from transfer to C_{ℓ} :

$\Theta_{0}\left(\eta_{\text {dec }}, k\right)+\psi\left(\eta_{\text {dec }}, k\right)$ independent of k would give $l(l+1) C_{l}=$ constant

The real space view

ISW contribution

\CDM parameter effects on temperature spectrum

Why can we measure $6 \wedge$ CDM parameters independently with CMB?

- Flat FLRW $\left(\Omega_{k}=0\right)$,
- Cosmological constant ($w=-1$),
- Plain decoupled / stable / cold dark matter,
- Neutrino mass neglected or fixed to minimal value,
- $N_{\text {eff }}=3.043$,
- Power-law primordial spectrum...

Possible basis:

$$
\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}
$$

$$
\downarrow_{\omega_{X}}=\Omega_{X} h^{2}
$$

\uparrow
parameter of CMB, not of LSS
$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

$$
C_{l}^{X Y}=4 \pi \int d k k^{2} \Delta_{l}^{X}(k) \Delta_{l}^{Y}(k) \mathcal{P}_{\mathcal{R}}(k) \quad \mathcal{P}_{\mathcal{R}}(k)=A_{s}\left(k_{*}\right)\left(\frac{k}{k_{*}}\right)^{n_{s}-1}
$$

$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

$$
C_{l}^{X Y}=4 \pi \int d k k^{2} \Delta_{l}^{X}(k) \Delta_{l}^{Y}(k) \mathcal{P}_{\mathcal{R}}(k) \quad \mathcal{P}_{\mathcal{R}}(k)=A_{s}\left(k_{*}\right)\left(\frac{k}{k_{*}}\right)^{n_{s}-1}
$$

$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

$$
\begin{aligned}
& \text { redshift of } \mathrm{M} / \Lambda \text { equality } z_{\mathrm{eq}} \text { : } \\
& \Rightarrow \text { late ISW }
\end{aligned}
$$

$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

$\left\{\omega_{b}, \omega_{m}, \Omega_{\Lambda}, \tau_{\text {reio }}, A_{s}, n_{s}\right\}$

8 physical governing Cis shape

- C1: angular scale of the peaks, θ_{s}
- C2: pressure at recombination, $\mathrm{R}_{\text {rec }}$
- C3: metric (value and derivative) at $Z_{\text {eq }}$
- C4: angular scale of damping enveloppe, θ_{d}
- C5: global amplitude
- C6: global tilt
- C7: plateau tilting by late ISW
- C8: reionisation steplike suppression
but all tight to 6 parameters in \wedge CDM

Extended cosmologies? ... more parameters ... but also more effects ...

WTHAACHEN

CMB polarisation

CMB polarisation

CMB polarisation

CMB polarisation

CMB polarisation

CMB polarisation

CMB polarisation

CMB polarisation

CMB polarisation

1 spin-two map $\Leftrightarrow 2$ scalar maps ($E=$ gradient field, $B=$ rotation field), but: scalar modes \rightarrow gradients \rightarrow B-mode vanish

CMB polarisation

CMB polarisation

Temperature spectrum: $\quad C_{\ell}^{T T}=\left\langle a_{l m}^{T} a_{l m}^{T *}\right\rangle=\frac{2}{\pi} \int d k k^{2}\left[\Theta_{\ell}^{T}\left(\eta_{0}, k\right)\right]^{2} P_{\mathscr{R}_{\ell}}(k)$
with transfer function $\Theta_{l}^{T}\left(\eta_{0}, k\right)=\int_{\eta_{\text {ini }}}^{\eta_{0}} d \eta\left\{g\left(\Theta_{0}+\psi\right) j_{l}\left(k\left(\eta_{0}-\eta\right)\right)\right.$

$$
\begin{aligned}
& +g k^{-1} \theta_{\mathrm{b}} j_{l}^{\prime}\left(k\left(\eta_{0}-\eta\right)\right) \\
& \left.+e^{-\tau}\left(\phi^{\prime}+\psi^{\prime}\right) j_{l}\left(k\left(\eta_{0}-\eta\right)\right)\right\}
\end{aligned}
$$

E-mode polarisation spectrum: $C_{\ell}^{E E}=\left\langle a_{l m}^{E} a_{l m}^{E^{*}}\right\rangle=\frac{2}{\pi} \int d k k^{2}\left[\Theta_{\ell}^{E}\left(\eta_{0}, k\right)\right]^{2} P_{\mathscr{R}^{\prime}}(k)$
with transfer function $\Theta_{l}^{E}\left(\eta_{0}, k\right)=\int_{\eta_{\text {ini }}}^{\eta_{0}} d \eta g\left\{\Theta_{2}+\ldots\right\}(\ldots) j_{l}\left(k\left(\eta_{0}-\eta\right)\right)$
Seljak \& Zaldarriaga astro-ph/9609170; Hu \& White astro-ph/9702170 RWUHAACHEN

CMB polarisation

CMB polarisation

CMB polarisation

