Lecture 2
Pressureless perfect fluid \rightarrow fluctuations \rightarrow EOM in $(\delta, \theta) \quad$ Fourier space.
Perturbative solution:
($\Omega_{m}=1$, EdS approximation) $\quad D_{+}(\tau)=a$

$$
\begin{aligned}
& \delta(\bar{k}, \tau)=\sum_{n=1}^{\infty} D_{+}^{n}(\tau) \cdot \delta^{(n)}(\bar{k}) \\
& \theta(k, \tau)=-\notin(\tau) \sum_{n=0}^{\infty} D^{n}+(\tau) \cdot \tilde{\theta}^{(n)}(\tilde{k}) \\
& \delta^{(n)}(\boldsymbol{k})=\prod_{m=1}^{n}\left\{\int \frac{\mathrm{~d}^{3} \boldsymbol{q}_{m}}{(2 \pi)^{3}} \delta^{(1)}\left(\boldsymbol{q}_{\boldsymbol{m}}\right)\right\} F_{n}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right)(2 \pi)^{3} \delta^{(\mathbb{D})}\left(\boldsymbol{k}-\boldsymbol{q}_{1}^{n}\right) \\
& \tilde{\theta}^{(n)}(\boldsymbol{k})=\prod_{m=1}^{n}\left\{\int \frac{\mathrm{~d}^{3} q_{m}}{(2 \pi)^{3}} \delta^{(1)}\left(\boldsymbol{q}_{m}\right)\right\} G_{n}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right)(2 \pi)^{3} \delta^{(\mathbb{D})}\left(\boldsymbol{k}-\left.\boldsymbol{q}\right|_{1} ^{n}\right) \\
& \vec{q} l_{a}^{b} \equiv \vec{q}_{a}+\vec{q}_{a+1}+\cdots+\vec{q}_{b} \\
& F_{n}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right)=\sum_{m=1}^{n-1} \frac{G_{m}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right)}{(2 n+3)(n-1)}\left[(2 n+1) \alpha\left(\boldsymbol{q}_{1}^{m}, \boldsymbol{q}_{m+1}^{n}\right) F_{n-m}\left(\boldsymbol{q}_{m+1}, \ldots, \boldsymbol{q}_{n}\right)\right. \\
& \left.+2 \beta\left(\boldsymbol{q}_{1}^{m}, \boldsymbol{q} \boldsymbol{q}_{m+1}^{n}\right) G_{n-m}\left(\boldsymbol{q}_{m+1}, \ldots, \boldsymbol{q}_{n}\right)\right] \\
& G_{n}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{n}\right)=\sum_{m=1}^{n-1} \frac{G_{m}\left(\boldsymbol{q}_{1}, \ldots, \boldsymbol{q}_{m}\right)}{(2 n+3)(n-1)}\left[3 \alpha\left(\left.\boldsymbol{q}\right|_{1} ^{m}, \boldsymbol{q}_{\left.\right|_{m+1}}^{n}\right) F_{n-m}\left(\boldsymbol{q}_{m+1}, \ldots, \boldsymbol{q}_{n}\right)\right. \\
& \left.+2 n \beta\left(\left.\boldsymbol{q}\right|_{1} ^{m},\left.\boldsymbol{q}\right|_{m+1} ^{n}\right) G_{n-m}\left(\boldsymbol{q}_{m+1}, \ldots, \boldsymbol{q}_{n}\right)\right] .
\end{aligned}
$$

An example:

$$
\begin{aligned}
& \delta^{(2)}(\vec{k}, \tau)=\int_{\dot{q}_{1}, \vec{q}_{2}}(2 \pi)^{3} \delta^{D}\left(\vec{k}-\vec{q}_{1}-\vec{q}_{2}\right) F_{2}\left(\vec{q}_{1}, \vec{q}_{2}\right) \delta^{(1)}\left(\dot{q}_{1}, \tau\right) \delta^{(1)}\left(\dot{q}_{2}, \tau\right) \\
& \frac{5}{7}+\frac{1}{2} \frac{\bar{q}_{1}, \vec{q}_{2}}{q_{1} q_{2}}\left(\frac{q_{1}}{q_{2}}+\frac{q_{2}}{q_{1}}\right)+\frac{2}{7} \frac{\left(\vec{q}_{1} \cdot \dot{q}_{2}\right)^{2}}{q_{1}^{2} q_{2}^{2}}
\end{aligned}
$$

General cosmology : $D_{+}^{E d S} \rightarrow D_{+}^{\text {nCDM }}$ is a very good approximation.

Properties of PT kernels:

1) $F_{n}(\underbrace{\vec{k}_{1}+\vec{q}_{1}, \vec{k}_{2}-\vec{q}}_{\text {how high } q \text { affects low } k \text { ? }}, \vec{k}_{3}, \ldots, \vec{k}_{n}) \xrightarrow[q^{2}]{q \gg k_{i}} \frac{k^{2}}{q^{2}}$

Mass and momentum conservation fix it to be $n k^{2}$.
$R A+P B / R$
$P_{A}=P_{B}$ outside this region

$$
\left(\rho_{A}-\rho_{B}\right)(\vec{k})=\int_{\vec{x} \in R} d^{3} \vec{x}\left(\rho_{A}(\vec{x})-\rho_{B}(\vec{x})\right) e^{-i \vec{k} \cdot \vec{x}}
$$

on large scales $k R \ll 1$.
2) $F_{n}\left(\vec{k}_{1}, \ldots, \vec{k}_{n-1}, \vec{q}\right) \xrightarrow{q \ll k_{i}} \frac{\vec{q} \cdot \vec{k}_{i}}{q^{2}}$

An example: $F_{2}(\vec{k}, \vec{q})=\frac{5}{7}+\frac{1}{2} \frac{\vec{k} \cdot \vec{q}}{k q}\left(\frac{k}{q}+\frac{q}{k}\right)+\frac{2}{7} \frac{(\vec{k} \cdot \vec{q})^{2}}{k^{2} q^{2}}$ When $q \ll k$, then $F_{2}\left(\vec{k}_{1} \vec{q}<k\right) \rightarrow \frac{1}{2} \frac{\bar{k} \cdot \vec{q}}{q^{2}}$
The origin of these terms is in large displacements or bulk flows.

$$
\left(\int d \tau \cdot \vec{v}\right) \cdot \vec{\nabla} \delta \rightarrow \frac{\vec{\nabla}}{\nabla^{2}} \delta \cdot \vec{\nabla} \delta \xrightarrow{\text { in Fourier space }} \frac{\vec{q}_{1} \cdot \vec{q}_{2}}{q_{1}^{2}} \delta\left(\vec{q}_{1}\right) \delta\left(\vec{q}_{2}\right)
$$

$$
\delta_{\text {short }}\left(\vec{x}+\int d \tau \vec{v}\right)=\delta_{\text {short }}(\vec{x})+\int d \tau \vec{v} \cdot \vec{\nabla} \delta_{\text {short }}(\vec{x})+\cdots
$$

Nonlinear correlation functions

$$
\delta_{N L}=\delta^{(1)}+\delta^{(2)}+\delta^{(3)}+\cdots
$$

Example: bispectrum $\left\langle\delta_{N L}\left(\vec{K}_{1}\right) \delta_{N L}\left(\bar{E}_{2}\right) \delta_{N_{L}}\left(\vec{k}_{3}\right)\right\rangle$ $\left\langle\delta_{N L}\left(\vec{k}_{1}\right) \delta_{N L}\left(\vec{k}_{2}\right) \delta_{M\left(\vec{k}_{3}\right)}\right\rangle=$ $\equiv(2 \pi)^{3} \delta^{D}\left(\bar{r}_{1}+\bar{r}_{2}+\vec{r}_{3}\right) B\left(\vec{k}_{1} \bar{r}_{2} \bar{x}_{3}\right)$

$$
\int_{\vec{q}_{1}}(\int_{q_{2}}(2 \pi)^{3} \delta^{D}\left(\vec{k}_{3}-\vec{q}_{1}-\vec{q}_{2}\right) \cdot F_{2}\left(\vec{q}_{1}, \vec{q}_{2}\right) \underbrace{\left\langle\delta^{(11)}\left(\vec{a}_{1}\right) \delta^{(11}\left(\vec{r}_{2}\right) \delta^{(1)}\left(\vec{q}_{1}\right)\right.}_{\text {three Wick contractions }} \delta^{(1)\left(q_{2}\right)}\rangle\rangle
$$

three Wick contractions

1) $(2 \pi)^{3} \delta^{D}\left(\bar{k}_{1}+\vec{k}_{2}\right) P\left(k_{1}\right) \cdot(2 \pi)^{3} \delta^{D}\left(\ddot{q}_{1}+\ddot{q}_{2}\right) P\left(q_{1}\right) \rightarrow$ this is $0 \sin c \dot{b}_{1} \neq \tilde{r}_{2}$
2) $(2 \pi)^{3} \delta^{D}\left(\bar{k}_{1}+\bar{q}_{1}\right) P\left(k_{1}\right) \cdot(2 \pi)^{3} \delta^{D}\left(\bar{k}_{2}+\bar{q}_{2}\right) P\left(k_{2}\right) \quad$ 3) $(2 \pi)^{3} \delta^{D}\left(\xi_{1}+\dot{q}_{1} P\left(k_{1}\right) \cdot(2 \pi)^{3} \delta^{D}\left(\bar{k}_{2}+\vec{q}_{1}\right) P\left(k_{2}\right)\right.$ these give the same contribution.

$$
B\left(\bar{K}_{1}, \bar{K}_{2}, \bar{K}_{3}\right)=2 F_{2}\left(\bar{k}_{1}, \bar{k}_{2}\right) P\left(k_{1}\right) P\left(k_{2}\right)+2 \text { permutations. }
$$

Note: $k_{1} \ll k_{2}, k_{3} \Rightarrow F_{2}\left(\vec{k}_{1} \vec{k}_{2}\right) \sim \frac{1}{2} \frac{\vec{k}_{1} \vec{k}_{2}}{k_{1}^{2}} \xrightarrow{\overrightarrow{k_{2}} \approx-\overrightarrow{k_{3}}} \mathbb{R}$ divergent the other $F_{2}\left(\bar{k}_{1}, \bar{k}_{3}\right) \sim \frac{1}{2} \frac{\bar{k}_{1} \cdot \vec{k}_{3}}{k_{1}{ }^{2}}$ erinutation terms cancel!

Nonlinear power spectrum:

$$
\begin{aligned}
\left\langle\delta_{N L} \delta_{N L}\right\rangle & =\left\langle\delta^{(1)} \delta^{(1)}\right\rangle+\left\langle\delta^{(2)} \delta^{(2)}\right\rangle+\underbrace{\left\langle\delta^{(1)} \delta^{(3)}\right\rangle+\left\langle\delta^{(3)} \delta^{(1)}\right\rangle+\ldots} \\
P_{N L}(k) & =P_{\operatorname{lin}}(k)+P_{22}(k)+P_{13}(k)+\cdots
\end{aligned}
$$

We have same number of integrals an δ^{D} functions There is an overall δ^{D} function \Rightarrow One momentum interal remains
We call this one-loop intergal.

$$
P_{22}(k, \tau)=2 \int_{\vec{q}} F_{2}^{2}(\vec{q}, \vec{k}-\vec{q})
$$

$$
P_{13}(k, \tau)=6 \int_{\widetilde{q}} F_{3}\left(\breve{q}_{1}-\tilde{q}_{1}, \bar{k}\right)
$$

$$
{\underset{\operatorname{lin}}{ }(k, \tau) P_{\operatorname{lin}}(q, \tau), ~}_{P(k)}
$$

$$
P_{22,} P_{13} \sim D_{+}^{4}
$$

What went wrong?

What went wrong?

1) EOM were wrong
2) The solution we found was "incomplete"

Both of these things...
What are the correct equations of motion?

$$
\frac{\partial f}{\partial \tau}+\frac{\vec{p}}{m a} \frac{\partial f}{\partial \vec{x}}-\operatorname{am} \vec{\nabla} \phi \frac{\partial f}{\partial \vec{p}}=0
$$

$f(\vec{x}, \vec{p}, t)$ is the full phase-space distribution function.

But this system is collisionless!
However, the fluid-like description is not hopeless!

1) Mean free path set by the age of the Universe.

$$
v_{D M} \sim O(100 \mathrm{~km} / \mathrm{s}) \quad \text { distance } \sim \text { few Mic. }
$$

2) DM forms $D M$ halos. \sim for Mac.
