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Summary of yesterday: perturbed degrees of 

freedom and equations of motion

Degrees of freedom 

Gravitational potential  

Scale factor distortion  

CDM density/velocity  

Baryon density/velocity  

Photons  

[ Neutrinos  ]

ψ(η, ⃗x)

ϕ(η, ⃗x)

δc(η, ⃗x) , θc(η, ⃗x)

δb(η, ⃗x) , θb(η, ⃗x)

fγ(η, ⃗x, p, ̂n)

fν(η, ⃗x, p, ̂n)

Equation of motion 

Einstein 00:  

Einstein ij:  

continuity  + Euler  

Continuity  + Euler  (incl. Thomson) 

Boltzmann Thomson 

[ Boltzmann  ]

ϕ, ψ ↔ δ

(ϕ − ψ) ⟶ σ

δ′ c θ′ c

δ′ b θ′ b
d
dη

fγ =
d
dη

fν = 0
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Blackbody shape: 

Up to very good approximation: preserved even when leaving thermal 
equilibrium, but becomes direction-dependent due to gravitational 
interactions: 
 
 
 

Then:  T(η, ⃗x, ̂n) = T̄(η) (1 + Θ(η, ⃗x, ̂n))

110 The Young Universe

momentum shift along each geodesic, d ln p = dp/p, is independent of the
momentum p. Each momentum p evolves, and so does the temperature T that
represents the typical photon momentum, but there is no mechanism to generate
distortions with respect to a blackbody. On the other hand, photons going through the
same point traveled along different geodesics and crossed different metric
fluctuations. The parameter T thus acquires a dependence with respect to the
direction of propagation n̂, which means that the photons are described entirely by a
variable T (η,"x,n̂), and not only T (η,"x) as in thermal equilibrium.

2.4.1.3. Linearized Boltzmann equation

We can therefore insert into the Boltzmann equation [2.26] a blackbody
distribution with a direction-dependent temperature:

fγ(η,"x,p,n̂) =
1

e
p

T (η,"x,n̂) − 1
[2.29]

and expand it at first order in perturbations. After defining the first-order relative
temperature fluctuation Θ(η,"x,n̂) ≡ δT (η,"x,n̂)/T̄ (η), we can express the total
derivative dfγ/dη at first order in perturbations, use the geodesics equation [2.27] and
obtain14 the linearized Boltzmann equation for photons:

Θ′ + n̂ · "∇Θ− φ′ + n̂ · "∇ψ = −Γγ (Θ−Θ0 − n̂ · "vb) [2.30]

Here Γγ = −τ ′ is the Thomson scattering rate, Θ0(η,"x) is the photon temperature
fluctuation at point "x averaged over all directions n̂:

Θ0(η,"x) =

ˆ
dn̂

4π
Θ(η,"x,n̂) [2.31]

and "vb is the baryon bulk velocity, equal to that of electrons, "ve = "vb. The right-hand
side of equation [2.30] is presented here in a simplified manner, neglecting the angular
dependency of the Thomson cross-section: this approximation is sufficient at the level
of this chapter, but the angular dependency must be restored to understand CMB
polarization (see section 2.7.1). By shifting from [2.26] to [2.30], we have reduced the
dimensionality of the problem, since the variable Θ no longer depends on the norm of
the momentum p: we have made use of the fact that the spectrum is a blackbody-type
spectrum to eliminate the momentum from the equation of motion.

14. The derivation of equation [2.30] from the initial equation [2.26] requires many steps, which
the reader will find, for instance, in the more detailed presentations of (Hu et al. 1998; Durrer
2008).
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light-like geodesic. At first order, one merely has to consider unperturbed geodesics
of the flat Friedmann metric, that is, straight lines13 in three-dimensional space.

2.4.1.1. Geodesics equation

The geodesic equation shows that the norm of the individual momentum p of a
photon evolves along its path as:

d ln(a p)

dη
= φ′ − n̂ · #∇ψ [2.27]

where n̂ = #p/p is a vector of norm one pointing in the direction of propagation of the
photon. Equation [2.27] first indicates that in the absence of metric fluctuations, the
momentum would simply be redshifted as p ∝ a−1, due to the expansion stretching
the photon wavelength and reducing its energy. Metric fluctuations modulate this
average evolution. The dilation effect associated with φ′ represents a local fluctuation
of the expansion rate, and thereby of the stretching effect. The gravitational Doppler
effect associated with n̂ · #∇ψ represents the energy gains and losses recorded by
photons falling into or leaving a gravitational potential well.

2.4.1.2. Photon temperature

In the primordial universe, photons are in thermal and chemical equilibrium at
every point with, consequently, a Bose–Einstein distribution of zero chemical
potential, that is, a blackbody spectrum:

fγ(η,#x,#p) =
1

e
p

T (η,"x) − 1
[2.28]

where T (η,#x) is the local value of the photon temperature. This distribution is
isotropic, that is, independent of the direction n̂ of #p. In the instantaneous decoupling
approximation, this blackbody distribution freezes at the time of recombination.
Thereafter, T no longer has the thermodynamic interpretation of a temperature, but
continues to exist as a unique parameter of the blackbody distribution. For simplicity,
it will still be called “temperature”.

If the photons interact only gravitationally after decoupling, the blackbody
distribution cannot be altered. This is easily deduced from the geodesic equation
[2.27] which shows that, even in the presence of metric fluctuations, the relative

13. Genuine geodesics are slightly deflected by metric fluctuations, but this only plays a role
at second order in perturbations, relevant for the description of CMB gravitational lensing (see
section 2.7.2).

dilation

gravitational Doppler

redshifting along 
geodesics:

̂n

γ γ

γ

γ
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Temperature fluctuation:   

Monopole and dipole of  account for local density & bulk velocity: 

 

Linearised Boltzmann: 

 

Thomson scattering wants to align velocity of photons vs. electron/baryons, 
and to wash out higher multipoles!

T(η, ⃗x, ̂n) = T̄(η) (1 + Θ(η, ⃗x, ̂n))
Θ

Θ(η, ⃗x, ̂n) = 1
4 δγ(η, ⃗x) + ̂n ⋅ ⃗vγ(η, ⃗x) + higher multipoles

Θ′ + ̂n ⋅ ⃗∇ Θ − ϕ′ + ̂n ⋅ ⃗∇ ψ = − Γγ ( ̂n ⋅ ( ⃗vγ − ⃗vb) + higher multipoles)
dilation

gravitational Doppler

Thomson scattering
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Start from linearised Boltzmann and perform: 
1. Fourier transformation 

2. Legendre expansion  

 Solved together with previous equations by Einstein-Boltzmann solvers 
     (CMBFAST, CAMB, CLASS…)

Θ(η, ⃗k, ̂n) = ∑
l

(−i)l(2l + 1) Θl(η, ⃗k) Pl( ̂k ⋅ ̂n)

⇒
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2.4.1.6. Boltzmann hierarchy

Equation [2.37] can be expanded into multipoles, using the orthogonality property
of Legendre polynomials. After inserting expression [2.35] into the terms Θ and Θ′,
replacing cosα = P1(cosα) and 1 = P0(cosα) and, finally, using the relations [2.36],
we obtain a differential equation for each coefficient of the Legendre expansion:

δ′γ +
4

3
θγ − 4φ′ = 0 [2.38]

θ′γ + k2
(
−1

4
δγ + σγ

)
− k2ψ = τ ′(θγ − θb) [2.39]

Θ′
l −

kl

2l + 1
Θl−1 +

k(l + 1)

2l + 1
Θl+1 = τ ′Θl ∀l ≥ 2 [2.40]

These equations form the Boltzmann hierarchy. The first two equations are
perfectly consistent with the general stress-energy tensor conservation equations
[2.23] and [2.24] with, in addition, the Thomson scattering term. When τ ′ is very
large compared to a′/a, the last equation forces Θl to vanish for l ≥ 2; when τ ′

decreases, this equation shows how couplings between neighboring multipoles allow
for a transfer of perturbation amplitude from l = 0 and l = 1 (namely from δγ and
θγ) to higher order multipoles.

Physically, this corresponds to the fictitious experience of an observer in the
universe. As long as the photons are strongly coupled, the observer perceives
temperature anisotropies only as a dipole corresponding to their velocity relative to
the photon-electron fluid. Then, as time passes and the mean free path increases, the
observer sees photons originating from gradually more distant regions or, more
precisely, from last scattering spheres of increasing radius. These photons show to
the observer an image of these spheres, with inhomogeneities seen under a smaller
and smaller angle, corresponding to a larger and larger multipole moment l.

Equations [2.38]–[2.40] play a central role in the numerical computation of the
CMB spectrum by so-called Einstein–Boltzmann codes: CMBFAST (Seljak and
Zaldarriaga 1996), CAMB (Lewis et al. 2000) or CLASS (Lesgourgues 2011; Blas
et al. 2011). Nevertheless, they will hardly be involved in the qualitative reasoning of
this chapter.

2.4.2. Temperature anisotropy in a given direction

The map of anisotropies visible today (η = η0) from our position in the universe
()x = )o with an appropriate choice of origin), looking in a n̂ direction, corresponds to
the function:

relates to Θ2
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Stochastic theory of cosmological 
perturbations
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Canonical single-field inflation guarantees: 
A. stochastic perturbations with independent Fourier modes 
B. gaussian statistics for each Fourier mode / each d.o.f. 
      described by variance(wavenumber) = power spectrum 
C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on 

super-Hubble scales: “adiabatic initial conditions” 

e.g. during RD: 

(Comes from  )

⇒

A(η, ⃗x) = Ā(η + δη( ⃗x)) = Ā(η) + Ā′ (η) δη( ⃗x)
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is static, with a relation between the perturbations of the metric and those of the total
density: −2φ = −2ψ = δtot. = constant18.

During radiation domination and with the adiabatic initial conditions of equation
[2.57], the total density fluctuation δtot. ≡

∑
X ρ̄XδX/

∑
X ρ̄X is approximately

equal to δtot. = δγ = δν , because (ρ̄γ + ρ̄ν) # (ρ̄b + ρ̄c). One then finds that
all density and metric perturbations are constant and related by:

−2ψ = −2φ = δγ = δν =
4

3
δb =

4

3
δc = constant (rad. dom.) [2.60]

This solution is the one that correctly describes initial conditions in our universe.
It is generally called the growing adiabatic mode, although density and metric
perturbations are actually constant in the Newtonian gauge – in other gauges, they
would indeed be growing.

During matter domination, the total density fluctuation is approximately equal to
δtot. = δb = δc, because (ρ̄γ+ ρ̄ν) $ (ρ̄b+ ρ̄c). One then finds an analogous solution
but with different coefficients:

−2ψ = −2φ = δb = δc =
3

4
δγ =

3

4
δν = constant (mat. dom.) [2.61]

This last relation will be important for the calculation of the SW effect in
section 2.6.3.1.

18. These results are reached in several steps. We explained in section 2.3.4 that as a first
approximation, we can neglect the impact of the anisotropic neutrino pressure, in order to
deduce from equation [2.21] the equality φ = ψ. Moreover, for adiabatic solutions, the
right-hand side terms of equations [2.20] and [2.18] can be written as:

−8πG
∑

X

ρ̄XδX = −8πGρtot.δtot. , 8πG
∑

X

ρ̄Xc2sXδX = 8πGc2aρtot.δtot. [2.58]

where ca is the adiabatic sound speed of the total fluid. It is thus possible to obtain a
homogeneous differential equation for φ = ψ, by combining c2a×[2.20]+[2.18]. This equation
is easy to solve in the limit k # aH = a′/a, using either a ∝ η (radiation domination) or
a ∝ η2 (matter domination), which follows from the Friedmann equation. In both cases, two
solutions are found for φ = ψ, one decaying and the other is constant. Finally, for the constant
solution, [2.20] becomes:

6
a2

(
a′

a

)
φ = −8πGρtot.δtot. [2.59]

After replacing ρtot. using the Friedmann equation, we obtain 2 = −δtot..

Einstein eq. Einstein eq.

perturbation  
in adiabatic case

δA(η, ⃗x)

V

φ
slow roll
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Canonical single-field inflation guarantees: 
A. stochastic perturbations with independent Fourier modes 
B. gaussian statistics for each Fourier mode / each d.o.f. 
      described by variance(wavenumber) = power spectrum 
C. for each Fourier mode, all d.o.f. related to each other (fully correlated) on 

super-Hubble scales: “adiabatic initial conditions” 

 need power spectrum for single degree 
 of freedom, e.g. curvature perturbation                                 in Newt. Gauge     

 Primordial spectrum:  

D. Power law, nearly scale-invariant spectrum:   

⇒

⇒

⇒ ⟨ℛ(ηi, ⃗k)ℛ*(ηi, ⃗k′ )⟩ = δD( ⃗k′ − ⃗k) Pℛ(k)

Pℛ(k) = 2π2

k3 As ( k
k* )

ns−1
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2.5.1.4. Curvature fluctuation
The quantities in equations [2.60] and [2.61] are constant in time during either

radiation or matter domination, but not during the transition between these eras. To
link them, the linearized Einstein equation can be used to prove the existence of
conserved quantities for each Fourier mode, in the super-Hubble regime and with
adiabatic initial conditions. There are several quantities satisfying these criteria, as
shown by extensive calculations that will not be discussed here. One of them is a gauge
invariant variable, R, which coincides with the perturbation of the spatial curvature of
the universe expressed in the comoving gauge, that is, the gauge in which the total
cosmological fluid has no bulk velocity, δT 0

tot. i = 0. Therefore, R is called the
comoving curvature fluctuation.

In the Newtonian gauge (see section 2.3.2) and in the super-Hubble regime, one
derives R from density and metric fluctuations through19:

R −−−−−−−−−→
super−Hubble

φ− 1

3

δρtot.
ρ̄tot.+p̄tot.

[2.64]

The comoving curvature fluctuation has the advantage of being constant with
respect to time in the super-Hubble regime when the initial conditions are adiabatic.
Therefore, R is often used as a reference quantity to define the primordial
perturbations. For each Fourier mode, R keeps the same value between the time each
mode reaches the super-Hubble regime during inflation and the time it enters the
sub-Hubble regime during radiation or matter domination. This is not the case for φ
and ψ. In effect, using relations [2.60], [2.61] and [2.64], it is easy to show that on
super-Hubble scales:

R =
3

2
φ (rad. dom.) [2.65]

R =
5

3
φ (mat. dom.) [2.66]

19. In reality, in the Newtonian gauge, the fluctuation R is equal on all scales to:

R ≡ φ− a′

a
vtot.
a2

= φ+
a′

a
θtot.
k2

[2.62]

This relation involves the velocity potential vtot. and the velocity divergence θtot. of the total
cosmological fluid. To obtain the limit [2.64], one must use Einstein’s equations [2.20] and
[2.19]. When k # a′

a , the gradient k2φ can be neglected in equation [2.20]. Then we obtain a
simple relation between the right-hand sides of equations [2.20] and [2.19]:

3
a′

a
(ρ̄tot.+p̄tot.)θtot. −−−−−−−−−→

super−Hubble
−k2δρtot. [2.63]

This can be substituted in equation [2.62] to get [2.64].

V

φ
slow roll
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For each Fourier mode :  
• all perturbations  system of linear coupled differential equations 
• adiabatic ICs  single constant of integration 

•

⃗k
→

→
∀A ∈ {ϕ, ψ, δX, θX, Θℓ, . . . } A(η, ⃗k) = TA(η, k) ℛ(ηi, ⃗k)
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Since R keeps the same value for each Fourier mode, φ = ψ varies by a factor
3/2× 3/5 = 9/10 during the transition between these two epochs.

2.5.1.5. Isocurvature initial conditions

It is possible to construct cosmological models in which the condition for adiabatic
initial conditions [2.53] is not applicable. There are, in fact, solutions of the equations
of motion that are non-adiabatic and non-decaying, called isocurvature modes. These
solutions were considered potentially interesting in the 1990s and 2000s, but the
Planck satellite results have set extremely strong upper bounds on the amplitude of
these modes (Akrami et al. 2018). Therefore, they are in general assumed to be zero
and we do not describe them here.

2.5.2. Power spectrum and transfer functions

2.5.2.1. Linear probability transport

In Fourier space, the density fluctuations δX(η,%k) verify a system of coupled
linear differential equations, whose solutions for each wave vector %k are independent.
Cosmological perturbation theory is a stochastic theory, but if we consider a particular
realization of this theory, initial conditions are given by a unique values of δX(ηini,%k)

and δ′X(ηini,%k) for each comoving Fourier mode %k at initial time ηini.

If the universe contains N fluids, the perturbation evolution satisfies a coupled
system of N second-order linear differential equations. In general, the solution of such
a system for each δX is a linear combination depending on 2N integration constants
δY (ηini,%k) and δ′Y (ηini,

%k), which reads formally:

δX(η,%k) =
∑

Y=1,...,N

[
αXY (η,k)δY (ηini,%k) + βXY (η,k)δ

′
Y (ηini,%k)

]
[2.67]

In other words, for each fluctuation δX , there are 2N independent solutions
αX1,...,αXN ,βX1,...,βXN . We have voluntarily written the solutions αXY (η,k) and
βXY (η,k) as functions of the wave number k rather than of the wave vector %k,
because in a universe with an isotropic background metric, the perturbation equations
only depend on the modulus k.

If the initial conditions are adiabatic, we know that δ′X(ηini,%k) = 0 and that
the integration constants δX(ηini,%k) are related to R(ηini,%k) by the simple numerical
factors of equations [2.60] and [2.65]. Consequently, the solutions take a much simpler
form, which depends only on a single integration constant:

∀X, δX(η,%k) = α̃X(η,k)R(ηini,%k) [2.68]

Deterministic solution of e.o.m. normalised to   =1 
= transfer function of  

Isotropic background  depends only on  
 denoted later as 

ℛ
A

⇒ k
⇒ A(t, k)

stochastic Fourier mode stochastic IC
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initial time

later time

Probability

Probability

Time

Linearity of solutions  probability shape always preserved 
                                       (standard model: Gaussian) 
                                   variance evolves like square of transfer function

⇒

⇒

∀A, A(η, ⃗k) = A(η, k) ℛ(ηi, ⃗k)

A(η, ⃗k)

A(η, ⃗k)
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Adiabatic initial conditions  
 for any perturbation at any time: 

 

                               

⇒

⟨A(η, ⃗k) A*(η, ⃗k′ )⟩ = A(η, k) A*(η, k′ ) ⟨ℛ(ηi, ⃗k) ℛ*(ηi, ⃗k′ )⟩

= |A(η, k) |2 Pℛ(k) δD( ⃗k − ⃗k′ )

power spectrum  of  at          primordial curvature spectrumPA(η, k) A η

transfer function of A
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Spectrum of temperature anisotropies
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during inflation, in the so-called slow-roll regime. The simplest inflationary models
predict a slight dependency of PR on k, described in excellent approximation by a
power law:

PR(k) = As

(
k

k∗

)ns−1

[2.78]

where the amplitude As ∼ O(10−10) gives the variance of primordial curvature
perturbations, ns " 1 is the scalar spectral index and k∗ ∼ O(10−2)Mpc−1 is an
arbitrarily scale of reference called the pivot scale.

2.5.2.4. Transfer functions
The different power spectra PA are related to the primordial spectrum by the

functions α̃A(η,k) appearing in equation [2.69]. These functions, which are simply
the solutions to the equations of motion for adiabatic initial conditions normalized to
R(ηini,#k) = 1, are called transfer functions.

By convention, instead of introducing a new notation like α̃A for each transfer
function, we use the same letter as for the perturbation itself, but with, as argument,
the wave number k instead of the wave vector #k:

A(η,k) ≡ A(η,#k)

R(ηini,#k)
[2.79]

Consequently, any function of #k denotes a stochastic variable for each Fourier
mode, while any function of k denotes a deterministic solution of the equations of
motion for each comoving wavelength.

In conclusion, section 2.5.2 can be summarized as follows: within the framework
of linear cosmological perturbation theory, any problem breaks down into two parts,
the calculation of the primordial spectrum and transfer functions. The final observables
can then be derived from the power spectrum PA of several perturbations A, given by
PA(k,η) = |A(η,k)|2PR(k).

2.5.3. Spectrum of temperature anisotropies

2.5.3.1. Multipoles alm

In order to construct a quantity that can be both predicted theoretically and
observed experimentally, we expand the map of CMB temperature anisotropies,
introduced in equation [2.41], into spherical harmonics:

δT

T̄
(n̂) = Θ(η0,#o,− n̂) =

∑

lm

almYlm(n̂) [2.80]

 very peaked at  
 

last scattering sphere

g(η) ηdec
⇓

γ

γ γ

γ
̂n
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We recall that n̂ is a unit vector, described by two angles (θ,φ). Thereby, the
function δT

T̄
(n̂) is defined on a sphere. For functions defined on a sphere, expansions

into spherical harmonics play the same role as Fourier transforms. As l gets larger,
the multipoles alm (with −m ≤ l ≤ m) account for anisotropies on smaller angular
scales. The fact that the temperature map is a real function gives the constraint a∗lm =
al−m. To obtain the inverse relation of [2.80], we use the orthogonality relation of
spherical harmonics:

ˆ
dn̂ Ylm(n̂)Yl′m′(n̂) = δKll′δ

K
mm′ [2.81]

where δKll′ is the Kronecker symbol, as well as the expansion of the temperature
perturbation into Legendre multipoles (equation [2.35]) and the relation between
Legendre polynomials and spherical harmonics:

Pl(n̂ · n̂′) =
l∑

m=−l

4π

2l + 1
Ylm(n̂)Ylm(n̂′) [2.82]

After about 10 lines of calculation, we obtain the expression for each multipole
alm of the temperature map as a function of the Legendre multipole Θl evaluated at
the present time:

alm = (−i)l
ˆ

d3%k

2π2
Ylm(k̂)Θl(η0,%k) [2.83]

where we defined defining the unit vector k̂ ≡ %k/k.

2.5.3.2. Cl spectrum

We saw in the previous section that each Fourier mode of a given perturbation
can be considered as a Gaussian random variable. This is notably the case for the
multipole Θl(η0,%k). The multipole alm is thus given by a sum of independent Gaussian
variables. Therefore, it is also a Gaussian random variable, whose properties are
entirely described by its variance. The latter is inferred from:

〈alma∗l′m′〉 =
ˆ

d3%k

2π2

d3%k′

2π2
Ylm(k̂)Y ∗

l′m′(k̂′)〈Θl(η0,%k)Θ
∗
l′(η0,%k

′)〉 [2.84]

inversion + Fourier + Legendre ⇒
stochastic, Gaussianstochastic, Gaussian

correlation/variance     ⇒ ⟨alma*l′ m′ 
⟩ = δK

ll′ 
δK

mm′ [ 2
π ∫ dk k2Θ2

l (η0, k) Pℛ(k)]photon   primordial 
transfer   spectrum 
function
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Defined as:       

Estimator: 

Cosmic variance: 

Cl = ⟨alma*lm⟩ = 2
π ∫ dk k2Θ2

l (η0, k) Pℛ(k)
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theory  observations⟷
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get closer to Cl by computing the average value of |aobslm |2 over all m’s. In statistical
terms, one says that the theoretical Cl can be estimated from the observed multipoles
using the following estimator Ĉl(alm):

Ĉl(alm) ≡ 1

2l + 1

∑

−l≤m≤l

|alm|2 [2.87]

This function of alm is an unbiased estimator of each theoretical Cl, since its mean
(again considered with respect to the set of realizations of the theory) is given by:

〈Ĉl(alm)〉 = 1

2l + 1

∑

−l≤m≤l

〈|alm|2〉 = Cl [2.88]

Typically, the quantity Ĉl(aobslm ) is closer to the coefficient Cl of the underlying
theory (assumed to be correct) than each term |aobslm |2 taken individually. This is
quantified by calculating the standard deviation between Cl and Ĉl (again averaged
over all realizations of the theory). Using Wick’s theorem, 〈abcd〉 = 〈ab〉〈cd〉 +
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Therefore, the larger l is, the smaller the standard deviation is, and the more
accurate the estimate of Cl is. Indeed, on smaller angular scales, we observe more
multipoles, that is, more independent realizations of the same theory. This standard
deviation is clearly visible in the results of the observations: the measured Cl are
highly dispersed at small l and not very dispersed at large l (see Figure 2.3). The
standard deviation of equation [2.89], called cosmic variance, should be seen as a
theoretical error. A given cosmological model provides an excellent explanation of
the measured points if the observational data are close to the theoretical predictions
within cosmic variance.

Since cosmic variance is large at small l, it will always be difficult to probe with
high accuracy the characteristics of the cosmological model that affect the shape of the
Cl spectrum only on large angular scales. Fortunately, this variance is small enough at
large l to allow most cosmological parameters to be measured with high precision.
A measurement of the temperature anisotropy spectrum is said to be “limited by
the cosmic variance” when the experimental error on each Cl becomes smaller than
cosmic variance.
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Figure 2.3. Observation of the CMB temperature anisotropy
spectrum by the Planck satellite (2018 data). For a color version of this figure, see

www.iste.co.uk/taillet/universe.zip

COMMENT ON FIGURE 2.3.– The points represent the measured central value for
each Cl, while the curve shows the theoretical Cl for the ΛCDM model that best
explains the data. The dispersion of the points increases at small l due to cosmic
variance and at large l due to instrumental errors. The light (respectively, dark)
gray band shows the cosmic variance associated with the theoretical prediction at
2σ (respectively, 1σ). A different scale is used on the x-axis at l < 30 to highlight the
first data points.

2.6. Physics of temperature anisotropies

2.6.1. Line-of-sight integral in Fourier space

Equation [2.86] shows that the knowledge of the photon transfer functions at
the present time, Θl(η0,k), is of crucial importance for the theoretical calculation
of the CMB temperature spectrum. These functions can be calculated by a “brute
force method”. Their evolution equation is given by the Boltzmann hierarchy [2.38]
to [2.40] for each k. We can truncate this hierarchy at some multipole ltrunc. larger
than the last multipole lmax at which we want to compute the Cls. This gives a system
of ltrunc. coupled differential equations for each k, which can be integrated between
an initial time where kη ! 1 and the current time.

2.6.1.1. Temperature source function

In 1996, a much more efficient alternative method was proposed and successfully
implemented in the CMBFAST code (Seljak and Zaldarriaga 1996): the line-of-sight
integral (Zaldarriaga and Harari 1995). This method is based on an integral similar
to that of section 2.4.2, this time starting from the Boltzmann equation in Fourier

photon   primordial 
transfer   spectrum 
function
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space [2.33]. It is no longer a true line-of-sight integral, since the quantities are now
expressed in Fourier space. Rather, it uses the possibility to write the Fourier mode !k
of a current multipole Θl(η0,!k) as an integral over time of the same mode !k of other
perturbations, evaluated between photon decoupling and today. By writing the formal
solution of equation [2.33] in integral form and performing Legendre transformations,
we obtain the following expression for the photon transfer function:

Θl(η0,k) =

ˆ η0

ηini

dη ST (η,k) jl(k(η0 − η)) [2.90]

ST (η,k) ≡ g (Θ0 + ψ)︸ ︷︷ ︸
SW

+
(
g k−2θb

)′
︸ ︷︷ ︸

Doppler

+ e−τ (φ′ + ψ′)︸ ︷︷ ︸
ISW

[2.91]

where jl(x) is the spherical Bessel function and ST (η,k) is called the temperature
source function. The formal similarity between this result and the true line-of-sight
integral [2.48] is obvious. Three contributions are again identified. They play the
same role as in section 2.4.2: the intrinsic anisotropy corrected by the SW effect,
the Doppler contribution and the integrated Sachs–Wolfe (ISW) effect. This similarity
is such that equation [2.90] is also called – somewhat abusively – the line-of-sight
integral in Fourier space. This integral can be expressed in other forms by integrations
by parts. All terms that depend on the visibility function g(η) and its derivatives are
zero today and negligible at ηini. Consequently, their integration by part does not
generate edge terms. For example, we also have:

Θl(η0,k) =

ˆ η0

ηini

dη {g (Θ0 + ψ) jl(k(η0 − η))

+ g k−1θb j′l(k(η0 − η))

+ e−τ (φ′ + ψ′) jl(k(η0 − η))
}

[2.92]

Because of equation [2.90], we see that in order to compute the transfer functions
Θl(η0,k) up to an arbitrarily large l, we only need to know the evolution of the
four transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k). Thus, we do not need
a precise solution of the Boltzmann hierarchy of differential equations up to l =
lmax, but only up to l = 2 (because the Einstein equation, necessary to obtain φ
and ψ, involves temperature multipoles up to l = 2). For this, a truncation around
ltrunc. ∼ O(10) is sufficient. The number of equations is thus considerably reduced
compared to the brute force method. This better approach is used by all codes since
CMBFAST (Seljak and Zaldarriaga 1996), such as CAMB (Lewis et al. 2000) or
CLASS (Blas et al. 2011; Lesgourgues 2011). In addition to its numerical efficiency,
it gives a much better analytical intuition of the shape of the final result and of the
dependency of the spectrum on cosmological parameters.

valid both for  
single mode  or  

transfer function with 
⃗k

k

structure: ∫ dη f(η) A(η, ⃗k) jℓ(k(η0 − η))

“Physical effects relevant at times described by  

imprint CMB photon anisotropies described in Fourier space by ,  
that project to multipole space according to ” 

f(η)
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jℓ(k(η0 − η))
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2.6.1.2. Angle projection

The previous computation involves a spherical Bessel function evaluated in
jl(k(η0 − η)). Mathematically, this function appears in the computation of the
line-of-sight integral when a Legendre transformation of the plane wave e−i!k·!x is
performed. More intuitively, it plays the role of a projection coefficient from Fourier
space to multipole space l. In multipole space, each l corresponds to a configuration
on a sphere such that the angle between a maximum and an adjacent minimum is
given by θ = l/π. Let us try to answer the following question: can a Fourier mode $k
of a given perturbation A(η,$k) contribute to the multipole l of the transfer function
Θl(η0,k)?

To address this, one must bear in mind the diagram on the left of Figure 2.4. If the
mode propagates at time η, the observer perceives a cross-sectional view of this mode
along a sphere whose radius is given by the angular distance da until time η:

da = a(t)

ˆ t0

t

dt

a
= a8′(η)

ˆ η0

η
dη = a(η) (η0 − η) [2.93]

The contribution of this Fourier mode to the multipole l is non-zero if the observer
perceives differences between the values of the perturbation at two points on the sphere
separated by an angle θ = l/π. The perceived contribution is the difference averaged
over all pairs of points separated by θ. The strongest contribution to this average
always comes from pairs of points on the sphere defining a segment parallel to the
wave vector, such as the vertically aligned pairs of points on the left of Figure 2.4(a).

A
B

k

C

F

E

D

θ

a) b)

Figure 2.4. a) Contribution of a Fourier mode A(η,"k) with fixed "k and variable η
to a multipole Θl(η0,k) for a fixed l = π/θ. b) Spherical Bessel function j10(x). For a

color version of this figure, see www.iste.co.uk/taillet/universe.zip

Main contribution: 

Other contributions: harmonics
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There exists a unique value of the distance da(η), and thereby of the time η, such
that these points correspond to an adjacent maximum and minimum of the Fourier
mode. On the figure, this happens for the sphere B. This value of η is the solution of
the equation λ/2 = θ da, where λ/2 is the half-wavelength, related to the comoving
Fourier mode by λ/2 = a(η)π/k. So the contribution is maximal if the relation:

θ =
π

l
=

λ/2

da
=

a(η)π/k

a(η) (η0 − η)
⇔ l = k(η0 − η) [2.94]

is satisfied. If a mode of the same k propagates later, the observer perceives a
cross-sectional view of it along a smaller sphere, such as sphere A in the figure. It is
immediately obvious that this mode cannot contribute at the desired angle (it can only
contribute at larger angles). If the mode propagates earlier, the observer perceives a
cross-sectional view of it along a larger sphere, such as spheres C, D, E and F in the
figure. For a certain value of η corresponding to sphere D, the angle subtends a
min–max–min–max contribution that also contributes, but with an opposite sign. For
the sphere F, the angle θ subtends a max–min–max–min–max–min contribution that
is of the same sign. Sphere C, halfway between B and D, gives a zero contribution
(the compared points have the same value), as does sphere E between D and F.

In a totally equivalent way, we could have fixed the diameter of the sphere da(η),
and thus the time η, and searched for values of k such that A(η,%k) gives a contribution
to the multipole l. The largest contribution comes from the modes verifying l =
k(η0 − η): this is the main harmonic. At larger ks, one finds the first harmonic, which
contributes with an opposite sign, the second harmonic, which contributes with the
same sign, and so on.

The spherical Bessel function jl(k(η0− η)) can be seen as a projection coefficient
that takes exactly all these effects into account. Its characteristic shape appears in
Figure 2.4(b). It always has a maximum near k(η−η0) = l, giving the contribution of
the main harmonic. For k(η − η0) < l, it tends rapidly to zero and for k(η − η0) > l,
it has an oscillatory behavior taking into account all harmonics.

The line-of-sight integral is often presented as a neat way to split the problem
among physics and geometry. It shows that the physics of the CMB is governed by
the evolution of the transfer functions Θ0(η,k), θb(η,k), φ(η,k) and ψ(η,k), while
geometrical (projection) effects are handled by Bessel functions that not depend on
the cosmological model.

2.6.1.3. Instantaneous decoupling approximation

In section 2.4.2, we introduced a double approximation: no reionization and
instantaneous decoupling. This allowed us to simplify the integral [2.48] and to

Role of   ?jℓ(k(η0 − η))


