On the Inflationary Production of Light Dark Photon Dark Matter

Ryo Namba

RIKEN iTHEMS

17th International Workshop on the Dark Side of the Universe

Kigali, Rwanda, 11 July 2023

In collaboration with Yuichiro Nakai, Ippei Obata & Ziwei Wang (2212.11516, 2004.10743)

Outline

Dark matter and light dark photon as a candidate

Inflationary production of dark photon

Summary & Discussions

Outline

Dark matter and light dark photon as a candidate

One reason WE need dark matter (a cosmologist's point of view)

• Structure formation is a necessary ingredient for our universe to form

nasa.gov

SDSS, adapted from astro.kias.re.kr

One reason WE need dark matter (a cosmologist's point of view)

nasa.gov

• Structure formation is a necessary ingredient for our universe to form

• Matter collapses due to gravity by $\bar{\rho} \neq 0$ for wavenumber

SDSS, adapted from astro.kias.re.kr

One reason WE need dark matter (a cosmologist's point of view)

- nasa.gov

SDSS, adapted from astro.kias.re.kr

• Structure formation is a necessary ingredient for our universe to form

• Matter collapses due to gravity by $\bar{\rho} \neq 0$ for wavenumber

- Density of visible matter is too small, $\bar{\rho}_{\rm vis} < \bar{\rho}$
- Dark matter is necessary for the structure

Evidences for dark matter

credit: Mario De Leo, Wikipedia

- Galaxy rotation curve
- Galaxy clusters
- Gravitational lensing
- Cosmic Microwave Background (CMB)
- Baryon acoustic oscillations (BAO)
- Structure formation
- Bullet Cluster
- Type Ia supernova distance measurements
- Redshift-space distortions
- Lyman-α forest

•

Chandra X-ray Observatory

SDSS, adapted from astro.kias.re.kr

A1. We don't know.

A1. We don't know.

A2. We only know

- Cold: non-relativistic
- Dark: no/very weak interactions
- Matter: pressureless, forms clusters
- Gravitational interaction (at least)
- Abundance is known (under Λ CDM)

A1. We don't know.

A2. We only know

- Cold: non-relativistic
- Dark: no/very weak interactions
- Matter: pressureless, forms clusters
- Gravitational interaction (at least)
- Abundance is known (under Λ CDM)
- A large number of DM models have been proposed
 - ▷ WIMP, axion DM, sterile neutrinos, condensates, modified gravity, ...

Essig+ '13

Theoretical motivation

- Very common in physics beyond SM
 - ▷ Gauge theories, string theory, ...
- A wide range of mass is possible
 - \triangleright Large mass \Leftrightarrow rich pheno
 - ▷ Small mass ⇔ stability against decay
- Kinetic mixing with electromagnetism

 $\mathcal{L}_{\rm mix} = \epsilon F'_{\mu\nu} F^{\mu\nu} \iff \mathcal{L}_{\rm int} = \epsilon e A'_{\mu} J^{\mu}_{\rm EM}$

Rich playground for new physics

▷
$$? < 10^{-12} < |\epsilon| < 1$$

Essig+ '13

Phenomenological motivation

- Dark photon decay to SM for $m_{A'} > 2m_e$
 - Decays of hidden sector particles
 - Colliders & fixed-target experiments
- Only slow decays for $m_{A'} < 2m_e$
 - Stable against decays
- $A_{\rm EM} \leftrightarrow A'$ oscillation
 - Like neutrino oscillation
 - Effective photon disappearance

Theoretical motivation

- Very common in physics beyond SM
 - ▷ Gauge theories, string theory, ...
- A wide range of mass is possible
 - \triangleright Large mass \Leftrightarrow rich pheno
 - ▷ Small mass ⇔ stability against decay
- Kinetic mixing with electromagnetism

 $\mathcal{L}_{\rm mix} = \epsilon F'_{\mu\nu} F^{\mu\nu} \iff \mathcal{L}_{\rm int} = \epsilon e A'_{\mu} J^{\mu}_{\rm EM}$

- ▷ Rich playground for new physics
- $\triangleright \ ? < 10^{-12} < |\epsilon| < 1$

Phenomenological motivation

- Dark photon decay to SM for $m_{A'} > 2m_e$
 - Decays of hidden sector particles
 - Colliders & fixed-target experiments
- Only slow decays for m_{A'} < 2m_e
 - Stable against decays
- $A_{\text{EM}} \leftrightarrow A'$ oscillation
 - Like neutrino oscillation
 - Effective photon disappearance

Light Dark Photon

- Light dark photon is stable
 - Decays are kinematically forbidden
 - May still oscillate into EM photons
- Ultra-light DM in fuzzy DM paradigm
 Hu+2000; Hui+ 2016
 - Might solve small-scale issues: core-cusp, missing satellites, too-big-to-fail
 - Wave nature manifests on galactic scales

 $m_{\rm DM} \sim 10^{-22} \, {\rm eV} \iff \lambda_{\rm dB} \sim 1 \, {\rm kpc}$

V. Robles & T. Kelley, M. Pawlowski

Light Dark Photon

- Light dark photon is stable
 - Decays are kinematically forbidden
 - May still oscillate into EM photons
- Ultra-light DM in fuzzy DM paradigm
 Hu+2000; Hui+ 2016
 - Might solve small-scale issues: core-cusp, missing satellites, too-big-to-fail
 - Wave nature manifests on galactic scales

$$m_{\rm DM} \sim 10^{-22} \, {\rm eV} \, \Leftrightarrow \, \lambda_{\rm dB} \sim 1 \, {\rm kpc}$$

- Cold DM paradigm is favored
 - ▷ Cold ⇔ non-relativistic
 - $\triangleright p \ll m_{\rm DM}$
- If DM production is at temperature T
 - $\triangleright \ \ \text{Typically} \ p \sim T \gg m_{\rm DM} \ \text{for light DM}$

V. Robles & T. Kelley, M. Pawlowski

Light Dark Photon

- Light dark photon is stable
 - Decays are kinematically forbidden
 - May still oscillate into EM photons
- Ultra-light DM in fuzzy DM paradigm
 Hu+2000; Hui+ 2016
 - Might solve small-scale issues: core-cusp, missing satellites, too-big-to-fail
 - Wave nature manifests on galactic scales

$$m_{\rm DM} \sim 10^{-22} \, {\rm eV} \, \Leftrightarrow \, \lambda_{\rm dB} \sim 1 \, {\rm kpc}$$

- Cold DM paradigm is favored
 - ▷ Cold ⇔ non-relativistic
 - $\triangleright p \ll m_{\rm DM}$
- If DM production is at temperature T
 - $\triangleright \ \ \text{Typically} \ p \sim T \gg m_{\rm DM} \ \text{for light DM}$
- Potentially non-thermal production

V. Robles & T. Kelley, M. Pawlowski

Outline

Inflationary production of dark photon

Inflation and generation of (classical) fluctuations

Inflation

- (Quasi-)exponential expansion of space at the earliest stage of the universe
 - Resolves conceptual problems in hot Big Bang cosmology
- Generation of seeds of fluctuations in the universe
 - Cosmic microwave background
 - Large-scale structure
 - Primordial gravitational waves (yet to be discovered)

Long wavelength modes are generated

- "Modes are stretched to super-horizon scales"
- Expansion alone creates perturbations

Weyl invariance and inflationary (non-)production of dark photon

Massless gauge fields are NOT produced by expansion alone

Conformal/Weyl invariance of free gauge field in 4-D

 $\begin{array}{rcl} g_{\mu\nu} & \rightarrow & \Omega^2 g_{\mu\nu} \; , \\ \\ \mathcal{L}_{\rm free} \propto \sqrt{-g} \; g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} & \rightarrow & \Omega^{4-2-2} \sqrt{-g} \; g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} \end{array}$

Conformal invariance

Y. Nakayama's talk

Massless gauge fields are NOT produced by expansion alone

Conformal/Weyl invariance of free gauge field in 4-D

$$\begin{split} g_{\mu\nu} &\to & \Omega^2 g_{\mu\nu} \ , \\ \mathcal{L}_{\rm free} \propto \sqrt{-g} \, g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} &\to & \Omega^{4-2-2} \sqrt{-g} \, g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} \end{split}$$

Insensitive to the background expansion

Y. Nakayama's talk

 In contrast to cosmological perturbations (density perturbation & gravitational wave)

Massless gauge fields are NOT produced by expansion alone

Conformal/Weyl invariance of free gauge field in 4-D

$$\begin{split} g_{\mu\nu} &\to & \Omega^2 g_{\mu\nu} \ , \\ \mathcal{L}_{\rm free} \propto \sqrt{-g} \, g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} &\to & \Omega^{4-2-2} \sqrt{-g} \, g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} \end{split}$$

Insensitive to the background expansion

Y. Nakayama's talk

 In contrast to cosmological perturbations (density perturbation & gravitational wave)

Breaking conformal invariance is essential

Breaking conformal invariance

By coupling to scalar/pseudo-scalar field σ

Higgs-like mass term

$$\mathcal{L}_{\rm int} = -\frac{m_{\gamma'}^2}{2} A_{\mu} A^{\mu}$$

Longitudinal mode ~ scalar pert'n

• Dark photon mass $m_{\gamma'} \gtrsim 10^{-6} \text{ eV}$ Graham+ '15

• $m_{\gamma'}\gtrsim 10^{-18}\,{\rm eV}$ with param. resonance Dror+ '18

Chern-Simons coupling

$$\mathcal{L}_{\rm int} = \frac{\sigma}{4f} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

- Tachyonic enhancement by $\partial_t \sigma \neq 0$
- Lower H during inflation is possible

• Dark photon mass $m_{\gamma'} \sim \mu eV - O(100) \text{ GeV}$ Bastero-Gil+ '18

Kinetic coupling

$$\mathcal{L}_{\rm kin/int} = -\frac{I^2(\sigma)}{4} F_{\mu\nu} F^{\mu\nu}$$

 Additional control on the production thanks to *I*(σ) (or thanks to the classical motion of σ)

• Degree of $\partial_t I \neq 0$ is a measure of violation of Weyl inv.

• Dark photon mass $m_{\gamma'} \gtrsim 10^{-13} \, \mathrm{eV}$ is possible

Nakai, RN & Obata '22

Breaking conformal invariance

By coupling to scalar/pseudo-scalar field σ

Higgs-like mass term

$$\mathcal{L}_{\rm int} = -\frac{m_{\gamma'}^2}{2} A_{\mu} A^{\mu}$$

Longitudinal mode ~ scalar pert'n

• Dark photon mass $m_{\gamma'} \gtrsim 10^{-6} \text{ eV}$ Graham+ '15

• $m_{\gamma'}\gtrsim 10^{-18}\,{\rm eV}$ with param. resonance Dror+ '18

Chern-Simons coupling

$$\mathcal{L}_{\rm int} = \frac{\sigma}{4f} F_{\mu\nu} \tilde{F}^{\mu\nu}$$

- Tachyonic enhancement by $\partial_t \sigma \neq 0$
- Lower H during inflation is possible

• Dark photon mass $m_{\gamma'} \sim \mu eV - O(100) \text{ GeV}$ Bastero-Gil+ '18

Kinetic coupling

$$\mathcal{L}_{\rm kin/int} = -\frac{I^2(\sigma)}{4} F_{\mu\nu} F^{\mu\nu}$$

- Additional control on the production thanks to *I*(σ) (or thanks to the classical motion of σ)
- Degree of $\partial_t I \neq 0$ is a measure of violation of Weyl inv.
- Dark photon mass $m_{\gamma'} \gtrsim 10^{-13} \, \mathrm{eV}$ is possible

Nakai, RN & Obata '22

Energy conservation (continuity eq.)

- Dark photon is produced from vacuum at the cost of kinetic energy of *σ*
- Production rate is bounded by the energy transfer rate

$$|\partial_t \rho_{\gamma'}| < |\partial_t \rho_\sigma|$$

⇒ Bound on coupling constant

Constraints from CMB

- Produced dark photon dark matter contributes to entropy/isocurvature moes
- CMB observations constrain entropy perturbations at cosmological scales

$$\frac{\langle \rho_{\gamma'} - \langle \rho_{\gamma'} \rangle}{\langle \rho_{\gamma'} \rangle} \lesssim 10^{-5} \ \text{@Mpc} - \text{Gpc}$$

⇒ Production @ largest-scale suppressed

Prolonged inflationary period

- Produced dark photon contributes to energy density
- Production needs to be subdominant not to spoil inflation

 $\rho_{\gamma'} < \rho_{\sigma} \, (< \rho_{\rm total})$

⇒ Bound on total energy transfer

"Cold" dark matter

- Produced dark photon needs to become non-relativistic before matter-radiation equality
- Production rate is bounded by the energy transfer rate

$$p_{\gamma'}(t_{\rm eq}) \ll m_{\gamma'}$$

⇒ High reheating temperature favored

Peaked spectrum of dark photon from a (slowly) rolling scalar

Nakai, RN & Obata '22

Inflecting scalar potential
$$V(\sigma) = \mu^4 \tanh^2\left(\frac{\sigma}{\Lambda}\right)$$

- σ rolls for > 60 e-folds
- Speeds up around the inflection point
- Efficiently enhances DP fluctuations

Peaked spectrum of dark photon from a (slowly) rolling scalar

EoM of dark photon A'_{μ} (in k space)

$$\left[\frac{\partial^2}{\partial \tau^2} + k^2 - \frac{n(\tau)(n(\tau)+1)}{\tau^2}\right] (IA') \simeq 0$$
$$n(\tau) \equiv \frac{\partial I/\partial N}{I} = \frac{\partial \sigma/\partial N}{M}$$

Nakai, RN & Obata '22

Inflecting scalar potential
$$V(\sigma) = \mu^4 \tanh^2\left(\frac{\sigma}{\Lambda}\right)$$

- σ rolls for > 60 e-folds
- Speeds up around the inflection point
- Efficiently enhances DP fluctuations

 The spectrum of A' reflects σ's motion at the time each mode exits the horizon

Nakai, RN & Obata '22

 Peak ~ the mode exiting the horizon at the time when |σ| is maximum

the time when $|\dot{\sigma}|$ is maximum

 $\tilde{\sigma}_i$ (initial field range)

- $c = M/\Lambda$ measures the steepness of $V(\sigma)$ as compared to interaction strength
 - Large $c \Rightarrow \sigma$ rolls fast \Rightarrow short duration of production \Rightarrow peaky spectrum
 - Small $c \Rightarrow \sigma$ rolls slow \Rightarrow long duration of production \Rightarrow flat spectrum

- $c = M/\Lambda$ measures the steepness of $V(\sigma)$ as compared to interaction strength
 - Large $c \Rightarrow \sigma$ rolls fast \Rightarrow short duration of production \Rightarrow peaky spectrum
 - Small $c \Rightarrow \sigma$ rolls slow \Rightarrow long duration of production \Rightarrow flat spectrum
- $\tilde{\sigma}_i = \sigma_i / \Lambda$ is the initial offset of σ
 - Large $\tilde{\sigma}_i \Rightarrow |\partial_t \sigma|$ maximizes later \Rightarrow spectral peak @ high $k \Rightarrow$ large $m_{\gamma'}$
 - Small $\tilde{\sigma}_i \Rightarrow |\partial_t \sigma|$ maximizes earlier \Rightarrow spectral peak @ low $k \Rightarrow$ small $m_{\gamma'}$

- $c = M/\Lambda$ measures the steepness of $V(\sigma)$ as compared to interaction strength
 - Large $c \Rightarrow σ$ rolls fast \Rightarrow short duration of production \Rightarrow peaky spectrum
 - Small c ⇒ σ rolls slow ⇒ long duration of production ⇒ flat spectrum
- $\tilde{\sigma}_i = \sigma_i / \Lambda$ is the initial offset of σ
 - Large $\tilde{\sigma}_i \Rightarrow |\partial_t \sigma|$ maximizes later \Rightarrow spectral peak @ high $k \Rightarrow$ large $m_{\gamma'}$
 - Small $\tilde{\sigma}_i \Rightarrow |\partial_t \sigma|$ maximizes earlier \Rightarrow spectral peak @ low $k \Rightarrow$ small $m_{\gamma'}$
- Isocurvature constraint (purple/green) cuts out small $\tilde{\sigma}_i = \text{low } k$ region

- $c = M/\Lambda$ measures the steepness of $V(\sigma)$ as compared to interaction strength
 - − Large $c \Rightarrow \sigma$ rolls fast \Rightarrow short duration of production \Rightarrow peaky spectrum
 - Small *c* ⇒ σ rolls slow ⇒ long duration of production ⇒ flat spectrum
- $\tilde{\sigma}_i = \sigma_i / \Lambda$ is the initial offset of σ
 - Large $\tilde{\sigma}_i \Rightarrow |\partial_t \sigma|$ maximizes later \Rightarrow spectral peak @ high $k \Rightarrow$ large $m_{\gamma'}$
 - Small $\tilde{\sigma}_i \Rightarrow |\partial_t \sigma|$ maximizes earlier \Rightarrow spectral peak @ low $k \Rightarrow$ small $m_{\gamma'}$
- Isocurvature constraint (purple/green) cuts out small $\tilde{\sigma}_i = \text{low } k$ region

• Successful dark photon dark matter for $m_{\gamma'} \gtrsim 10^{-13} \, {\rm GeV}$

Einstein equation

Einstein equation

- ✤ Spacetime geometry ⇔ Matter content
- * Produced fields inevitably source GW

Einstein equation

✤ Spacetime geometry ⇔ Matter content

~

* Produced fields inevitably source GW

$\textbf{GW} \Leftrightarrow \textbf{tensor mode of metric}$

$$g_{ij} = a^2 \left(\delta_{ij} + \boldsymbol{h_{ij}} \right)$$

$$\left(\frac{\partial^2}{\partial \tau^2} - \nabla^2 - \frac{\partial_\tau^2 a}{a}\right) (a h_{ij}) = -\frac{2 a^3}{M_\rho^2} \left(E_i E_j + B_i B_j\right)$$

$$E_i \equiv -\frac{\bar{I}}{a^2} \partial_\tau A_i, \quad B_i \equiv \frac{\bar{I}}{a^2} \epsilon_{ijk} \partial_j A_k$$

Observational GW signals sourced by DPDM

- Peaky spectrum reflects the production feature of dark photon
- · Potential GW signature from very light dark photon dark matter
- Future GW missions are wanted!

Outline

2 Inflationary production of dark photon

Summary & discussions

- * Dark matter is a necessary ingredient for our universe, albeit unknown identity
- * Light dark photon is an interesting candidate
 - ▷ Stable against decay
 - ▷ Ubiquitous in models beyond SM

Summary & discussions

Dark matter is a necessary ingredient for our universe, albeit unknown identity

* Light dark photon is an interesting candidate

- Stable against decay
- ▷ Ubiquitous in models beyond SM

* Inflationary production of dark photon

$$\mathcal{L}_{\rm kin/int} = -\frac{I^2(\sigma)}{4} F_{\mu\nu} F^{\mu\nu}$$

- * Peaked spectrum from the motion of σ
- * Open parameter space for $m_{\gamma'} \gtrsim 10^{-13} \, \text{eV}$
- Potential GW signals from very light DPDM for future GW observations

Summary & discussions

Dark matter is a necessary ingredient for our universe, albeit unknown identity

* Light dark photon is an interesting candidate

- Stable against decay
- ▷ Ubiquitous in models beyond SM

* Inflationary production of dark photon

$$\mathcal{L}_{\rm kin/int} = -\frac{I^2(\sigma)}{4} F_{\mu\nu} F^{\mu\nu}$$

- * Peaked spectrum from the motion of σ
- * Open parameter space for $m_{\gamma'} \gtrsim 10^{-13} \, \mathrm{eV}$
- Potential GW signals from very light DPDM for future GW observations

* Further phenomenology?

- Kinetic mixing with SM photon ⇒ effective coupling to charged particles
- Other signals in astrophysical/cosmological experiments?

BONUS SLIDES

Strong coupling issue

• Also the dark sector may have particles charged under the dark U(1)

$$\mathcal{L}_{\rm dark} = -\frac{I^2}{4} F'_{\mu\nu} F'^{\mu\nu} - \frac{m_{\gamma'}^2}{2} A'_{\mu} A'^{\mu} + e' A'_{\mu} J^{\mu}_{\rm dark}$$

• By canonically normalizing $A'_{\mu} = A^{\text{canonical}}_{\mu}/I$, the mass and coupling become

$$m_{\gamma'}
ightarrow rac{m_{\gamma'}}{I} \ e'
ightarrow rac{e'}{I}$$

- For n > 0, I increases in time \Leftrightarrow very small I initially
- For n < 0, I decreases in time \Leftrightarrow very large I initially

• Better to have n < 0

- ▷ To avoid mass suppression of production
- ▷ To avoid strong coupling in dark sector

n > 0 is essentially excluded

Evolution after inflation

- Cold dark matter paradigm is our target
- Produced dark photon must become non-relativistic at time t_{NR}, defined by

$$\frac{k_{\text{peak}}}{a(t_{\text{NR}})} = m_{\gamma'}$$

• We demand that this time is earlier than the matter-dominated era starts

 $t_{\rm NR} < t_{\rm eq}$

• The dark photon behavior changes from radiation-like to dust-like

$$\left< \rho_{\gamma'} \right> \propto \begin{cases} a^{-4} \; , \qquad t < t_{\rm NR} \\ a^{-3} \; , \qquad t > t_{\rm NR} \end{cases}$$

Evaluate the fractional energy density of dark photon at the present time

$$\Omega_{\gamma'} \equiv \frac{\langle \rho_{\gamma'} \rangle}{\rho_c} \bigg|_{t=t_0} \quad \Leftrightarrow \quad \Omega_{\rm DM} \simeq \frac{0.120}{h^2}$$