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Five lectures on Cosmology
and Large Scale Structure

Lecture |: The average Universe
Lecture |I: Distances and thermal history
== |_ecture lll: The perturbed Universe
Lecture IV: Theoretical challenges and surve
Lecture V: Observational cosmology with LS
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Plan for Lecture lll:

1.1 — Growth of perturbations

l1l.2 — Statistics of perturbations
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I11.1- Growth of perturbations

1.1 — Introduction

1.2 — Physical degrees of freedom

1.3 — Newtonian perturbations

1.4 — Jeans instability

1.5 — Linearized newtonian growth of dark matter

1.6 — Transfer function
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1.1 — Introduction

ckground (or average) evolution of the Universe: gW(a’J, t) — g,w(t)

ipw _ 87TGTH,/ . /Oi(fat) = 3’@

olution of perturbations in the Universe: gw/(xa t) — L(—]W(t) + 5gW(gj

SGMV — 87TG5TW/ pi(z,t) = pi(t) + 0pi(x, t)

pi(x,t) = p;(t) + op;(z, t)

1 = different components
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1.2 — Physical degrees of freedom

ere are 10 degrees of freedom in the Einstein tensor

ere are 10 degrees of freedom in the energy-momentum tensor

ere are 10 equations related them (Einstein’s equation)

ere are 4 redundancy (gauge) relations: diffeomorphism transformations

ere are 10+10-10-4=6 physical degrees of freedom

IS possible to find 6 gauge-invariant degrees of freedom: Bardeen variables.
ternatively, one can choose (fix) a particular gauge.

of these degrees of freedom are associated to gravitational waves — more on
urani’s lectures. We will only worry with scalar perturbations.
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1.3 — Newtonian perturbations

e can gain some intuition about the growth of perturbations using a newtonian
yroximation to GR.

wtonian approximation is valid for nonrelativistic matter (v<<c, p<<p) and for sc:
2p inside the Hubble radius.

e will use newtonian fluid dynamics describing a fluid in a gravitational field.
is fluid is described by 3 equations:

Continuity equation (energy conservation)

Euler equation (force equation)

Poisson equation (gravity equation)

Giambiagi School 2023 7



nsider a fluid element with mass density p and velocity v at position r at time t:

atp — _ﬁfr ' (1027)

§ V,p =
(O + UV, )U z

||
4
-

Vigp = 4nGp
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earize equations with small perturbations (consider only one component):

e the Universe is expanding, we want to consider the fluid equations with respe
oving coordinates x instead of physical coordinates r:

F(t) = a(t)7
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ocity Is given by:

7(t) = a(t)Z+ a(t)Z = HF(t) + U

Background velocity Peculiar velocity
“Hubble flow” perturbation

Idition, will take derivatives with respect to x and time derivatives with fixed x:
=3 | = 0 O ~
V.=, ¥ (1), = (&),
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e will introduce the density contrast to parametrize the dens
rturbations:

(5:510
P

ntinuity equation can be written as:

[@ — HZ- ﬁ} p(1+0)] + éﬁ p(14+90)(HaZ +u)] =0
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ntinuity equation to zeroth order in perturbations (6=0, u=0):

ntinuity equation for a nonreativistic matter background

ontinuity equation to first order in perturbations:

|
8t5:——v-ﬂf
a
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ler equation to first order in perturbations:

7o 1 -
VP 154

3tﬁ+Hﬁ: _
ap a

Disson equation to first order in perturbations:

V0¢ = ArGa’po
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possible to obtain one equation involving only o:
ake time derivative of continuity equation
ake divergence of Euler equation
\ssume a relation between pressure perturbation and density perturbation with t
oduction of the sound speed

> equation for the evolution of the density contrast at the linear level is:

.o . 2
0+ 2H0 — (C—;W +47TG,5) 6 =0
a

op = c2dp
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1.4 — Jeans instability

convenient to work in Fourier space:
d>k
0(Z,t) = =

27

» perturbation equation becomes:

kQ

CL2

5~+2H(5~+c (
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'sical Jeans scale or wavenumber (as opposed to comoving):

_ [4nGp(t) 27
k= : B = -

small scales (k/a >> k) the solution is oscillating with a damped amplitude.
nping is due to the expansion of the Universe (H term — "Hubble friction”).

large scales (k/a << k) one can neglect pressure perturbations (c, = 0). We will
/e the equation next.
hout Hubble friction the perturbations would be unstable!

e: when baryons are coupled to radiation (c? = 1/3) the Jeans length ~
ble horizon — perturbations do not grow. But perturbations in DM have negligibl

ns lenght and can grow. Giambiagi School 2023 16



1.5 — Linearized newtonian growth of dark matter

“now obtain solutions of the linearized newtonian equation for the case of
matter. For dark matter, the speed of sound of perturbations (and the correspor
S scale) can be neglected:

O + 2HS,, — 47 G p0,, = 0

Scale independent

vill consider the growth in three regimes of the expansion of the Unvivers
atter domination

adiation domination

osmological constant domination
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tter domination:

2 e 3
O<t2/3:>H:§ HQZWTﬁm:>47TG)5m:§H2:
Om T+ =0 0 = )

A A
lution: .
(t) . —1 213 .
. = 1t ~ + cot In matter-dominated era dark mat
l l perturbations grow as:
Decaying mode Growing mode 6m (t) X a’(t)
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diation domination:

| . 1.
a(t) x /2 = H = — _ —

Last term can be neglecte
lution: .
| _ In radiation-dominated era dark mat
m(t) o Cf T €2 lIllt perturbations grow as:

| Om(t) o< Ina(t)
Constant mode Growing mode

Slower growth
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smological constant domination:

a o< etlt H(t) = H = const. 6m + 2H6m — O

Last term can be neglecte

lution:
(t) — Cl —|— 026_2Ht In A-dominated era dark matter
l l perturbations do not grow
Constant mode decaying mode
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5 convenient to introduce the linear growth function D(t) that
scribes the linear growth of modes inside the horizon (but larger thar
' Jeans scale), where the growth is independent of scale:

5:(t) = D(t)d(to)
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11.1.6 — Transfer function

wth of perturbations that are larger than the Hubble horizon can depend on its
oving scale characterized by the wavenumber k (even at the linear level).

' introduces the transfer function to account for this possibility, changing the pre\
ation to:

55(t) = D(1)T ()0 (to)
r perturbations that never leave the horizon, T(k)=1.
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ow do perturbations grow outside the horizon?
1is is computed in full-fledged GR perturbations.
ere | just give the answer, which is simple enough:

0 X <

a2 radiation dominated

a matter dominated
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rturbations produced during inlfation are very long wavelenght and outside the
Ibble horizon initially (see Mehrdad’s lectures).

rentually the enter the horizon.

hen does a perturbation crosses the horizon?
lat's when the comoving wavevector is caught up by the comoving Hubble scale

kh.e. = a(t)H(t)

he crucial point is that perturbations can cross the horizon either in the
diation-dominated or matter-dominate era.

keq = a(teq)H(teq)
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ort wavelenght modes (k>k,,) enters the horizon in radiation era.
ng wavelenght modes (k<k,,) enters the horizon in matter era.

is different behaviour introduces a scale dependence in the growth of perturbati
at is encapsulated in the transfer function.
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Horizon crossing at:

l / Kh.e. = a(t)H (t)

/*"J' Radiation era: H o a2

g —1
BN | S kh.c. X a(th.c.)

G. Ay & 5::;

4 Am a.

Therefore the transfer function is:
; k'_eq J?m"flr; |.10r-"c-»-'\ éﬂ.l‘(ﬂ*g_ ru[;'uJL\'vn 2 o

Kay Z 0 honitgm iy omatler 20

@ o Jf ﬂ S, a:) (k) — k% k<keq

(o) (2] site) = e
() L ()=

'\-ﬁ_-:a—/t-———__-ﬂ—\..ff‘/

SUPPRESSigw Ko imdefundt goouth foeter Giambiagi School 2023 26



[1l.2- Statistics of perturbations

2.1 — Initial perturbations

2.2 — Summary statistics

2.3 — Power spectrum

2.4 — Primordial power spectrum

2.5 — Linear matter power spectrum today
2.6 — Higher order statistics
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2.1 — Initial perturbations

al perturbations are generated by small quantum fluctuations during the inflation
se of the Universe (see Mehrdad'’s lectures).

y are random variables.
ory predicts a probability distribution for the initial perturbations.
t models of inflation predict a gaussian probability distribution.

Universe is one possible realization of the random perturbations.
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2.2 — Summary statistics

babilty distributions are characterized by moments of the distribution — these are
nmary statistics”
‘age, variance, asymmetry, kurtosis, etc

(0(x)), (6°(z)), (6°(x)), (0%(x)).

yussian distribution is fully characterized by its first 2 moments:
‘age and variance.
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2.3 — Power spectrum

density perturbations one expects zero average: ((r)) = 0

two-point correlation function defines the spatial correlation function (r):

Two-point spatial
correlation function

\ J

(21)8(Z2)) = £(i) — Ta) = E(|F) — Ta|) = &(r)

Homogeneity and isotropy

e: since one can’t average over different Universes the averages are over different locations
rent patches of the Universe can be tought of as coming from different realizations).
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rpretation of 2 pt. correlation function: excess (or deficit) of clustering over
Jom at a given scale r

dPljg — ( —+ §(r))dV1dV2

A

random

can also define the power spectrum as Fourier transform of the correlation func

P(k) = [ d3ré(r)etm™
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It's possible to work with either spatial correlation function or power
spectrum — advantages and disadvantages.

Sharp peak in correlation results in oscillations in the power spectrum:
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In terms of the Fourier transform of the density perturbations:

(0505 = (2m)°8°(k — k') P(k)

Dimensioless power sp

2 k?
Recalling: A°(k) = 3

One finds:

P(k,t) = D)*T(k)*P(k)n;
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2.4 — Primordial power spectrum

1ordial power spectrum of scalar perturbations is generated during inflation.

ie simplest models it can be parametrized with an amplitude and a spectral inde

P(k)ini = Agk™
mer S
» amplitude A, and spectral index ng are free parameters of the ACDM model.

iplest models of inflation predict n  close to 1.
viations are related to small so-called slow-roll parameters — see Mehrdad’s lect

nck 2018: Ns=0.9649 £0.0042 at 68% CL - ~10c away from 1!
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2.5 — Linear matter power spectrum today
P(k,t) = D()*T(k)*>P(k)ini

Planck Collaboration: The cosmological legacy of Planck

104 \
:f-% 10° ¢
&L
TE, o
< 10%
E'f #  Planck TT
| of funny plot: 4+ Planck EE
. 10t = Planck ¢¢
rred linear matterfpower J+ SDSS DR7 LRG
di tl d 1 -3+ BOSS DR9 Ly-a forest
Irec y measured; -+ DES Y1 cosmic shear
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2.6 — Higher-order statistics

- can also define higher-order statistics, such as the bispectrum B(k,, k,, Ks):
<(5E1(5E25E3> — (271‘) 0 (kl + ko + /{3)3(/{1, ko, ]{3)

1gaussian perturbations can be studied by measuring the bispectrum.

ce GR is nonlinear one expects nongaussian perturbations to develop from
al gaussian ones. The detection of nongaussian primordial perturbation is a ve
ve area. Measurements are difficult.
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