Modelling the radio - $\gamma\text{-ray}$ emission components of Jetted AGNs

Evaristus U. Iyida

University of Nigeria, Nsukka

DSU2023, EAIFR-ICTP, Kigali, Rwanda 10 - 14 July, 2023

Evaristus U. Iyida

Modelling the radio - γ -ray emission compondDSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -

<u>Galaxy</u> is a massive, gravitationally bound system that consists of stars and stellar remnants, an interstellar medium, and dark matter

(def. International Astronomical Union - IAU)

Name → Greek root 'galaxias' = 'milky' (refers to the Milky Way)

Introduction cont'd

Galaxy components: in terms of their content (in terms of their structure will come later)

- Tens to hundreds of billions of stars (including stellar clusters).

- Stellar remnants (white dwarfs, neutron stars, black holes).

- Interstellar medium (gas and dust).

- Dark matter (still an open question).

Andromeda galaxy (M31) 2.5 million ly away (2.4 x 10'⁹ km)

Image credits: David Dayag

4 2 6 4 2 6

Active galactic nuclei (AGNs)

Supermassive black holes (SMBHs) in Galaxies

- SMBHs at centre of almost all known galaxies
- a few percent of these BHs are "active"
- "active" \rightarrow luminous centres may out-shine entire galaxy

Jets from AGN — Collimated outflows

- a few percent of AGN eject radio-emitting jets
- jets with relativistic charged particles

Powering source

 $\bullet~$ BH & accretion $\rightarrow~$ rotation & accretion-disk $\rightarrow~$ radiation

Elements of AGNs

- SMBH in the centre $\sim 10^6 10^9 M_{\odot}$
- Accretion disk, large temperature range
- Obscuring torus (dust) may block view on disk
- Broad-line Region (BLR), linewidths $\sim 10^3-10^4~{\rm km/s}$
- Narrow-line Region (NLR), linewidths \sim 500 km/s
- Jets (magnetsied plasma)

Observational Properties

Blazars

- powered by relativistic jets
- rapid and large variation
- high and variable polarization
- superluminal motions
- high energetic GeV/ TeV emissions

Radio galaxies

- powered by relativistic jets
- strong variable polarization
- superluminal motion in their radio jets
- emit radio waves by synchrotron process

Radio Galaxy Classification

- morphology of double structure
- jets, lobes and hotspots
- by Fanaroff & Riley (FR) in 1974
- division on radio structures
- FR I: edge-darkened
- FR I e.g. Centaurus A
- FR II: edge-brightened
- RGs seen in VHE seem to be FR I
- Cen A, M 87, NGC 1275, PKS 0625-354, IC 310, Per A

Blazar classification based on synchrotron peak frequency

Blazars are divided into two:

- BL Lacertae Objects (BL Lacs)
- Flat Spectrum Radio Quasars(FSRQs)

BL Lacs:

- Low synchrotron peaked (LSPs) $\log \nu_{peak}^{syn} < 14(H_z)$
- Intermediate synchrotron peaked (ISPs) 14 <log $\nu_{peak}^{syn} < 15(H_z)$
- High synchrotron peaked (HSPs) $\log \nu_{peak}^{syn} > 15(H_z)$

FSRQs

• log $\nu_{peak}^{syn} < 12(H_z)$

AGN 'tags' and properties

Different from 'normal' galaxies Tag 1: Bright, unresolved core emission in galaxy

· bright, unresolved central emission peak (point-like, 'star')

· can be distinguished from surface brightness profile

NGC 1097 redshift : 0.00424 distance : 14.5 Mpc 1 arcsec ≙ 70 pc

Modelling the radio - γ -ray emission compond DSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -

AGN 'tags' and properties cont'd

Tag 3: Strong blue component in spectrum

Evaristus U. lyida

Modelling the radio - γ -ray emission compon(DSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -

Tag 4: Broad emission lines

- *broad emission lines* in the spectrum here: Balmer lines FWHM ~ 100 Å
- Doppler broadening related to high velocities

 $ned.ipac.caltech.deu/level5/Glossary/Glossary_S.htlm.\ Spectrum\ A.V.\ Filippenko$

AGN "tags" and classifications cont'd

Tag 5: Broad Spectral Energy Distribution

AGNs emissions are

- Thermal/Disk dominated (\simeq 90 %)
- Non-thermal/Jet dominated (less > 10 %)

Non-thermal emissions occur at all wavebands

AGNs Radiative Processes

Various ways of producing photons

- focus: non-thermal processes
- all types of bremsstrahlung not discussed
- synchrotron radiation
- Compton: photon looses energy
- inverse-Compton: photon gains
- Synchrotron Self-Compton (SSC)
- external-Compton (EC)
- leptonic (electron-based) models

< □ > < □ > < □ > < □ > < □ > < □ >

 other models: hadronic (proton-based), lepto-hadronic

Jetted AGNs emission processes

• Low energy (radio to X-ray) component - Synchrotron process by electrons in the relativistic jet.

High energy (X-ray to γ -ray component)

- Leptonic model
- Hadronic model

High energy radiation is produced via inverse Compton scattering that can be either SSC or EC $\,$

Methodology and Basic Asssumption

Proxy parameters known as *synchrotron spectrum* (SS), *Inverse – Compton spectrum* (IC) and *Compton spectrum* (CS)

Synchrotron spectrum

$$= -\frac{\log(\frac{L_r}{L_x}.K)}{\log\frac{v_r}{v_x}} \tag{1}$$

Compton spectrum

$$= -\frac{\log(\frac{L_{x}}{L_{\gamma}}.K)}{\log\frac{v_{x}}{v_{\gamma}}}$$
(2)

Inverse compton spectrum

$$= -\frac{\log(\frac{L_r}{L_{\gamma}}.K)}{\log\frac{V_r}{V_{\gamma}}}$$
(3)

L is the luminosities of the objects in radio, X-ray and γ -ray while ν and *K* are the observed frequency and the total *k*-correction factor respectively

Evaristus U. Iyida

Modelling the radio - γ -ray emission compondDSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -

Distribution of Synchrotron Spectrum

(a) Density distribution of synchrotron spectrum

(b) Cumulative distribution function synchrotron spectrum

Parameter	Subsamples	п	d	р
synchrotron spectrum	RGs – HSPs	64 - 138	0.39	0.000864
synchrotron spectrum	RGs – LSPs	64 - 133	0.66	0.0003569
synchrotron spectrum	RGs — ISPs	64 - 130	0.71	0.00087534
synchrotron spectrum	RGs – FSRQs	64 - 279	0.87	0.0002344

Evaristus U. Iyida

Modelling the radio - γ -ray emission compontDSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -

Results cont'd

Distribution of Compton Spectrum

(a) Density distribution of Compton spectrum

(b) Cumulative distribution function Compton spectrum

Parameter	Subsamples	n	d	р
Compton spectrum	RGs – HSPs	64 - 138	0.34	1.21×10 ⁻⁰⁸
Compton spectrum	RGs – LSPs	64 - 133	0.62	6.34×10 ⁻⁰⁵
Compton spectrum	RGs – ISPs	64 - 130	0.68	8.98×10 ⁻⁰⁷
Compton spectrum	RGs – FSRQs	64 - 279	0.82	3.45×10 ⁻⁰⁶

Evaristus U. Iyida

Modelling the radio - γ -ray emission compon(DSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -

Results cont'd

Distribution of Inverse Compton Spectrum

(a) Density distribution of Compton spectrum

Parameter	Subsamples	п	đ	p
Inverse Compton spectrum	RGs – HSPs	64 - 138	0.63	4.21×10 ⁻⁰⁶
Inverse Compton spectrum	RGs – LSPs	64 - 133	0.56	3.07×10 ⁻⁰⁴
Inverse Compton spectrum	RGs – ISPs	64 - 130	0.48	1.08×10 ⁻⁰⁵
Inverse Compton spectrum	RGs – FSRQs	64 - 279	0.53	2.98×10 ⁻⁰⁷

Evaristus U. lyida

Modelling the radio - γ -ray emission compontDSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -

Correlations among the continuous spectra

Two Groups of objects:

- radio galaxies FSRQs
- BL Lacs
- radio galaxies and FSRQs are aligned

plots	Sample	k	∆k	k0	Δk_0	r	P
SS – CS	Whole sample	0.96	0.24	-6.22	0.40	0.62	1.91×10 ⁻⁶
SS – CS	radio galaxies – FSRQs	0.82	0.20	-5.03	0.20	0.71	2.03×10 ⁻⁶
SS – CS	BL Lacs	0.74	0.18	-5.20	0.30	0.57	3.26×10 ⁻⁶

Results of linear regression fitting given as $y = (\kappa \pm \Delta \kappa) x + (\kappa 0 \pm \Delta \kappa 0)$

Scatter plot of SS against CS

Correlations among the continuous spectra

Fig. 7: IC - CS and IC - CS plot against Compton spectrum for FSRQs, Seyfert galaxies and BL Lacs

plots	Sample	k	∆k	k0	∆k ₀	r		p	olots	Sample	k	∆k	k0	Δk_0	r	p
IC – SS	Whole sample	-0.93	0.31	2.17	0.08	-0.65	10-6	10	C = CS	Whole sample	1.14	0.34	0.72	0.38	0.57	10-7
IC – SS	Seyfert galaxies	-0.75	0.26	1.08	0.06	-0.52	10-6	10	C – CS	Seyfert galaxies	2.03	0.20	0.22	0.26	0.56	10-7
IC – SS	BL Lacs	-0.56	0.23	2.90	0.10	-0.62	10-6	10	C – CS	BL Lac subclasses	1.25	0.23	-4.32	0.30	0.58	10-7
IC – SS	FSRQs	-0.56	0.32	2.90	0.10	-0.68	10-6	10	C – CS	FSRQ ₅	1.30	0.16	-5.01	0.20	0.61	10-7

Evaristus U. Ivida

Modelling the radio - γ -ray emission compondDSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -

- Modeled parameters of blazars and radio galaxies used to quantitatively test the emission components of the sources
- From the comparison of the distributions of SS, CS and IC, it is observed that FSRQs could be the extreme version of radio galaxy populations
- This indicates that an AGN may start off as a radio galaxy and grow in different emission spectra through BL Lacs to FSRQs
- Signifying that radio galaxies are the youngest subclasses of the jetted AGNs

Questions/Comments/Suggestions

Thanks for Listening

Evaristus U. lyida

Modelling the radio - γ -ray emission compon/DSU2023, EAIFR-ICTP, Kigali, Rwanda 10 -