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The vast vajority ofobservational studies of marine heatwaves (MHWSs) used satellite Sea Surface
Temperature (SST), thanks to the great satellite dataset (gap free, hourly, over 40 years).

* Why do we need sub-surface observations of MHWs?
 Why are they sparse? Many challenges.

* Where are we at?

Conclusions.



Why do we need sub-surface information?
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https://www.nature.com/articles/s41558-019-0412-1
https://www.annualreviews.org/doi/full/10.1146/annurev-marine-032122-121437

Why are sub-surface observations of MHWs sparse?

Detecting extreme events

MHW are extreme events! 1. Pick a time series
2. Set the baseline period

3. Chose a threshold value
4. Detect consecutive days

5. Calculate metrics

slope: 3.64[° C/ century




Why are sub-surface observations of MHWs sparse?

Challenge 1:

- Long time-series for the baseline

- Considering the seasonal variability
-> need decade(s) of daily observations.

v

1993 onwards

v

SST, 1980s onwards )
Schlegel et al., 2019 Global map showing changes

Adapted from Meyssignac et al, 2019 in MHW detection as the time series at each pixel
’ is shortened from 30 to 10 years.



https://www.frontiersin.org/articles/10.3389/fmars.2019.00737/full
https://www.frontiersin.org/articles/10.3389/fmars.2019.00432/full

‘ Why are sub-surface observations of MHWs sparse?
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https://www.frontiersin.org/articles/10.3389/fmars.2019.00432/full
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Platform-specific pros and cons
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Platform-specific pros and cons

Platform type Variables measured? Horizontal Vertical Temporal resolution &
resolution & resolution coverage
coverage &
coverage
Remote-sensed
. Altimetry SSH, geostrophic V ~0.25°, global / Days, 3 decades
Remote-sensed T, chl-a km, global / Hours/day, 4 decades
. SST, ocean
colour
Moorings T,S, V... / m, 100s m Minutes, years
CTDs, T, S, chl-a, DO, CDOM, / (or arrays) m, 100s m | / (or sampling strategy)
bottle samples (nutrients)...
ARGO floats T, S, (bio: chl-a, DO, CDOM, pH, 100s km, m, 2 km Weeks (10-day cycle),
Nitrate) global-ish years
Animal tagging T, S, chl-a, DO, CDOM 10s km, m, 100s m | Weeks, years
(CTD) regional
Gliders T, S, chl-a, DO, CDOM (V) km*, 10s kms m, max Hours*, Weeks (or
AUV (triaxus) 1km sampling strategy)

* Gliders move in space and time



Where are we at?

Vertical anomalies associated to surface MHWs

Example (Elzahaby et al. (2019):

ARGO floats (anomalies from the mean)

-> temperature anomalies during SST MHWs
shallow events [0-150 m],

intermediate events [150-800 m],

deep events [>800 m]: more than expected
(>45%), dominating MHWSs in winter in
warm core eddies.
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https://www.frontiersin.org/articles/10.3389/fmars.2019.00745/full

Where are we at?
Vertical anomalies associated to surface MHW:s
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1029/2020GL090548

Where are we at?
MHW:s independently from the surface

Example (Schaeffer et al. (2017)):

Coastal moorings off Sydney
Maximum intensity sub-surface ~50 m depth at both sites, linked to thermocline depth.
Sub-surface MHWs usually during weak stratification and downwelling winds.
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GL073714

Where are we at?

MHW:s independently from the surface

Example (Hu et al., 2021):

Tropical western Pacific Ocean 19 moorings (50-300 m depth)

The ensemble mean intensity of these subsurface MHWSs reaches a
maximum of about 5.2 °C at 150 m, and the ensemble mean duration
of the subsurface MHWs is about 13—22 days with a mean of about
17 days.
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https://iopscience.iop.org/article/10.1088/1748-9326/ac26f2

Where are we at?

MHW:s independently from the surface
Example (Schaeffer et al. (2017)
Coastal moorings
Maximum intensity sub-surface ~50 m depth at both sites, linked to thermocline depth.
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https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GL073714

Where are we at?
Creating unbiased climatology

Example (Hemming et al., 2020):

The Port Hacking National Reference Station off South East Australia:

- bottle data collected typically every 1 to 4 weeks at discrete
depths between 1953 and 2010

- since 2009 near-monthly vertical profiling CTD profiles and 5 min
moored data at various depths
-> 70% of data for a given day of the year but ~ 1/7 of the 66 year

record.

Solution: ratio of 6:1 between bottle and mooring years.
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Where are we at?
Sub-surface MHWSs

Example (Schaeffer et al., in review):

coastal mooring ORS065

Temperature anomaly measurements ORS065, SST, with Mixed Layer Depth
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Where are we at?
Sub-surface MHWSs

Example (Schaeffer et al., in review): coastal mooring ORS065

Shallow MHW Extended MHW Sub-surface MHW (no surface signature!)
Dec2000 Jul2001 ) Jan2018
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Where are we at? Desp current
Sub-surface MHW:s Coastal upweliing

Anomalous warming

Wind intensification =%

- ‘ Anomalous cooling
. Mixed layer

Thermocline

|

Example (Schaeffer et al., in review): coastal mooring ORS065

Shallow MHW

Enhanced insolation
and/or supressed
evaporative cooling

Shallow
Marine Heatwave

STRONGLY STRATIFIED PERIODS

Shallow
mixed layer

Deep ocean
Evaporate heating/cooling % % .
Insolation
Extended MHW Sub-surface MHW (no surface signature!)
Enhanced
evaporative cooling Enhanced downwelling

Extended
Marine Heatwave

WEAKLY STRATIFIED PERIODS

favourable winds and
increased wind speed

Sub-surface
Marine Heatwave

STRONGLY STRATIFIED PERIODS



‘ Conclusion

Don’t ignore the sub-surface because it’s convenient,
It’s all about the thresholds to define extremes
-> we need more long-term sustainable observations in the sub-surface.

— SST — Climatoloav — Threshold



