Sachs-Wolfe term

$$\Theta_{l}(\eta_{0}, \vec{k}) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi \right) j_{l}(k(\eta_{0} - \eta)) + g k^{-1} \theta_{\text{b}} j'_{l}(k(\eta_{0} - \eta)) + e^{-\tau} (\phi' + \psi') j_{l}(k(\eta_{0} - \eta)) \right\}$$

Neglecting reionization: $g(\eta)$ very peaked at η_{dec}

⇒ effect takes place only on last scattering sphere

$$\Rightarrow$$
 mode k project to $\ell = k(\eta_0 - \eta_{\rm dec})$

$$\Theta_0(\eta_{\rm dec}, \vec{k}) + \psi(\eta_{\rm dec}, \vec{k})$$
 = intrinsic fluctuation + gravitational Doppler shift

/ super-Hubble modes with adiabatic IC: $\psi = -2\Theta_0$, Sachs-Wolfe effect wins, negative picture of last scattering sphere!

Doppler term

$$\Theta_{l}(\eta_{0}, \vec{k}) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left\{ g \left(\Theta_{0} + \psi \right) j_{l}(k(\eta_{0} - \eta)) + g k^{-1} \theta_{b} j'_{l}(k(\eta_{0} - \eta)) + e^{-\tau} (\phi' + \psi') j_{l}(k(\eta_{0} - \eta)) \right\}$$

Neglecting reionization: $g(\eta)$ very peaked at $\eta_{
m dec}$

⇒ effect takes place only on last scattering sphere

$$\Rightarrow$$
 mode k project to $\ell = k(\eta_0 - \eta_{\rm dec})$

$$\hat{n} \cdot \vec{v}_{\rm b}^{\rm scalar} \to k^{-1}\theta_{\rm b}$$
 = velocity Doppler shift (j_{ℓ}') from a gradient

Integrated Sachs-Wolfe (ISW) term

$$\Theta_l(\eta_0, \vec{k}) = \dots + e^{-\tau} (\phi' + \psi') j_l(k(\eta_0 - \eta))$$

Neglecting reionization: $e^{-\tau}$ negligible before $\eta_{\rm dec}$, $\simeq 1$ after

- \Rightarrow effect takes place at all times $\eta > \eta_{\rm dec}$ along each line of sight
- \Rightarrow mode k projects from each sphere to $\ell = k(\eta_0 \eta)$

 $\partial_{\eta} \{ \phi(\eta, \vec{k}) + \psi(\eta, \vec{k}) \}$ comes from dilation + gravitational Doppler effects

- ϕ, ψ static: no dilation, gravitational Doppler effect is conservative: only $(\psi_{\rm dec} \psi_{\rm obs})$
- ϕ, ψ time-dependent: net effect (e.g. net redshift when crosses deepening potential wells)

Summary

 $+ e^{-\tau} (\phi' + \psi') j_l(k(\eta_0 - \eta))$

Final goal: compute
$$C_{\ell} = \langle a_{lm} a_{lm}^* \rangle = \frac{2}{\pi} \int dk \, k^2 \Theta_{\ell}^2(\eta_0, k) \, P_{\mathcal{R}}(k)$$

with transfer functions $\Theta_l(\eta_0,k) = \int_{\eta_{\rm ini}}^{\eta_0} d\eta \left\{ g\left(\Theta_0 + \psi\right) j_l(k(\eta_0 - \eta)) + g k^{-1} \theta_{\rm b} j_l'(k(\eta_0 - \eta)) \right\}$

behaviour of $\Theta_0(\eta_{\rm dec},k)$ $\theta_{\rm b}(\eta_{\rm dec})$ $\psi(\eta \geq \eta_{\rm dec},k) \simeq \phi$

Tight-Coupling Approximation (TCA)

When
$$\Gamma_{\gamma}\gg \frac{a'}{a}$$
: tightly-coupled baryon-photon fluid:
$$\left\{ \begin{array}{l} \Theta_0=\frac{1}{4}\delta_{\gamma}=\frac{1}{3}\delta_b \longrightarrow \text{ from thermal equilibrium} \\ 3k\Theta_1=\theta_{\gamma}=\theta_b \longrightarrow \text{ from efficient} \\ \Theta_{l\geq 2}=0 \end{array} \right.$$

⇒ photon Boltzmann hierarchy + baryon fluid equations —> single TCA equation:

$$\Theta_0'' + \frac{R}{1+R} \frac{a'}{a} \Theta_0' + \frac{k^2 c_{\rm s}^2 \Theta_0}{r^2} = -\frac{k^2}{3} \psi + \frac{R}{1+R} \frac{a'}{a} \phi' + \phi''$$
 baryon pressure gravity local baryon dilation damping force force damping

Squared sound speed / baryon-to-photon ratio: $\,c_{
m s}^2=rac{1}{3(1+R)}\,\,,\,\,\,\,\,\,\,R\equivrac{3ar
ho_{
m b}}{4ar
ho_{\gamma}}\propto a$

Tight-coupling equation

$$\Theta_0'' + \frac{R}{1+R} \frac{a'}{a} \Theta_0' + \frac{k^2 c_{\rm s}^2 \Theta_0}{1+R^2 c_{\rm s}^2 \Theta_0} = -\frac{k^2}{3} \psi + \frac{R}{1+R} \frac{a'}{a} \phi' + \phi''$$
 baryon damping pressure force gravity force damping

Squared sound speed / baryon-to-photon ratio: $c_{\rm s}^2=\frac{1}{3(1+R)}$, $R\equiv\frac{4\rho_{\rm b}}{3\bar{\rho}_{\gamma}}\propto a$

Equilibrium point neglecting metric time derivatives: $\Theta_0^{
m equi.} = -\frac{1}{3c_{
m s}^2}\psi = -(1+R)\psi$

WKB TCA solution " " " $\Theta_0 = A(1+R)^{-1/4}\cos\left(k\int c_{\rm s}(\eta)d\eta\right) - (1+R)\psi$

Very good approximation up to gravity boost + (Silk) damping/diffusion effects

Evolution for one mode with given k

Metric damped near Hubble crossing during RD

—> photon pressure, Poisson: $-k^2\phi=4\pi G\,a^2\,\delta\rho_r\propto a^2\rho_r\,\delta_r\sim a^{2-4+0}\sim a^{-2}$

—> very different from MD: $-k^2\phi = 4\pi G\,a^2\,\delta\rho_m \propto a^2\rho_m\,\delta_m \sim a^{2-3+1} \sim {\rm constant}$

Gravity boost effect from $\frac{R'}{1+R}\phi'+\phi''$

Will be important for effect of neutrinos, DR...

symmetric and stationary oscillation

(deep sub-Hubble, deep DR)

exponentially damped oscillations

(approaching recombination)

Final goal:

(MZ's line-of-sight integral)

$$\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left(\underbrace{g(\Theta_0 + \psi)}_{\text{SW}} + \underbrace{\left(g k^{-2} \theta_{\text{b}}\right)'}_{\text{Doppler}} + \underbrace{e^{-\tau} (\phi' + \psi')}_{\text{ISW}} \right) j_l(k(\eta_0 - \eta))$$

(MZ's line-of-sight integral)

$$\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left(\underbrace{g(\Theta_0 + \psi)}_{\text{SW}} + \underbrace{\left(g k^{-2} \theta_{\text{b}}\right)'}_{\text{Doppler}} + \underbrace{e^{-\tau}(\phi' + \psi')}_{\text{ISW}} \right) j_l(k(\eta_0 - \eta))$$

Final goal:

(MZ's line-of-sight integral)

$$\Theta_l(\eta_0, k) = \int_{\eta_{\text{ini}}}^{\eta_0} d\eta \left(\underbrace{g(\Theta_0 + \psi)}_{\text{SW}} + \underbrace{\left(g k^{-2} \theta_{\text{b}}\right)'}_{\text{Doppler}} + \underbrace{e^{-\tau}(\phi' + \psi')}_{\text{ISW}} \right) j_l(k(\eta_0 - \eta))$$

Metric $\phi(\eta,k)$:

Metric $\phi(\eta,k)$:

Transfer functions at recombination/decoupling

from transfer to C_ℓ :

k [h/Mpc] 10^{-2} 10^{-3} 10^{-1} 1.0 Hubble cross. sound hor. cross. Transfer($\eta_{
m dec}$, k) -1.00.4 Transfer(η_{dec} , k)² 5.0 c.0 c.0 0.0

 $- \Theta_0 + \psi$

from transfer to $C_{\mathcal{C}}$:

from transfer to C_{ℓ} :

 $\Theta_0(\eta_{\rm dec},k) + \psi(\eta_{\rm dec},k)$ independent of k would give $l(l+1)C_l=$ constant

Projection effects

• Thickness of I.s.s produces small-scale smoothing:

observed photons could carry temperature from wherever inside circles with radius $\lambda_D(\eta_{\rm dec})$

Mathematically, two types of smoothing Kernels:

$$\Theta_{l}(\eta_{0},k) = \int_{\eta_{\text{ini}}}^{\eta_{0}} d\eta \left(g \left(\Theta_{0} + \psi \right) + \dots \right) j_{l}(k(\eta_{0} - \eta))$$

$$C_{l} \equiv \langle |a_{lm}|^{2} \rangle = \frac{1}{2\pi^{2}} \int \frac{dk}{k} \Theta_{l}^{2}(\eta_{0},k) \mathcal{P}_{\mathcal{R}}(k)$$

-> contribution of wide range of *times* and *wavenumber* to single C_l

from transfer to $C_{\mathcal{C}}$:

