Impacts of Marine Heatwaves on Ocean Biogeochemistry

Nikki Lovenduski University of Colorado Boulder

What will you learn in this lecture?

Biological activity and circulation set the mean distribution of chemicals in the ocean

atmosph	nere	
	Air-sea CO ₂ exchange	[carbon]
ocean	🍈 🚥 🔗	
	$\begin{array}{c} \text{CO}_2 + \text{H}_3\text{O} \leftrightarrow \text{H}_3\text{CO}_3\\ \\ \text{Carbonate}\\ \text{chemistry} \\ \text{H}^+ & \text{HCO}_3\\ \\ \text{H}^+ & \text{CO}_3^-\end{array}$	Vertical gradient

Gases and chemistry in the ocean

- Solubility
- Carbonate chemistry

Marine heatwaves impact multiple ocean biogeochemical processes

What will you learn in this lecture?

Biological activity and circulation set the mean distribution of chemicals in the ocean

Gases and chemistry in the ocean

- Solubility
- Carbonate chemistry

Marine heatwaves impact multiple ocean biogeochemical processes

Breakout question (in groups of 4 - 5 people)

This map shows the annualmean surface ocean nitrate concentration $[NO_3^{-1}]$.

- Why are the tropical Pacific and subpolar regions characterized by such high nitrate concentrations?
- 2. Why are the subtropics characterized by near-zero nitrate concentrations?

The role of biology

<u>Photosynthesis</u> 106 CO₂ + 16 HNO₃ + H₃PO₄ →organic matter + 150 O₂

 $\frac{\text{Remineralization}}{\text{organic matter} + 150 \text{ O}_2}$ $\rightarrow 106 \text{ CO}_2 + 16 \text{ HNO}_3 + \text{H}_3\text{PO}_4$

The role of biology

The role of biology

Nutrient upwelling

Sarmiento and Gruber (2006)

26 24 22

Liang et al. (2017)

The cruise you would never want to go on

Breakout question

This figure shows the nitrate concentration $[NO_3^{-1}]$ on the cruise you would never want to go on.

Why is $[NO_3^{-1}]$ so elevated in the deep North Pacific?

Signatures of remineralization in the thermohaline circulation

Sarmiento and Gruber (2006); Emerson and Hedges (2008)

The North Pacific subsurface is characterized by the highest nutrient and carbon concentrations and the lowest oxygen concentrations in the global ocean.

What will you learn in this lecture?

Biological activity and circulation set the mean distribution of chemicals in the ocean

atmosph	nere	
	● Air-sea CO₂ exchange	[carbon]
ocean	👾 🚥 🚁 👘	
	$CO_2 + H_2O \leftrightarrow H_2CO_3$	Vertical
	Carbonate chemistry H HCO ₃	gradient
	↓ ● H* CO320	

Gases and chemistry in the ocean

- Solubility
- Carbonate chemistry

Marine heatwaves impact multiple ocean biogeochemical processes

Breakout question

- If you open a can of soda and leave it out, it will eventually go "flat". Why does this happen?
- 2. If you wanted to prevent it from going flat, would you put it on the warm countertop or in the cold refrigerator?

Gas solubility is a function of temperature

Carbonate chemistry

Dissolved Inorganic Carbon

Dissolved Inorganic Carbon (DIC) DIC is the sum of the concentrations of all the inorganic carbon species in the ocean

 $\mathsf{DIC} = [\mathsf{H}_{2}\mathsf{CO}_{3}] + [\mathsf{HCO}_{3}^{-}] + [\mathsf{CO}_{3}^{2-}]$

Breakout question

Dissolved Inorganic Carbon (DIC) DIC is the sum of the concentrations of all the inorganic carbon species in the ocean

 $\mathsf{DIC} = [\mathsf{H}_{2}\mathsf{CO}_{3}] + [\mathsf{HCO}_{3}^{-}] + [\mathsf{CO}_{3}^{2-}]$

If the ocean absorbs anthropogenic CO₂ from the atmosphere,

- Does DIC increase or decrease?
- Does [H⁺] increase or decrease?

What will you learn in this lecture?

Biological activity and circulation set the mean distribution of chemicals in the ocean

atmosph	nere	
	Air-sea CO ₂ exchange	[carbon]
ocean	$Co_{a} + H_{i}O \leftrightarrow H_{i}CO_{a}$ Carbonate chemistry H ⁺ HCO ₃ ⁺	Vertical gradient

Gases and chemistry in the ocean

- Solubility
- Carbonate chemistry

Marine heatwaves impact multiple ocean biogeochemical processes

Schematic illustration of possible MHW impact on BGC

An example: The Blob

Mogen et al. (2022)

An example: The Blob

Mogen et al. (2022)

An example: The Blob

Mogen et al. (2022)

Compound extremes

correlation of SST and [H+]

Burger et al. (2022)

Breakout question

This afternoon, we will do a 'hands on' activity wherein we quantify the changes in biogeochemistry associated with 'Blob 2.0'.

Make a prediction How will Blob 2.0 impact...

- Surface ocean oxygen
- Surface ocean carbon (DIC)
- Phytoplankton biomass (chlorophyll)

??

What did you learn in this lecture?

Biological activity and circulation set the mean distribution of chemicals in the ocean

atmosph	here	
	Air-sea CO ₂ exchange	[carbon]
ocean	👾 🚥 👩 👘	
	$\begin{array}{c} \text{Co}_2 + \text{H}_3\text{O} \leftrightarrow \text{H}_3\text{Co}_3\\ \\ \text{Carbonate}\\ \text{chemistry} \\ \text{H}^{\circ} \text{HCo}_3\\ \\ \text{H}^{\circ} \text{Co}_3^{\circ} \end{array}$	Vertical gradient

Gases and chemistry in the ocean

- Solubility
- Carbonate chemistry

Marine heatwaves impact multiple ocean biogeochemical processes