

Direct Detection of Dark Matter and Exclusion Limits

Dario Rodrigues

XXV Giambiagi Winter School

CONICET

The question for most particle physicists is not whether dark matter exists but rather what type of particle- or particles-make up dark matter

Is Dark Matter part of a Dark Sector?

spans 90 order of magnitude in mass

220 km/second

$$\lambda_{\rm dB} \sim \frac{h}{p} \sim \frac{h}{m_{\rm DM} \ v_{\rm DM,0}} \sim 34 \ \mu {\rm m} \ \left(\frac{50 \ {\rm eV}}{m_{\rm DM}}\right)$$

The New Dark Matter Landscape, Budnik & Essig (2023)

The New Dark Matter Landscape, Budnik & Essig (2023)

- Ultralight DM must be a boson, since fermion would not be able to form observed dwarf galaxies due to Pauli exclusion principle.
- The 10⁻²² eV limits corresponds to the de Broglie wavelength comparable to the size of observed dwarf galaxies.
- QCD axion: It would also solve the strong CP problem in QCD.

$$\lambda_{\rm dB} \sim \frac{h}{p} \sim \frac{h}{m_{\rm DM} \; v_{\rm DM,0}} \sim 34 \; \mu {\rm m} \; \left(\frac{50 \; {\rm eV}}{m_{\rm DM}}\right)$$

The New Dark Matter Landscape, Budnik & Essig (2023)

Terrestrial Probes

Production of DM

Accelerators could be able to produce DM in collisions of SM particles, and then look for missing energy.

Precision measurements

Reducing the uncertainty in SM cross section determination helps to constraint DM cross section interaction.

Direct detection

Search for the small signals created when a DM particle in our halo scatters off a target material.

Silicon sensor used to look for Dark Matter

Ultralight Dark Matter searching

- Ultralight DM must be a boson, since fermion would not be able to form observed dwarf galaxies due to Pauli exclusion principle.
- The 10⁻²² eV limits corresponds to the de Broglie wavelength comparable to the size of observed dwarf galaxies.
- QCD axion: It would also solve the strong CP problem in QCD.

Axion Dark Matter eXperiment (ADMX) uses strong magnetic field in a cavity to convert DM axions to microwave photons.

- > ADMX-HF
- > NASDUCK
- > HAYSTAC
- > CASPEr
- ABRACADABRA
- DM-Radio

Accelerator-based probes of Light Dark Matter

Particle-like dark matter with masses below proton have historically been scarcely explored

- FASER, in the far-forward region of the LHC to catch elusive dark-sector particles.
- MiniBooNE, a neutrino experiment able to search for DM produced in a proton beam dump.
- LDMX, electron beam incident on a fixed target and search for missing momentum of the electron after it passes through the target, which could be caused by the radiation of dark matter particles.

MiniBoone Cherenkov Detectors

Terrestrial Probes: Direct Detection of Dark Matter

Terrestrial Probes: Direct Detection of Dark Matter

Terrestrial Probes: Direct Detection of Dark Matter

Direct Detection of Particle-like Dark Matter

Direct Detection of Particle-like Dark Matter

Elastic interaction of DM with a nucleus

$$E_{\rm NR} \sim 1 \, {\rm eV} \left(\frac{m_{\rm DM}}{100 \, {\rm MeV}} \right)^2 \left(\frac{28 \, {\rm GeV}}{m_{\rm N}} \right)$$
 Light ______

- Inelastic interaction:
 - DM-electron scattering
 - Migdal effect
 - DM scattering off collective excitations

$$E_{\rm kin} \sim 100 \ {\rm eV} \left(\frac{m_{\rm DM}}{100 \ {\rm MeV}} \right)$$

Direct Detection of Particle-like Dark Matter

Elastic interaction of DM with a nucleus

CEvNS produced an irreducible background

$$E_{\mathrm{NR}^+} \sim 1 \ \mathrm{eV} \left(\frac{m_{\mathrm{DM}}}{100 \ \mathrm{MeV}} \right)^2 \left(\frac{28 \ \mathrm{GeV}}{m_{\mathrm{N}}} \right)^2$$

- Inelastic interaction:
 - DM-electron scattering
 - Migdal effect
 - DM scattering off collective excitations

$$E_{\rm kin} \sim 100 \ {\rm eV} \left(\frac{m_{\rm DM}}{100 \ {\rm MeV}} \right)$$

Quenching factor

Direct Detection of WIMPs

The XENONnT being installed in the LNGS laboratory in Italy

- WIMPs, with a mass 1 to 10 000 GeV, would be produced in the early Universe shortly after the Big Bang with a calculable abundance that roughly matches the one observed.
- Experiments: Multi-ton scale detectors with noble-liquid targets (xenon and argon) led by:
 - XENONnT
 - LZ
 - PandaX-4T
 - DarkSide-20k.

100 events per tonne per year100 events per people per second on Earth's surface.

Direct Detection of WIMPs

Neutrino floor (fog?)

- WIMPs, with a mass 1 to 10 000 GeV, would be produced in the early Universe shortly after the Big Bang with a calculable abundance that roughly matches the one observed.
 - Experiments: Multi-ton scale detectors with noble-liquid targets (xenon and argon) led by:
 - XENONnT
 - LZ
 - PandaX-4T
 - DarkSide-20k.

100 events per tonne per year 100 events per people per second on Earth's surface.

Direct Detection of Light Dark Matter

Particle-like dark matter with masses below proton have historically been scarcely explored

Charge Coupled Device

Selfie by Boyle and Smith in 1969

Nobel Prize in 2009

Skipper-CCD

Used by SENSEI to look for Dark Matter

SENSEI @ MINOS

@ Fermilab

énsei

ensei

Mariano Cababie

Hot pixels and hot columns

Hot pixels and hot columns

Bleeding

Hot pixels and hot columns

Bleeding

High energy halo

Hot pixels and hot columns

Bleeding

High energy halo

All criteria applied

Results

1312 events of 1e in 1.38 g-day
5 events of 2e in 2.09 g-day
0 events of 3e in 9.03 g-day
0 events of 4e in 9.10 g-day

Physical Review Letters 125, 171802 (2020)

Dark Matter exclusion limits

Journal of High Energy Physics 2016, 46 (2016).

Physical Review Letters 125, 171802 (2020).

First, we use the frequentist prescription to establish the 90% confidence level upper limit for the number of observed events in each channel

	2e	3e	4e
Observed events	5	0	0
90 % C.L. Upper limit			
Effective exposure [g-day]	2.09	9.03	9.10
90 % C.L. [g-day] ⁻¹			

First, we use the frequentist prescription to establish the 90% upper limit for the number of observed events in each channel

	2e	3e	4e
Observed events	5	0	0
90 % C.L. Upper limit	9.27		
Effective exposure [g-day]	2.09	9.03	9.10
90 % C.L. [g-day] ⁻¹	4.449		

First, we use the frequentist prescription to establish the 90% upper limit for the number of observed events in each channel

	2e	3e	4e
Observed events	5	0	0
90 % C.L. Upper limit	9.27	2.30	2.30
Effective exposure [g-day]	2.09	9.03	9.10
90 % C.L. [g-day] ⁻¹	4.449	0.255	0.253

$$\frac{rystal}{nE_e} = \frac{p\chi}{m_{\chi}} N_{\text{cell}} \,\overline{\sigma}_e \,\alpha$$

$$\times \frac{m_e^2}{\mu_{\chi e}^2} \int d\ln q \left(\frac{E_e}{q} \eta \left(v_{\min}(q, E_e)\right)\right) F_{\text{DM}}(q)^2 \left|f_{\text{crystal}}(q, E_e)\right|^2$$

- For a given DM mass, we make the conservative assumption that all of the events observed are signal.
- > Then, we calculate the cross-section, σ_e such that $N_{obs,90\%CL} = N_{signal}$.
- We repeat the procedure for each DM mass.

Journal of High Energy Physics 2016, 46 (2016).

Dark Matter Exclusion limits

ensei

Physical Review Letters 125, 171802 (2020)

SENSEI @ SNOLAB

SENSEI @ SNOLAB

SENSEI already has 65 gr (26 detectors) 2000 mts underground

Oscura: 10 kg Skipper-CCD experiment

Detector payload

Oscura review paper: arXiv:2202.10518

Laboratorio Argentino de Mediciones de Bajo umbral de Detección y sus Aplicaciones

LAMBDA (A)

Detectores de Bajo Umbral y sus Aplicaciones

Low Threshold Detectors and their Applications

> Inicio / Home

Sobre el labo / About

Contacto / Get in touch

©2020 LAMBDA LAB | Template by Bootstrapious.com & ported to Hugo by Kishan B

Oscura: Early Science: milliCharged particles search

arXiv:2304.08625

BSM physics at a nuclear reactor in Argentina with Skipper-CCD

Journal of High Energy Physics. 2022, 127 (2022).

Phys. Rev. Applied 19, 064044 – Published 14 June 2023

We've already got the third little star ...

Now, we go for the Dark Matter ...

