	ICTP-VIASM-CMI-INU	
	Summer School in Differential Geometry	
· · · ·	2023	· · · ·
· · · · ·	Integral Current Spaces	· · · ·
	and	• • • •
J	Entrinsic Flat Convergence	· ·
	Christina Sormani	· ·
	(CUNYGC / Lehman College)	• •
	· · · · · · · · · · · · · · · · · · ·	

History:	How does an Area Minimizing Sequence Converge and what does it converge to?
	(FF] Federer - Fleming Annals 1960
· · · · · · · · · · · · · · · · · · ·	defined the Flat and Weak Convergence
	of Submanifolds and integral currents in EN and proved a Compactness Theorem for them.
	[AK] Ambrosio - Kirchheim Acta 2000
M3	defined integral currents in a metric space, Z, and proved a Compactness Theorem for them.
	[Sw] Sormani-Wenger JDG 2011
· · · · · · · · · · · ·	defined the intrinsic flat convergence of
1,	Riemannian Manifolds and integral current spaces
?	[W] Wenger CVPDE 2011 proved a Compactness Theorem for them.

Federer - Fleming introduced integral currents in EN to study the convergence of submanifolds in EN Platean Problem : Is inf & Arca(M): 2M=S'CE 3 Jachieued? Take M; CE's.t DM; = S' and Area (M;) -> inf{Area(M): dM=5'} $M_{1} \qquad M_{2} \qquad M_{3} \qquad M_{0} \qquad a \qquad flat disk D^{2}$ M; converge weakly as integral currents to Moo: if $\int \omega \rightarrow \int \omega$ for any differential form M_1 , M_{∞} $\omega = a dx dy + b dy dz + c dz dx$

Note that $\partial M_j \longrightarrow \partial M_\infty$ because
$ \begin{cases} \mathcal{N} = \int d\mathcal{N} \longrightarrow \int d\mathcal{N} = \int \mathcal{N} & \text{for any one form} \\ \partial M_j; & M_j; & M_{ov} & \partial M_{ov} & \mathcal{N} = Adx + Bdy + Cdz \end{cases} $
$FF: M_{j} \longrightarrow M_{\infty} \implies \liminf_{j \to \infty} Area(M_{j}) \ge Area(M_{\infty})$
To handle nonsmooth limits FF defined
integral currents, T, which act on forms
with boundary defined by $\partial T(n) = T(dn)$ and
mass s.t. $T_j \longrightarrow T_{\omega} \Rightarrow \liminf_{j \to \infty} Mass(T_j) \ge Mass(T_{\omega})$

Federer - Fleming Compactness Theorem:
If Mass (M;) = V and Mass (DM;) = A and M; cK compact
Then a subseq $M_{j_k} \longrightarrow T_{w}$ where T_{as} is an integral current.
Definition: Two is an integral current if
\exists Borel sets $A_i \subset \mathbb{R}^m$ and Lipschitz $\varphi_i \colon A_i \to \mathbb{E}^n$
and weights $a_i \in \mathbb{Z}$ s.t. $T_{\infty}(\omega) = \sum_{i=1}^{\infty} a_i \int \varphi_i^* \omega$
and DT has finite mass. Ai
Why do they need weights? Doubling and Cancellation:
· · · · · · · · · · · · · · · · · · ·
$\frac{M}{2} O = \frac{M_2}{2} O = \frac{T_0}{2}$

FF Compactness Theorem solves the Plateau Problem? Platean Problem : Is inf{Area(M): >M=S'CE 3 Jachieved? Take M; CE³ s.t DM; = S' and Area (M;) -> inf{Area(M): dH=5'} Satisfies: Mass (DM) = A and Mass (M;) = V and M; C K comparet after chopping $\begin{array}{c} M_1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} M_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} M_3 \\ \end{array} \\ \end{array} \\ \begin{array}{c} M_3 \\ \end{array} \\ \end{array} \\ \begin{array}{c} M_3 \\ \end{array} \\ \end{array} \\ \begin{array}{c} M_2 \\ \end{array} \\ \end{array} \\ \begin{array}{c} T_{\infty} \\ \end{array} \\ \end{array}$ Thus Furthermore: $Mass(T_{00}) \leq \liminf Area(M_j) = \inf \{Area(M): \partial M=S'\}$ and 2T = weak lim 2M; = weak lim 5 = 5 So Too achieves the infimum in the Platean Problem!

How to see convergence to a flat disk?
$M_{1} \qquad M_{2} \qquad M_{3} \qquad M_{100} \qquad $
In the picture above, let $B_i = region$ between M_i and D_i^2 ,
$\int \omega - \int \omega = \int \omega = \int d \omega \longrightarrow 0 \text{ because } Vol(B_i) \rightarrow 0$ $M_i D^2 \partial B_i B_i$
FF defined the flat (b) (Whitney) distance between currents
$ T_j - T_{\infty} _{\mu} = inf \{ Mass(A) + Mass(B) : A + \partial B = T_j - T_{\infty} \}$
$T_{j} \xrightarrow{b} T_{00} inplies T_{j} T_{00} because T_{j}(\omega) - T_{00}(\omega) = A_{j}(\omega) + \frac{B_{j}(\omega)}{2} = A_{j}(\omega) + \frac{B_{j}(\omega)}{2} \rightarrow 0$
FF proved the converse when Mass(Ti) + Mass (DTi) = K.

Tex	tbook Recommendation for FF theory:
· · · · · · · ·	Geometric Measure Theory by Morgan
Next	· We survey?
[AK]	Ambrosio - Kirchheim Acta 2000 defined integral currents in a metric space, Z, and proved a Compactness Theorem for them
[ຣພ]	Sormani-Wenger JDG 2011 defined the intrinsic flat convergence of Riemannian Manifolds and integral current spaces
[ω]	Wenger CVPDE 2011 proved a Compactness Theorem for them.

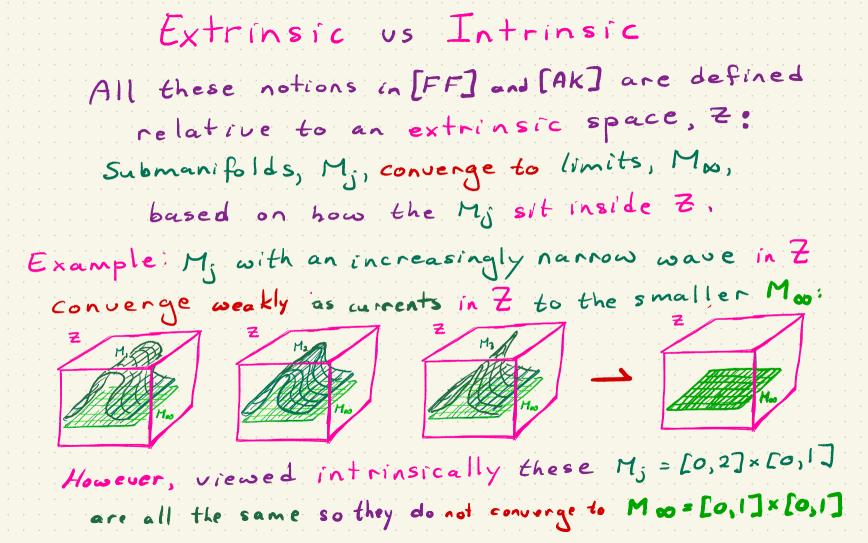
Ambrosio - Kirchheim defined [AK]
Integral Currents on Metric Spaces
Consider a complete metric space (Z, dz)
we have no differential forms so we take
$\omega = (f, \pi, \dots, \pi_m)$ to be a tuple of functions
where f: Z -> IR bounded and Lipschitz
and $\pi_i: \mathbb{Z} \longrightarrow \mathbb{R}$ Lipschitz
Lipschitz submanifolds Q: Mm Z act on tuples:
$\varphi_{\mu}[M](f,\pi_{1},\pi_{m}) = \int f \circ \varphi d(\pi_{i} \circ \varphi) \wedge \ldots \wedge d(\pi_{m} \circ \varphi)$
They define Mm
$d\omega = (1, f, \pi, \dots, \pi_m)$ so that $\varphi_{\mu}[M](d\omega) = \varphi_{\mu}[M](\omega)$

A Ambrosio - Kirchheim: a rectifiable current, T, is
An Ambrosio - Kirchheim: a rectifiable current, T, is a current acting on tuples such that there exists
Borel sets AicIRM and Lipschitz Pi Ai -> Z Images
$\frac{1}{2}$ and weights $a_i \in \mathbb{R}$ s.t. $T = \sum_{i=1}^{\infty} a_i [[q_{i*} A_i]]$
Borel sets $A_i \in IR^m$ and Lipschitz $\varphi_i : A_i \rightarrow Z$ images and weights $a_i \in IR$ s.t. $T = \sum_{i=1}^{\infty} a_i [\varphi_{ix} A_i]$ such that $\sum_{i=1}^{\infty} a_i \mathcal{H}^m(\varphi_i(A_i)) < \infty$ (finite mass)
T is an integer rectifiable current if az EZ.
So $T(f, \pi, \dots, \pi_m) = \sum_{i=1}^{\infty} a_i \int f \circ \varphi_i d(\pi_i \circ \varphi_i) \wedge \dots \wedge d(\pi_m \circ \varphi_i)$
Ai Note the collection of charts Q: Ai > Z is not unique.
$T_1 = T_2 \iff T_1(f, \pi,, \pi_m) = T_2(f, \pi,, \pi_m) \text{ for all tup les}$

Ambrosio-Kirchheim: an integral current, T,	T
is an integer rectifiable current whose	
boundary, JT, is also integer rectifiable.	Es .
where $\partial T(f_1 \pi_1 \dots \pi_m) = T(l_1 f_1 \pi_1 \dots \pi_m)$)T
Weak Convergence as currents:	
$T_j \rightarrow T_{\infty} \iff T_j(\omega) \rightarrow T_{\infty}(\omega)$ for all tu	ples, w.
Then as before $T_j \rightarrow T_\infty \Longrightarrow \partial T_j \rightarrow \partial T_j$	T _{~0} .
AK define mass so that $\liminf_{j \to \infty} Mass(T_j)$	
AK Compactness Theorem: If Z is a compac	t metric space
and Tj are integral currents s.t Mass(Tj) = Vo and	and a second second galaxies and a second
then a subsequence Tj -> Too which is an integ	gral current.

Federer-Fleming had the same compactness theorem
Federer-Fleming had the same compactness theorem for Z compact inside Euclidean Space E ^N
Recall FF defined the flat (b) distance between currents (whitney)
$T_1 - T_2 = inf \{ Mass(A) + Mass(B) : A + \partial B = T_1 - T_2 \} = d_F^E(T_1, T_2)$
F. They proved that, under the hypothesis
B/T, of their compactness theorem,
$\begin{array}{ccc} B & T_{i} & \text{of their compactness theorem,} \\ A_{i} & T_{i} $
Wenger studied the flat (dF) distance between integral currents
in a complete metric space Z and proved the same results.
for Ambrosio - Kinchheims notion of integral currents.

Best source for Ambrosio-Kirchheim Theory	
is the original article:	
[AK] Ambrosio - Kirchheim Acta 2000 defined integral currents in a metric space, Z, and proved a Compactness Theorem for them.	· · · · · ·
Next we survey;	· · · · ·
[SW] Sormani-Wenger JDG 2011 defined the intrinsic flat convergence of Riemannian Manifolds and integral current spaces	· · · · · ·
[W] Wenger CVPDE 2011 proved a Compactness Theorem for them.	



Sormani-Wenger defined an intrinsic flat
distance and convergence for a sequence of
oriented Riemannian Manifolds imitating
Gromov's defn of intrinsic Hausdorff distance
$M_j \xrightarrow{\mathcal{F}} M_{\infty} \iff d_{\mathcal{F}}(M_j, M_{\infty}) \rightarrow O \text{ where}$
d _F (M _j , M ₀₀) = inf {d _F ² (Y _{j*} [M _j], Y _{00*} [M ₀₀]): ^y _{dist} pres and Zcomplete} where the infimum is overall complete Z
and over all distance preserving maps 7; Mj - Z
$d_{z}(\mathcal{Y}_{j}(p),\mathcal{Y}_{j}(q)) = d_{M_{j}}(p,q) \forall p,q \in M_{j}$

SW also defined the intrinsic flat distance for
internal anogent spaces (X J T)
which are metric spaces (X,d) (completion
with an integral current T defined on X
such that $X = set(T) = \{p \in X : \lim_{r \to 0} \frac{Mass(B_p(r))}{rm} > 0\}$
Note that these spaces are rectifiable with
oriented weighted Lipshitz charts $\varphi_i: A_i \longrightarrow X$
such that $T = \sum_{i=1}^{m} a_i \varphi_{i*} [A_i]$ and $\mathcal{H}^{m}(X \setminus \bigcup_{i=1}^{m} \varphi_i(A_i)) = 0$
and so are $\partial(X, d, T) = (set(\partial T), d, \partial T)$. We also defined the O ^M space ($\emptyset, 0, 0$) in each dimension.

The intrinsic flat distance between $M_j = (X_j, d_j, T_j)$
$d_{\mathcal{F}}(M_{j}, M_{\infty}) = \inf \left\{ d_{\mathcal{F}}^{\mathcal{Z}}(\gamma_{j*}(T_{j}), \gamma_{\infty*}(T_{\infty})) : \gamma_{j} \times \gamma_{j} \rightarrow \mathcal{Z} \right\}$
where the inf is over all complete metric spaces Z (so if does not depend on a specific extrinsic Z)
and all distance preserving maps $1j: X_j \rightarrow 2$ (so the spaces are not folded -2)
The flat distance df is defined using currents in Z
$I \neq I = 1$ (SM (A) $M_{ass}(R) = T_{-}T_{-}(1)$
$d_{F}(T_{1}, T_{2}) = int 2 T (ass(H) + t (ass(w) + t))$ is taken between push forwards $Y_{*}T(f_{1}, \pi_{1} \dots \pi_{m}) = T(f_{0}Y_{1}, \pi_{1} \circ Y_{1} \dots \pi_{m} \circ Y)$ $X_{\infty} \qquad \qquad$

Sormani-Wenger $d_{\mathcal{F}}((X_1,d_1,T_1),(X_2,d_2,T_2))=0 \iff$
$\exists an isometry F:(X_1,d_1) \rightarrow (X_2,d_2) s.t. F_*T_1 = T_2.$
Sormani-Wenger: If M: => Mos then 32 complete
and there are distance preserving 7; M; -> Z
such that $d_F^2(\gamma_* T_j, \gamma_{\infty*} T_{\infty}) \rightarrow 0$ so
$\partial M_j \xrightarrow{\mathcal{T}} \partial M_{\infty}$ where $\partial (X, d, T) = (set(\partial T), d, \partial T)$
and liminf Mass(Mj) = Mass(Moo) where Mass(M)= Mass(T)
Wenger: If Mj=(xj,dj,Tj) are integral current spaces
and Mass $(M_j^r) \leq V_o$, Mass $(\partial M_j) \leq A_o$, and Diam $(M_j^r) \leq D_o$
then I M" I Mo where Mo is an integral current space (possibly Om)

		at Convergence	
		Brian Allen's	
For links to	all these pap	ers and many	more
about	intrinsic flat	convergence s	eC
https://site	es.google.com/sit	te/intrinsicflate	onucrgence/
	Thank	Jon!	
· · · · · · · · · · · · · · · · · · ·			ail me at
Questions 1	Selon:	Sorma	inic Ogmail.com

Question I: Given an oriented Ricmannoan Munifold, how to define charts P: AD -X to define an integral current space? Fix orientation on Mª to ensure Q: Aicuic RM > NM are disjoint Use weight 1 = ai An Get two integral current spaces : one for each orion tation

The noce thing about integral current spaces
is we have dispoint charts so no
is we have disjoint charts so no transition maps to check. thansition maps to check.
And Qi only have to be Lipschitz.
Best Resource 13 original JDG 2011 article
by Sormani Wenger.
Videos of Courses about Intrinsic Flat Convergence:
https://sites.google.com/site/professorsormani/home/teaching/fourier-s21
https://sites.google.com/site/professorsormani/home/teaching/fields-institute-lectures-2017

Question II What was the Inspiration for intrinste flat convergence? Ilmanen Example M;=(5,gj) with scal,=0 He ashed someone to define a notion 53 He convergence s.t. the limit of his example is 53. GH convergence fails.

Wenger and I thought this looks Whe
FF flat convergence. So we worked
FF flat convergence. So we worked to define an intrinsic version
of this notion.
Please email me if you have a guestions
Sormanic @ gmail.com
Definition of Mass is below:

[SW] use [AK] Defn: Mass (T) = T (Z) where T is the
minimal Borel measure, M , s.t. $T(f, \pi_1 \dots \pi_m) \notin \prod_{i=1}^m Lip(\pi_i) \int f M$ over all measures $\forall exples \in Cf, \pi_1, \dots, \pi_m$
Thus: (Xj,dj,Tj) ~ (Xou, dos, Too) => liminf Mass (Tj) Z Mass (Too)
Theorem [AK] $ T = \Theta_T \lambda_T H^m L set T$
where $\Theta_T(x) = integer$ weight of T at x and $\lambda_T(x) = area factor of Banach space \tan_T(x)$
Theorem [AK] $\ T\ = \Theta_T \lambda_T \mathcal{H}^m \mathcal{L}$ set T where $\Theta_T(x) = integer$ weight of T at x and $\lambda_T(x) = area factor of Banach space \tan_T(x)= \frac{2^m}{\omega_m} \sup \left\{ \frac{\mathcal{H}^k(B_1)}{\mathcal{H}^k(R)} : \text{parallelopiped } R = B_1 \text{ s.t. } Rctan_T(x) \right\} \subset [Cm, Cm]where B_1 is the unit ball in \tan_T(x)$
Note that if $\tan_T(x)$ is Hilbert then $\mathbb{P}^2 \Rightarrow \lambda_T(x) = \frac{2^m}{\omega_m} \frac{\omega_m}{2^m} = 1$