
1 Survey of GW experiments and sources

1.1 Experiments: Frequency bands and sensitivities

Sensitivity plots are from [1].

1.2 Binary Systems

1.2.1 Dimensional Analysis

Will use G = c = 1, thus velocities are dimensionless and masses have units of
distance.

rs =
2GM

c2
= 2M

1.2.2 Newtonian Formulas

Definitions:

MT = m1 +m2 [Total mass]
⌘ = m1m2/(m1 +m2)2 [Symmetric mass ratio]
µ = ⌘MT [Reduced mass].

Circular Orbits:
|E| = 1

2
MT ⌘v

2

⌦2 = MT /a
3

⌦MT = v
3

These are Newtonian formulas, no c when putting dimensions back.
Important points:

1. LIGO & LISA require compact objects

2. There is a maximum frequency for a given binary, inversely proportional
to the total mass.

3. The minimum frequency of an experiment sets the maximum mass of a
system that can be detected. LIGO can only see neutron stars and black
holes. LISA can observe SMBHs but not the heaviest ones.

1.2.3 GW emission

The dominant emission is quadrupole, so the emitted frequency is

f = 2⇥ (⌦/2⇡)

Quadrupole formula:

h ⇠ Q̈/d

⇠ MT ⌘v
2
/d

⇠ MT ⌘(⌦MT )2/3/d

⇠ M5/3

c ⌦2/3
/d,
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with
Mc = ⌘

3/5
MT .

Emitted power (PGW is dimensionless):

PGW ⇠ ḣ
2
d
2

⇠ (⌦MT ⌘v
2)2

⇠ ⌘
2
v
10

This does not depend on the mass. Total radiated energy does depend as the
timescale scales proportionally to the mass. Notice that you are emitting a
fixed fraction of the rest mass in a timescale proportional to 1/M . This is the
maximum luminosity one can expect.

Exercise: Compare the GW luminosity with the Eddington Luminosity.
Compare the order of magnitude and the scaling with physical constants and
parameters including the mass. Repeat for stellar luminosity.

Energy loss timescale:

tGW ⇠ E/PGW

⇠ MT ⌘
�1

v
�8

⇠ M�5/3

c ⌦�8/3

up to a constant gives how things are evolving. Another useful concept is the
relative change of quantities during one orbit: Q̇/QP , where Q is any quantity
and P is the period.

Ė/E ⇥ P ⇠ PGW /E ⇥ P ⇠ PGW /⌦E
⇠ ⌘

2
v
10
/⌘v

5

⇠ ⌘v
5

A useful dimensionless is the relative perior change in one period:

Ṗ /P ⇥ P = Ṗ = 3/2 Ė/E ⇥ P ⇠ ⌘v
5 ⇠ ⌘(MT⌦)

5/3

with all the factors:

Ṗ = �(2⇡)
96

5
(Mc⌦)

5/3

Ṗ ⇠ 1 period changes by order one in one period. This happens at merger.
Exercise: Consider the Binary pulsar. Derive the functional form for the

cumulative shift of the periastron. Compute Ṗ using the formulas for cirular
binaries and compare with the measured value.

1.2.4 Frequency evolution

⌦̇/⌦ ⇠ PGW /E ⇠ ⌘v
8
/MT

⇠ ⌘(⌦MT )8/3/MT ,

⇠ M5/8

c ⌦8/3
/MT
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integrating in time:
⌦ ⇠ M�5/8

c
⌧
�3/8

Number of GW cycles until merger:

N =

Z
fd⌧ ⇠ (Mc/⌧)

�5/8 ⇠ (Mcf)
�5/3

1.2.5 Time vs Frequency domain

In the time domain:
h(t) ⇠ h0(t) cos(�(t)),

h0(t) changes slowly, on a timescale tGW while �(t) = 2⌦t and:

h0(t) ⇠ M5/3

c
⌦2/3

/d

We are also interested in the Fourier transform of the strain h(f),

h(f) =

Z
dte

�i2⇡ft
h(t),

h(f) has units of time.
Here it would make a di↵erence whether the events is chirping during the

observed period or the frequency is constant.

Constant frequency

h(t) ⇠ h0e
i2⇡fGW t

h(f) ⇠ �(f � fGW )h0

⇠ T ⇥ h0 [over freq. width ⇠ 1/T ]

Chirping signal:
h(t) ⇠ h0(t)e

i�(t)

Integrate using stationary phase approximation. Contribution peaks where
�̇|tf = f . Expand in phase around that point:

�̇(t) ⇡ �0 + f(t� tf ) + 1/2ḟ(t� tf )2 + . . .

⇡ �0 + f(t� tf ) + 1/2Ṗ f
2(t� tf )2 + . . . ,

so that:
h(f) ⇠ h0

Ṗ 1/2f

⇠ MT ⌘(⌦MT )
2/3

/d

(Mc⌦)5/6f

⇠ M5/6

c f
�7/6

/d

⇠ (fM
c
)5/6/(f2

d)
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1.2.6 SNR formulas

SNR
2 = 4

Z |h(f)|2

S(f)
df = 4

Z |fh(f)|2

fS(f)

df

f
⌘ 4

Z |hc(f)|2

fS(f)

df

f

For monochromatic signal:

SNR
2 ⇠ |h0|2fT

fS(f)

For Chirping signal:

dSNR
2

d ln f
⇠ |h0|2/Ṗ

fS(f)
⇠ |h0|2ftGW

fS(f)

1.3 Sources in di↵erent frequency bands

Simple worked out example for LIGO (GW150914) [2]. Original binary pulsar
[3]. Binary WD [4].Systematic search for LISA sources (ZTF) [5].

1.4 Cosmological backgrounds

Assume there is a process that create Gravitational waves in the early Universe
when the temperature was T . At that time the energy density in the GW was
⌦w, it is interesting to compute the energy density and frequency of those GW
today. Formulas from [6].

Assume you have a stochastic background of GW so that

hh⇤
p1
(f1)h

⇤
p2
(f2)i =

1

2
�p1,p2�

D(f1 � f2)Sh(f1)

Energy density is given by:

⇢ = 1

16⇡

R
df(2⇡f)2|h(f)|2

= ⇡

4

R
d ln f f

2
fSh(f) =

⇡

4

R
d ln f f

2
h
2

c

So the energy density:

⌦GW (f) = ⇡

4

f
2
h
2
c

⇢c

Estimate for frequency:

H
2(T )M2

pl
= g?T

4

f = xH(T )a0/a
a/a0 = (S0/S)1/3 = (g?0/g?(T ))1/3T0/T

f ⇠ xTT0/Mpl(g?(T )/g?0)1/6

⌦GW /⌦r = ⇢p

⇢r

(a0/ap)4(
1

⇢p

d⇢GW

d ln f
)tp

⇢p/⇢r(a0/ap)4 = (g?0/g?(T ))�1/3
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Putting some numbers:

f = 2.6⇥ 10�8Hz x⇥ ( g?(Tp)

100
)1/6 T

GeV

h
2⌦GW (f) = 1.6⇥ 10�5( g?(Tp)

100
)�1/3( 1

⇢p

d⇢GW

d ln f
)tp
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2 Detecting GW

Typical change in length induced by GW:

�L ⇠ L⇥ h ⇠ 10�18m⇥ (
L

km
)⇥ (

h0

10�21
) ⇠ 10�3fm⇥ (

L

km
)⇥ (

h0

10�21
)

Notice that h is a dimensionless number, so you are trying to measure a 10�21

e↵ect. Electron magnetic moment, one part in ten trillion 10�13. Frequencies of
record setting clocks 10�19.

Wavelength of GW and laser:

�GW = c/fGW = 3⇥ 103km⇥ ( 100Hz

fGW

)

�Laser = 1064nm

So that:
�L

�Laser

⇠ 10�12 ⇥ (
L

km
)⇥ (

h0

10�21
)⇥ (

1064nm

�Laser

)

2.1 Time delay

Redshift induced by GW:

Z(t) =
⌫(t)� ⌫0

⌫0
=

1

2
p̂
i
p̂
j

Z
t

t0

dt
0 @hij(t0, x0)

@t0
,

which leads to:

Z(t) =
1

2

p̂
i
p̂
j

(1� k · p)�hij ,

In a round trip:

⌫2 � ⌫0

⌫0
=

⌫2 � ⌫1

⌫0
+

⌫1 � ⌫0

⌫0
=

1

2

p̂
i
p̂
j

(1 + k · p)�hij |21 +
1

2

p̂
i
p̂
j

(1� k · p)�hij |10

To get a phase shift (or the associated time delay) we can simply integrate
Z which oscillates with frequency fGW ,

�� = 2⇡

Z
⌫dt = 2⇡⌫0

Z
Zdt,

Exercise Do the integral in the case k · p = 0:

t2 � t0 =

Z
Zdt =

2L

c
+

L

c
h(t0 + L/c)

sin(2⇡fGWL/c)

2⇡fGWL/c
.

If you are feeling brave do the general case and find the angular response.
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2.2 Michelson Interferemeter:

See more information in [7, 8].

Erefl = [tBSrxtBSe
2ikLx + rBSryrBSe

2ikLy ]Ein

Eas = [�rBSrxtBSe
2ikLx + tBSryrBSe

2ikLy ]Ein

If for example r
2

BS
= 1/2 and rx ⇠ ry ⇠ 1:

Erefl = [e2ikLx + e
2ikLy ]/2Ein = e

�̄ cos(��)Ein

Eas = [�e
2ikLx + e

2ikLy ]/2Ein = �e
�̄
i sin(��)Ein

with �̄ = 2k(Lx + Ly)/2 and �� = 2k(Lx � Ly)/2. The power is given by:

Prefl = cos2(��)Pin

Pas = sin2(��)Pin

Exercises:

• Consider the case when �L = Lx � Ly = �L(f)e�2⇡ft. Calculate the
response in Prefl and Pas.

• Assume that the laser input to the interferometer is not perfect, so either
the amplitude or the frequency of the laser fluctuate with frequency f .
Calculate the response in Prefl and Pas. Why is the asymmetric port used
to detect GW rather than the reflected power?

2.3 Fabry-Perot Cavity:

Now replace mirrors with Fabry-Perot Cavity. The reflected electric field and
the circulating field are given by:

Erefl =
�ri+(r

2
i
+t

2
i
)ree

2ikL

1�riree
2ikL Ein ⌘ rFP (L)Ein

Ecirc =
ti

1�riree
2ikLEin

Assume you are are resonance e
2ikL = e

2n⇡+�� and (r2
i
+ t

2

i
) = 1,

rFP =
�ri + ree

i��

1� riree
i��

⇡ �ri + re

1� rire
+ i

ret
2

i

(1� rire)2
��,

for re ⇡ 1

rFP = 1 + i
1 + ri

1� ri
�� ⇡ e

i
1+ri

1�ri
�� ⇡ e

iG��
.

For ri ⇠ 1 then G >> 1. Now rx and ry of the Michelson interferometer are
replaced by a phase so e↵ectively it is like a much longer single arm Michelson
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interpherometer. However notice that when G is large also the circulating power
becomes large.

Pcirc =
t
2

i

(1� ri)2
Pin =

(1 + ri)

(1� ri)
Pin

Notice that the average number travel around the Fabry Perot is (Exercise
derive it):

hNi = r
2

i
/(1� r

2

i
).

What happens is �� is ��(t) with frequency fGW ? Now the reflected field
will have side bands with frequencies fLaser±fGW . The corresponding reflection
coe�cient will be:

rFP (fGW ) = e
iGC(fGW )��(fGW )

.

where we defined a frequency response C(fGW ):

C(fGW ) =
1� ri

1� ri exp(i4⇡fGWL)
,

so that:

|C|2 =
(1� ri)2

1 + r
2

i
� 2ri cos↵

⇡ 1

1 + (fGW /f?)2
,

with ↵ = 4⇡fGWL

f? =
(1� ri)

4⇡L
.

Because G >> 1, the frequency where you start to notice a decrease in sensitivity
is correspondingly lower.

One convenient way to derive C(f) is to compute Erefl as the sum of rays
that went around several number of times and use that the overall shift of each
contribution is the sum of many the contributions in each loop and take into
account that the contribution is time dependent. To make contact with GW,
consider a varying time needing to make a loop. So if you did N loops the total
time

�tN =
NX

i

�ti,

with �ti = 2L/c+ �t
GW

i
with �t

GW

i
/ e

i2⇡fGW t. One can write:

Erefl(t) = �riEI(t) + tiretiEI(t��t1) + tireriretiEI(t��t2) + · · ·
= �riEI(t) + t

2

i
re

P1
n=1

(reri)n�1
EI(t��tn).

Exercise: Do the sum and find the response to a frequency fGW .
For LIGO L ⇠ 4km and G ⇠ 250 so Leff ⇠ 103km. Still,

�L

�Laser

⇠ 10�9 ⇥ (
L

103km
)⇥ (

h0

10�21
)⇥ (

1064nm

�Laser

),

one needs a very precise measurement.
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2.4 Shot noise

Pas = Pin sin
2(�)

Pas

�x
(fGW ) = kPin sin(2�)

Analogy with cosmology, signal is density of photons (density in time or
rate):

µ = Number of photons per unit time
µ = µ̄+ �µGW + �µnoise

µ̄ = (Pin/h⌫) sin
2(�)

�µGW = (Pin/h⌫) sin(2�)k�x

h�µ⇤
noise

�µnoisei = �
D(f1 � f2)µ̄

So that:

SNR
2 =

fT ((Pin/h⌫) sin(2�)k�x)2

f(Pin/h⌫) sin
2(�)

or equivalently:

SNR = (T (Pin/h⌫))
1/22k�x| cos(�)| = (Nphotons)

1/22k�x| cos(�)|.

Basically what get you the remaining orders of magnitude is the large number
of photons dues to the large power of the laser:

SNR = (Nphotons)
1/2 ⇥ 4⇡Lh

�
⇥ | cos(�)|.

For LIGO Ṅ ⇠ 4.3⇥ 1021Hz. Notice best signal to noise comes when cos(�) = 1,
which corresponds to a dark asymmetric port.

Equivalently the PSD is given by:

PSDshot = (
�

4⇡L| cos(�)| )
2

1

Pin/h⌫

If we now consider the Fabry-Perot cavity, the same GW ampliude produces a
much larger signal but the shot noise fluctuations are the same so:

PSDshot ⇠ (
�

4⇡LG
)2

1

Pin/h⌫

2.5 Radiation pressure

Consider the radiation pressure force on the mirrors, F = 2P/c where P is the
incident power. If the power fluctuates the mirrors experience a fluctuating force,
which leads to a displacement and thus a signal. As we increase the power to
make the shot noise smaller we increase the size of this fluctuating force. The
spectrum of the force is then:

PSDForce = (
2

c
)2PSDPower
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But we have:
PSDPower = (h⌫)2µ̄

On the other hand the fluctuating force at frequency f leads to a displacement

(2⇡f)2M�x = �F,

where M is the mass of the mirror. Thus the PSD for the measurement of h
induced by this displacement is

PSDRP =
PSDForce

(2⇡f)4M2L2
=

(2/c)2Pin(h⌫)

(2⇡f)4M2L2

If we now consider the Fabry-Perot cavity, although the GW response is larger
by a factor of G so is the response to a �x caused from the radiation pressure.
So that factor cancels. However in addition, the power in the cavity is amplified
with respect to the power in beam splitter by a factor G. So fluctuations in the
beam splitter power are amplified by a factor of G in the cavity. Thus the PSD
of the force fluctuations are up by a factor of G2. In total:

PSDRP ⇠ (2/c)2Pin(h⌫)G2

(2⇡f)4M2L2

Notice that

PSDRP / PinG
2

PSDshot /
1

PinG
2

So there is an optimum laser power, which depends on the frequency. In fact
notice that:

L
4 ⇥ PSDRP ⇥ PSDshot =

~2
M2(2⇡f)4

2.6 Quantum Limit

You are measuring a position x on intervals of time �t in order to compute the
Fourier components of the displacement. Measurements at di↵erent times are
independent. The power spectrum of the shot noise in the x measurement is
given by:

P�x = �
2

x
�t

A measurement with uncertainty �x results in a minimum uncertainty in the
momentum �x�p ⇠ ~. This momentum noise leads to a force, �F ⇠ �p/�t. So
that

�
2

F
�t =

~2
�2
x
�t

,

both x and F have white noise power spectrum. Equivalently:

P�F =
~2
P�x
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The equation of motion for the mass is

M ¨�xF = �F,

so the power spectra of the induced �x

P�xF
=

1

M2(2⇡f)4
~2
P�x

,

or

P�xF
P�x =

~2
M2(2⇡f)4

.

The total power

Ptotal = P�x +
~2

M2(2⇡f)4
1

P�x

,

so that:

P
min

total
=

2~
M(2⇡f)2

Important: This is only happening because we are using a position measure-
ment, which induces a momentum change which then leads to a position change
through the equations of motion. If we measure p, the induced uncertainty in the
position does not feed back to the momentum through the equations of motion.
So there would not be an e↵ect analog to the one presented here. So in a sense
this limit is only fundamental for this particular meausrement technique.
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3 Pulsar timing arrays

Additional information [9, 10, 11].

3.1 Individual sources

Amplitude of time domain signal:

h0 = 2M5/3

c
⌦2/3

/d = 1.3⇥ 10�15 (
Mc

109M�
)5/3(

fGW

6nHz
)2/3(

150Mpc

d
).

To determine the strain at a detector one needs to include geometric factors
related to the inclination of the system in the plane of the sky and the direction
of observation relative to the detector.

The period is changing very slowly:

�P

Ṗ
= 4.6⇥ 105yrs (

Mc

109M�
)�5/3(

fGW

6nHz
)�8/3

3.2 Stochastic Background

Assume you have a certain density of sources per comoving volume emitting
GW. Want to compute the energy density in GW today. We have:

d⇢GW

d ln f
=

Z
dz

dncomoving

dz

1

1 + z

dE

d ln f
|emitted

For the emitted energy:

dE

d ln f
= f

Ė

ḟ
=

2

3
E / MT ⌘v

2 / M5/3

c
f
2/3

GW

Notice that the observed frequency is redshifted. Putting all the constants etc:

d⇢GW

d ln f
=

⇡
2/3

3

(GM
c
)5/3

G

Z
dz

dncomoving

dz

1

(1 + z)1/3

We can connect this to the amplitude of the GW background as follows:

⇢GW =
c
2

16⇡G
(ḣ2

+
+ ḣ

2

⇥).

For a stochastic background

hh⇤
P
hP 0i = �

D(f � f 0) �PP 0 S(f)/2

so that

h⇢GW i = ⇡c
2

4G

Z
d ln f f

2
h
2

c
,
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with h
2

c
= fS(f) . So

h
2

c
=

4

3⇡1/3c2

(GM
c
)5/3

f4/3
n0h(1 + z)�1/3i

An estimate gives:

hc = 1.35⇥ 10�16(
Mc

108M�
)5/3 ⇥ (

1yr�1

fGW

)4/3 ⇥ n0

1 Mpc�3
⇥ (

h(1 + z)�1/3i
0.7

)

Exercise: Assume there is a Poisson distribution of sources and that each
source emits gravitational waves at a fixed frequency during the observational
window. Use the formula for h(f) applicable in this case to calculate the power
spectrum and h

2

c
(f) (This should be an analogous calculation to the one halo

term in a halo model calculation of the density power spectrum). Show that
h
2

c
(f) /

R
dzf |h0|2n̄dV/dzdt/df . Here dt/df gives the time a source spends

emitting at frequency f . Note that |h0|2dt/df is also the square of the strain for

a chirping signal, / M5/3

c f
�7/3.

3.3 Signal

Following conventions of [9].
Gravitational waves produce an oscillating change in frequency of the arrival

of the pulses as well as its associated delay in the arrival times:

�⌫/⌫ ⌘ Z

r =
R
t

0
Zdt

with:

ZGW (t) =
1

2

p̂
i
p̂
j

(1 + k · p)�hij = Z
earth

GW
+ Z

pulsar

GW
,

Z
earth

GW
correlates the signal at each pulsar while Z

pulsar

GW
are uncorrelated.

We can think of Zearth

GW
as a scalar quantity in the sky, whose value depends

on the frequency and the direction in the sky. It is a complex number encoding
amplitude and phase. For a single source in the z with the axis of the orbit
oriented along the coordinate axis:

z(✓,�) =
1

2
(1 + cos✓)(cos 2�h+ � sin 2�hx).

If we are interested in the correlations on the sky produced by the GW

background we can expand the map of z in spherical harmonics and compute
the Cl for one source (or GW coming from a single direction). The Cl are a
scalar, so we can then superimpose the Cl for all sources. The result is:

Cl =
2⇡(h2

+
+ h

2

x
)

(l + 2)(l + 1)(l)(l � 1)
(l � 2)
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The Courier transform of this, the correlation function is called the Hellings &
Downs curve:

C(✓) =
P

l
( 2l+1)

4⇡
ClPl(cos ✓)

Cl =
6⇡

(l+2)(l+1)(l)(l�1)
(l � 2)

C(✓) = 1

2
{1 + 3

2
(1� cos ✓)[ln( 1�cos ✓

2
)� 1

6
]}

Model used in the Nonograv paper for the covariance matrix of the timing
residuals:

hcaicnji = �ij(�ab�ai + �ab,i)

�ai =
A

2
i

12⇡2f3
ref

T
( fi

fref
)��a

�ab,i = �HD,i[C(✓ab) + �ab/2]

�HD,i =
A

2
HD

12⇡2f3
ref

T
( fi

fref
)��HD

with a, b running over pulsars and i, j running over frequencies. The �ab piece of
�ab,i comes from the pulsar term which is uncorrelated between pulsars and �ai

represents an intrinsic red noise contribution free for each pulsar.
Take

h
2

c
= A

2

HD
(
fi

fref
)�4/3

.

We want to compute the power spectrum of

r = Z/(i2⇡f),

then

hrairbji =
�ij

T

1

3(2⇡)2f3
h
2

c
C(✓ab)

where the (2⇡f)2 comes from the conversion from Z to time delay residual, a
factor of 3 comes from the convention in the Hellings & Downs curve and the
extra factor of f compes from the definition h

2

c
= fS(f). In this convention the

Fourier transform to get rai is done doing the integral dt/T so that rai has units
of time. Because of this convention one has a prefactor �D(f1 � fj)/T 2 wich is
the same as �ij/T .

In total we get:

hrair⇤bji =
�ij

T

A
2

HD

12⇡2f
3

ref

(
fi

fref
)�4/3�3

C(✓ab),

which explains the conventions in the Nanograv paper. So the expectation is a
slope 13/3 = 4/3 + 3.
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4 B modes

4.1 Thomson Scattering

Linear polarization is described by two Stokes parameters Q and U . Thom-
son scattering produces linearly polarized light if the incident radiation has a
quadrupole anisotropy.

Q+ iU /
Z

dn̂
0(m̂ · n̂0)2T (n0),

where m̂ = ê1 + iê2 and (ê1, ê2, n̂) are orthogonal. Equivalently

Q /
R
dn̂

0 [(ê1 · n̂0)2 � (ê2 · n̂0)2]T (n0)
U /

R
dn̂

0 [2(ê1 · n̂0)(ê2 · n̂0)]T (n0),

4.2 Anisotropies

Consider a density fluctuation or a gravitational wave with k̂ = ẑ. The tempera-
ture anisotropy created as a photon travels between the last two scatterings is
given by

�T

T
=

�⌫

⌫

Consider a photon moving along direction n̂
0, the frequency change is due to the

Doppler shift

�⌫

⌫
= n̂

0
i
[vi(x0 + n̂

0
i
�T )� vi(x0)] = n̂

0
i
n̂
0
j
�T@ivj

which implies:

Q+ iU / �T m̂im̂j@ivj / (m̂ · k̂)2k�T v cos
2
✓
0
k�T v.

Equivalently:
Q / sin2 ✓ k�T v

U = 0,

On the other hand, for tensor modes:

�⌫

⌫
=

1

2
�T n̂

0
i
n
0
j
ḣij ,

so that:
Q / �T [ê1iê1j � ê2iê2j ]ḣij

U / �T [ê1iê2j + ê2iê1j ]ḣij .

It is best to define:

h
± = h+ ± ih⇥ = [(x̂ix̂j � ŷiŷj)± i(x̂iŷj + ŷi.x̂j)]h
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For these modes we get:

Q / (1 + cos2 ✓)e±i2�
h
±

U / ±2i cos ✓e±i2�
h
±
.

U in this coordinate system is not zero, so there are B modes. U brakes parity,
but sign is opposite for h±. Parity symmetry is imposed by demanding h

± have
the same power. Can have non-zero B modes in any given realization.

Also keep in mind that v and h
± are proportional to e

ikz.
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