		
	$10^9 A_{\rm s} e^{-2\tau} \ldots \ldots$	1.886 ± 0.012		
	Age/Gyr	13.826 ± 0.025		

article Physics

104 CMB physics - J. Lesgourgues

 $\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$

1st peak scale

2nd peak scale

 $\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$

1st peak scale

2nd peak scale

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$$

1st peak scale

2nd peak scale

1st peak scale

2nd peak scale

Exercise: add to this plots the individual effect of the matter density increase on the eISW and TSW components, to see which one dominates and in which range.

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$$

Exercise result (thank you Renan, Micol, Oscar...)

 $\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\text{reio}}, A_s, n_s\}$$

 $\cos\theta$ in Thomson —> coupling with 2nd Boltzmann hierarchy sourced by Θ_2 —> observable polarisation spectrum depends on (g Θ_2) instead of g($\Theta_0+\psi$)

Ma & Berstchinger 1995 (2 hierarchies, flat, scalar); Tram & JL 2013 (2 hierarchies in flat/open/closed, scalar/vector/tensor)

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$$

Optical depth:

$$\kappa = \int_{\tau}^{\tau_0} d\tau \ \Gamma = \int_{\tau_0}^{\tau} d\tau \ \kappa'$$

Visibility function: $g(\tau) = -\kappa' e^{-\kappa}$ by construction normalised to $\int_0^{\tau_0} g(\tau) d\tau = 1$

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio}, A_s, n_s\}$$

CMB temp. Transfer function: $\Delta_l^T(\tau_0, k) = \int_{\tau_{\text{ini}}}^{\tau_0} d\tau \, \left\{ \underbrace{g\left(\Theta_0 + \psi\right)}_{\text{TSW}} + \ldots \right\} \, j_l(k(\tau_0 - \tau))$

CMB pol transfer function:

$$\Delta_l^E(\tau_0, k) = \int_{\tau_{\rm ini}}^{\tau_0} d\tau \ \{g \,\Theta_2 + \dots\} \ j_l(k(\tau_0 - \tau))$$

Finally:
$$C_l^{XY} = 4\pi \int dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k)$$

Usual contribution multiplied by $e^{-2\kappa_{reio}}$ plus new contribution projected under $l \sim k(\tau_0 - \tau_{reio})$

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio} | A_s, n_s\}$$

$$\Delta_l^T(\tau_0, k) = \int_{\tau_{\rm ini}}^{\tau_0} d\tau \left\{ \underbrace{g\left(\Theta_0 + \psi\right)}_{\rm TSW} + \ldots \right\} j_l(k(\tau_0 - \tau)) \qquad C_l^{XY} = 4\pi \int dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k) dk$$

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio} | A_s, n_s\}$$

$$\Delta_l^T(\tau_0, k) = \int_{\tau_{\rm ini}}^{\tau_0} d\tau \left\{ \underbrace{g\left(\Theta_0 + \psi\right)}_{\rm TSW} + \ldots \right\} j_l(k(\tau_0 - \tau)) \qquad C_l^{XY} = 4\pi \int dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k)$$

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio} | A_s, n_s\}$$

$$\Delta_l^E(\tau_0, k) = \int_{\tau_{\rm ini}}^{\tau_0} d\tau \ \{ g \,\Theta_2 + \dots \} \ j_l(k(\tau_0 - \tau)) \qquad C_l^{XY} = 4\pi \int dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k) dk \ k^2 \Delta_l^X(k) \Delta_l^Y(k) \Delta_l^Y(k) \Delta_l^Y(k) \Delta_l^Y(k) \mathcal{P}_{\mathcal{R}}(k) dk \ k^2 \Delta_l^Y(k) \Delta_$$

$$\{\omega_b, \omega_m, \Omega_\Lambda, \tau_{\rm reio} | A_s, n_s\}$$

Why can we measure 6 ACDM parameters

independently with CMB?

8 physical governing C_l 's shape

- C1: angular scale of the peaks, θ_s
- C2: pressure at recombination, R_{rec}
- C3: metric (value and derivative) at recombination, z_{eq}
- C4: angular scale of damping enveloppe, θ_d
- C5: global amplitude
- C6: global tilt
- C7: plateau tilting by late ISW
- C8: reionisation effects

but all tight to 6 parameters in ΛCDM

And even more parameters

In Λ CDM + Ω_k , same 8 effects only, but tight to 7 parameters: CMB only can also bound Ω_k (enters C1, C4 through d_a(z_{rec}))

And even more parameters

and Cosmology

- Bayes theorem and inversion
- Metropolis-Hastings
- Proposal density, acceptance rate
- Covmat, jumping factor, covmat update, jumping update
- Number of chains: convergence, independence, communication
- Cycles, eigenvectors, fast/slow, Cholesky


```
#----Experiments to test (separated with commas)-----
data.experiments=['Planck_highl','Planck_lowl','Planck_lensing']
#----- Settings for the over-sampling.
data.over_sampling=[1, 4]
#----- Parameter list ------
# Cosmological parameters list
data.parameters['omega_b']
                              = [ 2.2253,
                                           None, None, 0.028, 0.01, 'cosmo']
data.parameters['omega_cdm']
                              = [0.11919,
                                           None, None, 0.0027, 1, 'cosmo']
                                           None, None, 3e-4, 1, 'cosmo']
data.parameters['100*theta_s']
                              = [ 1.0418,
                                           None, None, 0.0029, 1, 'cosmo']
data.parameters['ln10^{10}A_s'] = [ 3.0753,
                                           None, None, 0.0074, 1, 'cosmo']
data.parameters['n_s']
                              = [0.96229,
                                           0.04, None, 0.013, 1, 'cosmo']
data.parameters['tau_reio']
                              = [0.09463,
# Nuisance parameter list
                                   = [ 61, 0, 200, 7, 1, 'nuisance']
data.parameters['A_cib_217']
. . . . .
                                                90, 110, 0.25, 0.01, 'nuisance']
data.parameters['A_planck']
                                   = [100.028.
# Derived parameters
                                                         1, 'derived']
data.parameters['z_reio']
                                 = [1, None, None, 0,
data.parameters['sigma8']
                                 = [0, None, None, 0,
                                                         1, 'derived']
# Other cosmo parameters (fixed parameters, precision parameters, etc.)
data.cosmo_arguments['k_pivot'] = 0.05
data.cosmo_arguments['N_ur'] = 2.0328
data.cosmo arguments['N ncdm'] = 1
data.cosmo_arguments['m_ncdm'] = 0.06
# These two are required to get sigma8 as a derived parameter
# (class must compute the P(k) until sufficient k)
data.cosmo_arguments['output'] = 'mPk'
data.cosmo_arguments['P_k_max_h/Mpc'] = 1.
```
Run and analyse

mpr -p base2015.param -o saopaolo_test/ -N 1000 -b bestfit/base2015.bestfit -c covmat/base2015.covmat
mpr -p base2015.param -o saopaolo_test/ -N 1000 -b bestfit/base2015.bestfit -c covmat/base2015.covmat
mpr -p base2015.param -o saopaolo_test/ -N 1000 -b bestfit/base2015.bestfit -c covmat/base2015.covmat

mpi info saopaolo_test/

. .

Parameter best fit, mean, convergence R-1

Bestfit and covmat files

Triangle plot

1D probability plot

log.param file for next runs and records

{h, ω_{cdm} } from various BAO data + HST (Jorge & Javier):

147 CMB physics - J. Lesgourgues

152 CMB physics - J. Lesgourgues

 $\Lambda CDM + M_{v}$

Neutrino Cosmology, CUP 2013, JL, Mangano, Miele, Pastor

 $\Lambda CDM + M_{V}$

1 - $8\omega_v/\omega_m$ Hu, Eisenstein, Tegmark 1997; Lesgourgues & Pastor 2006

 $\Lambda CDM + M_{v}$

 $\Lambda CDM + M_{v}$

- $\sum m_{\nu} < 0.72 \,\mathrm{eV}$ (PlanckTT+lowP)
- $\sum m_{\nu} < 0.59 \,\text{eV}$ (PlanckTT+SimLow)
- $\sum m_{\nu} < 0.34 \,\text{eV}$ (PlanckTTTEEE+SimLow)
- $\sum m_{\nu} < 0.17 \,\text{eV}$ (PlanckTT+SimLow+lensing+BAO)
- $\sum m_{\nu} < 0.14 \,\text{eV}$ (PlanckTTTEEE+SimLow+lensing)

Planck 2016 intermediate results 1605.02985

all at 95%CL

168 CMB physics - J. Lesgourgues

$\Lambda CDM + r$

Planck 2015 XX constraints on inflation 1502.02114

171 CMB physics - J. Lesgourgues

$$g_{\mu\nu} = a^2(\eta_{\mu\nu} + h_{\mu\nu})$$

Bardeen scalars (spin-0)
 Bardeen tensors (spin-2)

$$h_{\mu\nu} = \begin{pmatrix} -2\psi & 0 & 0 & 0\\ 0 & -2\phi & 0 & 0\\ 0 & 0 & -2\phi & 0\\ 0 & 0 & 0 & -2\psi \end{pmatrix}$$
 $h_{\mu\nu} = \begin{pmatrix} 0 & 0 & 0 & 0\\ 0 & h_1 & h_2 & 0\\ 0 & h_2 & -h_1 & 0\\ 0 & 0 & 0 & 0 \end{pmatrix} e^{-i\omega x^3}$

 (Newtonian gauge)
 (for GWs along x³)

Itzmann:
$$\Theta' + \hat{n} \cdot \nabla \Theta = \hat{n} \cdot \nabla \psi - \phi' + [\text{Thomson}]$$

grav. Dop. dilation
 $\Theta' + \hat{n} \cdot \vec{\nabla} \Theta = -\frac{1}{2} h'_{ij} \hat{n}^i \hat{n}^j + \frac{1}{2} \partial_i h_{00} \hat{n}^i - h'_{0i} \hat{n}^i + [\text{Thomson}]$

Relevant for tensors

173 CMB physics - J. Lesgourgues

GW produces deformation of space fine such that observer sees more photons per solid angle coming from left/right and less from top/boltom: a quadrupole Θ_z has beingenerated!

Two sectors decoupled and statistically independent: split in two

$$\Theta = \Theta^{(s)} + \Theta^{(t)}$$

each obeying

$$\Theta' + \hat{n} \cdot \vec{\nabla}\Theta = -\frac{1}{2}h'_{ij}\hat{n}^i\hat{n}^j + \frac{1}{2}\partial_i h_{00}\hat{n}^i - h'_{0i}\hat{n}^i + [\text{Thomson}]$$

with either curvature perturbations or GWs in the metric.

All tensor modes vanish before recombination (h'=0 + scattering)

Then
$$\Theta_2^{(t)}$$
 —> other temperature multipoles

—> polarisation

+ ISW-like contribution to temperature (*h*' along line of sight)

Finally

$$C_l^{XY} = 4\pi \sum_m \int dk \ k^2 \ \Delta_l^{X(m)}(k) \ \Delta_l^{Y(m)}(k) \ \mathcal{P}_{(m)}(k)$$

$$X, Y \in \{T, E, B\} \qquad m \in \{s, t\} \qquad \mathcal{P}_{(s)}(k) = \mathcal{P}_{\mathcal{R}}(k) \qquad \mathcal{P}_{(t)}(k) = \mathcal{P}_h(k)$$

with the line-of-sight integrals

$$\Delta_{l}^{T(t)}(k) \sim \int d\tau \{ g \Theta_{2}^{(t)} + e^{-\kappa'} h_{\lambda}' + ... \} (...) j_{l}(k(\tau_{0} - \tau_{\rm rec}))$$
$$\Delta_{l}^{E,B(t)}(k) \sim \int d\tau \{ g \Theta_{2}^{(t)} + ... \} (...) j_{l}(k(\tau_{0} - \tau_{\rm rec}))$$

Scalar versus tensor spectra

rticle Physics

