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Figure 1. Left: Reproduction of V-band data obtained in Danieli et al. (2022) using Hubble Space Telescope WFC3/UVIS
camera, containing UDG1 and a nearby field (post-selection criteria described in Danieli et al. (2022)). Circles represent 2re↵
and 3re↵ of the stellar light profile, with re↵ the Sérsic radius. Right: A scatter plot of objects from the left panel, divided into
magnitude bins. The magnitude bins for objects at mV < 25.0 mag are relatively clean from background contamination. In
comparison, contamination is significant for the bin 25.0 < mV < 26.5 mag. In our main analysis, we primarily use the r < 2re↵
data of the mV < 25.0 mag bins. We present a preliminary analysis of the 25.0 < mV < 26.5 mag bin in App. D, showing that
the faint objects also exhibit radial clustering above the background, comparable to the stellar body.

The left panel of Fig. 1 shows the V -band Hubble61

Space Telescope (HST) WFC3/UVIS image of UDG162

and its nearby field, adapted from Danieli et al. (2022).63

The right panel shows all compact sources that were64

selected as GC candidates based on the photometric se-65

lection criteria in Danieli et al. (2022). In this work we66

focus on a low contamination sample of GC candidates,67

consisting of the 33 mV < 25.0 mag objects contained68

within 2re↵ (twice the Sérsic half-light radius of the stel-69

lar body; inner circle in Fig. 1), which has a background70

contamination of about 1 object, estimated by compar-71

ison to the nearby field (Danieli et al. 2022). Spectroc-72

scopic information is available for 11 of these bright GCs73

(Müller et al. 2020).74

It is noteworthy that most of the brighter GCs in75

the right panel of Fig. 1 are concentrated in the region76

r < re↵ . To explore this further, in Fig. 2 we show the77

luminosity of this sample of GCs vs. their projected dis-78

tance from the center of the galaxy. The data shows a79

clear trend: more luminous GCs are on average closer80

to the center of the galaxy. We estimate a p-value81

of about 1% for the hypothesis that the data is82

a chance fluctuation and that there is no mass83

segregation (see App. A). This luminosity or mass84

segregation calls for a quantitative dynamical explana-85

tion.86

In this paper we show that this explanation can be87

naturally provided by dynamical friction. The deceler-88

ation experienced by a GC due to dynamical friction in89

a galactic halo is roughly proportional to the GC mass90

m?. Therefore, more massive GCs inspiral closer to the91

center of the galaxy, resulting in mass segregation. This92

simple picture can be expected to hold over an interme-93

diate duration of time: long enough to enable dynamical94

friction to act, but short enough so that GC mergers do95

not convert a large fraction of the total mass in GCs into96

a nuclear cluster. As we will demonstrate, using more97

detailed analytic estimates as well as a suite of numeri-98

cal simulations, UDG1 as we view it today may indeed99

be in this intermediate stage.100

The paper is organized as follows. In Sec. 2 we dis-101

cuss dynamical e↵ects that shape the GC population in102

UDG1 and similar galaxies. In Sec. 3 we recapitulate103

observational studies of UDG1, and define benchmark104

mass models. In Sec. 4 we set up and study N-body105

simulations, in which some dynamical e↵ects (notably106

dynamical friction and GC mass loss) are modeled semi-107

Dynamical view on dark matter from globular cluster orbits

Kfir Blum     /    Rwanda DSU July 2023



Strong evidence for dark matter in large scale structure 
(calculable given observed initial conditions).

On large scales, dynamics of dark matter is consistent with that of pressureless dust.



~1 kpc

ESO/Digitized Sky Survey 2

Strong evidence for dark matter in galaxies.
Hard to calculate.
A lot of data, difficult to interpret.

Note huge separation of scales
between LSS (> Mpc) 
and galaxies (~ kpc).

Many puzzles, plenty of room for surprises
in the physics of dark matter.
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Stellar velocities probe the mean-field induced by dark matter.

Can we observe dynamics beyond mean-field?



…A program I will not discuss here:   substructure
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Can we observe dynamics 
beyond mean-field?



Globular Cluster: 

Massive “probe” traversing the halo.

5 × 105 M⊙



Globular Cluster: 

Massive “probe” traversing the halo.

Should slow down due to
gravitational dynamical friction

Chandrasekhar 1943

function as the diffusion coefficient of a degenerate gas
[cf. Eq. (A12) and Eq. (A21)]. This is somewhat surprising,
because the Fokker-Planck calculation took into account
Pauli exclusion in the medium whereas Eq. (4) does not.
Moreover, according to Eq. (4), only particles with veloc-
ities smaller than the probe object’s contribute to the DF.
For the case of degenerate matter, one could have expected
that the opposite should happen: only particles close to the
Fermi surface contribute to DF. We refer the reader again to
Appendix A 2 for the detailed computation that leads us
to Eq. (7).
Finally, note that above we evaluated DF in the zero-

temperature limit and not in the finite-temperature limit. In
Sec. IV we consider a finite-temperature density profile, so
we should keep this caveat in mind. We have not explored
DF of degenerate matter within the more sophisticated
treatment of Refs. [53,54].

C. Bose gas

This is the relevant limit for the case where halo particles
follow the Bose-Einstein statistics, as in the ULDM model.
The diffusion coefficients can be obtained either by solving
a Langevin equation with stochastic fluctuations of the
gravitational potential [38] or, as we do in Appendix A 3,
by using a kinetic equation.4 Both approaches provide
identical results.
Up to a slight modification of the Coulomb logarithm,

DF for the bosonic gas includes a contribution to the C term
that is identical to that of the classical gas in Eq. (5). In
addition to this, ULDM large-scale density fluctuations
(manifested byBose-enhancement terms in the kinetic theory
computation) cause additional velocity drift that can be
characterized by an extra term to C → Cþ ΔC, with5

ΔC ¼ lnΛ
!
meff

m⋆

"!
erfðXeffÞ −

2Xeffffiffiffi
π

p e−X
2
eff

"
; ð8Þ

where meff ¼ π3=2ρ=ðmσÞ3 is the ULDM mass enclosed in
an effective de Broglie volume and Xeff ≡ v=

ffiffiffi
2

p
σeff with

σeff ¼ σ=
ffiffiffi
2

p
. Numerically, meff≈1.2×106ð10−21 eV=

mÞ3½ρ=ð3×107M⊙=kpc3Þ&½ð10km=sÞ=σ&3M⊙. With these
numbers and keeping in mind a typical GC mass
m' ∼ 105 M⊙, the ΔC effect becomes quantitatively impor-
tant in Fornax for m≲ 3 × 10−20 eV.
The kinetic theory result summarized above assumed

that the scale size of the system—e.g., the radius r of a GC
orbit—is much larger than the effective de Broglie wave-
length of the ULDM particles,

rdB ≈
2π
mσ

≈ 300

!
10 km=s

σ

"!
10 −21 eV

m

"
pc; ð9Þ

and thus much larger than ULDM quasiparticle excitations
or than the soliton core that is ubiquitously found in ULDM
simulations (see Ref. [33] for a review). For r < rdB, the
treatment above breaks down and must be modified by
taking into account large-scale coherence effects of the
ULDM. This can be done via solving the Schrödinger
equation, as shown in Refs. [33,39], which indeed found
that DF becomes suppressed at r≲ rdB. We refer the reader
to Refs. [33,39] for more details on DF and the Fornax
GC puzzle in the context of ULDM. Here we only note
that for m≳ 10−20 eV, where r ≫ rdB and meff ≪ m' for
the Fornax GCs, DF in the ULDM medium becomes
quantitatively similar to DF in a classical medium.

III. DYNAMICAL FRICTION IN A CDM HALO:
CORE VS CUSP

It is natural to define an instantaneous DF time, τ, via

τ ¼ V3

4πG2m⋆ρC
; ð10Þ

such that (including here only the DF effect)

_V ¼ −
1

τ
V: ð11Þ

A crude estimate of the time scale it would take a GC to
settle down to the dynamical center of a halo can be
obtained by computing τ, using the current instantaneous
position and velocity of the GC. Assuming a CDM NFW
distribution, and plugging an estimate of the dark matter
density and velocity dispersion corresponding to the
present observed position of each GC into Eqs. (5) and
(10), the result we find is summarized in the column
marked τCDM (highlighted in blue) in Table I. For GC3 and
GC4 the DF time estimated in this way is 2.6 and 0.9 Gyr,
respectively, much shorter than the age of the system.6

However, estimating an orbital decay time from the
instantaneous value of τ can be misleading. In a realistic
galaxy, the DM phase-space distribution and with it the
instantaneous value of τ could change along the orbit of the
GC. To obtain a better estimate of the actual settling time one
could track the orbit of the GC semianalytically, using the
phase-space-dependent value of τ along the orbit [32,46,62].
Some details of this calculation are given in Appendix E.
The semianalytic integration reproduces results from

N-body simulations [17]. To demonstrate this, we use
Eqs. (5) and (10) while reading the CDM density and
velocity dispersion from the N-body simulations of
Ref. [17] to integrate the orbit of a GC. In Fig. 2

4While this paper was being prepared for publication, Ref. [55]
appeared which also presents a kinetic theory derivation of the
ULDM diffusion coefficients.

5Formally, the ΔC term is there also for standard CDM but is
negligible unless the individual DM particles are extremely
massive.

6Our estimates are larger than those previously obtained in
Ref. [33]; we discuss the differences in Sec. VI.
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and thus much larger than ULDM quasiparticle excitations
or than the soliton core that is ubiquitously found in ULDM
simulations (see Ref. [33] for a review). For r < rdB, the
treatment above breaks down and must be modified by
taking into account large-scale coherence effects of the
ULDM. This can be done via solving the Schrödinger
equation, as shown in Refs. [33,39], which indeed found
that DF becomes suppressed at r≲ rdB. We refer the reader
to Refs. [33,39] for more details on DF and the Fornax
GC puzzle in the context of ULDM. Here we only note
that for m≳ 10−20 eV, where r ≫ rdB and meff ≪ m' for
the Fornax GCs, DF in the ULDM medium becomes
quantitatively similar to DF in a classical medium.

III. DYNAMICAL FRICTION IN A CDM HALO:
CORE VS CUSP

It is natural to define an instantaneous DF time, τ, via

τ ¼ V3

4πG2m⋆ρC
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such that (including here only the DF effect)

_V ¼ −
1
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A crude estimate of the time scale it would take a GC to
settle down to the dynamical center of a halo can be
obtained by computing τ, using the current instantaneous
position and velocity of the GC. Assuming a CDM NFW
distribution, and plugging an estimate of the dark matter
density and velocity dispersion corresponding to the
present observed position of each GC into Eqs. (5) and
(10), the result we find is summarized in the column
marked τCDM (highlighted in blue) in Table I. For GC3 and
GC4 the DF time estimated in this way is 2.6 and 0.9 Gyr,
respectively, much shorter than the age of the system.6

However, estimating an orbital decay time from the
instantaneous value of τ can be misleading. In a realistic
galaxy, the DM phase-space distribution and with it the
instantaneous value of τ could change along the orbit of the
GC. To obtain a better estimate of the actual settling time one
could track the orbit of the GC semianalytically, using the
phase-space-dependent value of τ along the orbit [32,46,62].
Some details of this calculation are given in Appendix E.
The semianalytic integration reproduces results from

N-body simulations [17]. To demonstrate this, we use
Eqs. (5) and (10) while reading the CDM density and
velocity dispersion from the N-body simulations of
Ref. [17] to integrate the orbit of a GC. In Fig. 2

4While this paper was being prepared for publication, Ref. [55]
appeared which also presents a kinetic theory derivation of the
ULDM diffusion coefficients.

5Formally, the ΔC term is there also for standard CDM but is
negligible unless the individual DM particles are extremely
massive.

6Our estimates are larger than those previously obtained in
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We summarize in Sec. VII. Many details of the calcu-
lations are deferred to the Appendixes.

II. DYNAMICAL FRICTION: MICROPHYSICS

Dynamical friction can be described in terms of the
Fokker-Planck theory for the motion of a probe particle
(a GC in our case) traveling through a gas of spectator
particles (DM particles in our case). In Appendix A we
derive the Fokker-Planck equation as the small-momentum-
exchange limit of the Boltzmann equation, governing the
motion of a probe object in different background media,
accounting for the gravitational interaction between the
probe and the medium particles. Our calculation is direct, in
the sense that it simply amounts to computing the collision
integral while taking care to account for the quantum
statistics of spectator gas particles. Here we bypass the
details of the calculation, while utilizing the main results.
The Fokker-Planck equation is characterized by a set of

momentum space diffusion coefficients, calculated in
Appendixes A 1, A 2, and A 3 for the case of a medium
composed of a classical gas, degenerate Fermi gas, and
Bose gas, respectively. Of particular importance for our
analysis is the diffusion coefficient Djj, corresponding to
the diffusion in momentum parallel to the probe object’s
instantaneous velocity. The DF deceleration acting on a
probe with mass m⋆ moving with instantaneous velocity V
with respect to the medium is computed as [51]

dV
dt

¼
Djj

m⋆
V̂

¼ −
4πG2m⋆ρ

V3
CV: ð2Þ

In the second line, to compare the DF arising in different
types of media we define the dimensionless coefficient C as
follows [33]:

C ¼ −
V2Djj

4πG2m2⋆ρ
; ð3Þ

where ρ is the mass density of the medium.
Different microphysics properties of the medium (in our

case, the DM galactic halo) predict different results for C.
In the next subsection we discuss three scenarios.

A. Classical gas

This is the appropriate limit for a halo composed of a gas
of classical particles. Wewill adopt this limit to describe DF
in the ordinary CDM model, as well as for the SIDM
model.2 For a homogeneous classical gas with an isotropic

distribution function fvðvÞ, DF is described by the
Chandrasekhar formula [16] (see also Appendix A 1),

Cclass ¼ 4π lnΛ
Z

V

0
dvmv2mfvðvmÞ; ð4Þ

where lnΛ is the Coulomb logarithm. If the gas distribution
function is a Maxwellian with velocity dispersion σ,
fvðvÞ ¼ ð2πσ2Þ−3=2 expð−v2=ð2σ2ÞÞ, we have

CMax ¼ lnΛ
!
erfðXÞ − 2Xffiffiffi

π
p e−X

2

#

→ lnΛ

(
1 V ≫ σ;ffiffi

2
p

3
ffiffi
π

p V3

σ3 V ≪ σ;
ð5Þ

where X ≡ V=ð
ffiffiffi
2

p
σÞ and where in the second line we show

the asymptotic scaling of C at large and small X.

B. Degenerate Fermi gas

This is the relevant limit for DF at the core of a halo
supported by the degeneracy pressure of light fermionic
DM (DDM model [44,45]). In the high-degeneracy limit
we have fvðvÞ ¼ 3=ð4πv3FÞθðvF − vÞ, where θðxÞ is the
Heaviside function, the Fermi velocity vF is related to the
medium density via

ρ ¼ gm4v3F
6π2

; ð6Þ

m is the mass of the particles and g is the number of degrees
of freedom (e.g., g ¼ 2 for Weyl fermions). The calculation
in Appendix A 2 gives the following limiting behavior:

CDDM → lnΛ

(
1 V ≫ vF;
V3

v3F
V ≪ vF

ð7Þ

Thus, in both limits V ≫ vF and v ≪ vF, we find that
DF in a degenerate medium is equivalent to DF in a classical
medium with the replacement σ → ð 2

9πÞ
2
3vF ≈ 0.17vF. Note

that the three-dimensional velocity dispersion associated
with the classical isotropic Maxwellian distribution is
hv2x þ v2y þ v2zi ¼ hv2i ¼ 3σ2, while the dispersion for the
degenerate distribution is hv2i ¼ ð3=5Þv2F. Therefore, the
pressure in the different types of media matches when
vF ≈ 2.2σ. Similarly, Eqs. (7) and (5) tell us that DF in
thesemediamatch when vF ≈ 5.8σ. We note that the form of
Eq. (7) agrees with the results of Ref. [52].3

As an aside, it is interesting to note that to leading order
in m=m⋆, the diffusion coefficient of a classical gas has the
same functional form with respect to the distribution

2This is a good approximation for the SIDM cross sections of
interest, which are small enough such that SIDM particles travel
across distances larger than the size of the system without
colliding with each other. See Sec. V. 3We thank P. H. Chavanis for pointing it out to us.

ASSESSING THE FORNAX GLOBULAR CLUSTER TIMING … PHYS. REV. D 104, 043021 (2021)

043021-3

We summarize in Sec. VII. Many details of the calcu-
lations are deferred to the Appendixes.
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motion of a probe object in different background media,
accounting for the gravitational interaction between the
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integral while taking care to account for the quantum
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Eq. (7) agrees with the results of Ref. [52].3

As an aside, it is interesting to note that to leading order
in m=m⋆, the diffusion coefficient of a classical gas has the
same functional form with respect to the distribution

2This is a good approximation for the SIDM cross sections of
interest, which are small enough such that SIDM particles travel
across distances larger than the size of the system without
colliding with each other. See Sec. V. 3We thank P. H. Chavanis for pointing it out to us.

ASSESSING THE FORNAX GLOBULAR CLUSTER TIMING … PHYS. REV. D 104, 043021 (2021)

043021-3

Coefficient C encodes state of the medium:

5 × 105 M⊙



Globular Cluster: 

Massive “probe” traversing the halo.

Should slow down due to
gravitational dynamical friction

5 × 105 M⊙

Chandrasekhar 1943

N-body simulation:
30K “star particles”
1 “GC”, about 100 times more 
massive than “stars”



Dynamical friction should:

— Cause more massive GCs to sink faster 
down the potential well (mass segregation),

— Cause GCs near the center to congregate, 
potentially form nuclear star cluster.

Rest of talk: 3 examples
1. Fornax (a puzzle? an informative hint?)
2. Old analysis: stacked dwarf ellipticals (reiteration of Fornax?)
3. Ultra-diffuse galaxy with high statistics: a textbook example?

Can we detect this effect in dark matter-dominated systems?



Fornax GC timing problem Tremaine 1976,
Oh, Lin, Richer 2000,
Petts, Gualandris, Read 2015,
Hui et al 2017, Lancaster et al 2019,
Meadows et al 2020, Bar et al 2021, 
Shao et al 2021,…

Example 1



Lack of nuclear star cluster in Fornax?

Bar et al (Shao et al) find mild (~null)
statistical timing problem,
ignoring the question of NSC.

Bar et al (Shao et al) find ~50% (~30%)
of all GCs should have arrived at r~0.

In either case, we might have expected
an NSC of ~  solar mass.106

Tremaine 1976,
Oh, Lin, Richer 2000,
Petts, Gualandris, Read 2015,
Hui et al 2017, Lancaster et al 2019,
Meadows et al 2020, Bar et al 2021, 
Shao et al 2021,…

3D

projected 2D

Example 1



A dark matter core in Fornax 
— even only in the inner few 100 pc’s —
could solve the GC timing / NSC puzzle.

“Core vs. cusp”:

Lack of NSC may add credence 
to core hypothesis.

Tremaine 1976,
Oh, Lin, Richer 2000,
Petts, Gualandris, Read 2015,
Hui et al 2017, Lancaster et al 2019,
Meadows et al 2020, Bar et al 2021, 
Shao et al 2021,…

Example 1



What about other galaxies?

…we want GC-rich, dark matter-dominated galaxies.



Lotz et al, 2001
51 dwarf elliptical galaxies (HST), up to 20 GCs/galaxy, stacking analysis.

Predicted NSCs more luminous than observed (…where are the missing GCs of the left panel?)
           puzzle similar to that of Fornax?

But many assumptions: (1) GCs on circular orbits, (2) GCs started on same distribution as stars, (3) velocity 
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2 Bar, Danieli & Blum

Figure 1. Left: Reproduction of V-band data obtained in Danieli et al. (2022) using Hubble Space Telescope WFC3/UVIS
camera, containing UDG1 and a nearby field (post-selection criteria described in Danieli et al. (2022)). Circles represent 2re↵
and 3re↵ of the stellar light profile, with re↵ the Sérsic radius. Right: A scatter plot of objects from the left panel, divided into
magnitude bins. The magnitude bins for objects at mV < 25.0 mag are relatively clean from background contamination. In
comparison, contamination is significant for the bin 25.0 < mV < 26.5 mag. In our main analysis, we primarily use the r < 2re↵
data of the mV < 25.0 mag bins. We present a preliminary analysis of the 25.0 < mV < 26.5 mag bin in App. D, showing that
the faint objects also exhibit radial clustering above the background, comparable to the stellar body.

The left panel of Fig. 1 shows the V -band Hubble61

Space Telescope (HST) WFC3/UVIS image of UDG162

and its nearby field, adapted from Danieli et al. (2022).63

The right panel shows all compact sources that were64

selected as GC candidates based on the photometric se-65

lection criteria in Danieli et al. (2022). In this work we66

focus on a low contamination sample of GC candidates,67

consisting of the 33 mV < 25.0 mag objects contained68

within 2re↵ (twice the Sérsic half-light radius of the stel-69

lar body; inner circle in Fig. 1), which has a background70

contamination of about 1 object, estimated by compar-71

ison to the nearby field (Danieli et al. 2022). Spectroc-72

scopic information is available for 11 of these bright GCs73

(Müller et al. 2020).74

It is noteworthy that most of the brighter GCs in75

the right panel of Fig. 1 are concentrated in the region76

r < re↵ . To explore this further, in Fig. 2 we show the77

luminosity of this sample of GCs vs. their projected dis-78

tance from the center of the galaxy. The data shows a79

clear trend: more luminous GCs are on average closer80

to the center of the galaxy. We estimate a p-value81

of about 1% for the hypothesis that the data is82

a chance fluctuation and that there is no mass83

segregation (see App. A). This luminosity or mass84

segregation calls for a quantitative dynamical explana-85

tion.86

In this paper we show that this explanation can be87

naturally provided by dynamical friction. The deceler-88

ation experienced by a GC due to dynamical friction in89

a galactic halo is roughly proportional to the GC mass90

m?. Therefore, more massive GCs inspiral closer to the91

center of the galaxy, resulting in mass segregation. This92

simple picture can be expected to hold over an interme-93

diate duration of time: long enough to enable dynamical94

friction to act, but short enough so that GC mergers do95

not convert a large fraction of the total mass in GCs into96

a nuclear cluster. As we will demonstrate, using more97

detailed analytic estimates as well as a suite of numeri-98

cal simulations, UDG1 as we view it today may indeed99

be in this intermediate stage.100

The paper is organized as follows. In Sec. 2 we dis-101

cuss dynamical e↵ects that shape the GC population in102

UDG1 and similar galaxies. In Sec. 3 we recapitulate103

observational studies of UDG1, and define benchmark104

mass models. In Sec. 4 we set up and study N-body105

simulations, in which some dynamical e↵ects (notably106

dynamical friction and GC mass loss) are modeled semi-107

Forbes et al 2019, 2020,
Muller et al 2020, 2021,
Danieli et al 2022,
Danieli, Bar, KB 2022,…

NGC5846-UDG1

A different system: ultra diffuse dwarf galaxy
Example 3



2 Bar, Danieli & Blum

Figure 1. Left: Reproduction of V-band data obtained in Danieli et al. (2022) using Hubble Space Telescope WFC3/UVIS
camera, containing UDG1 and a nearby field (post-selection criteria described in Danieli et al. (2022)). Circles represent 2re↵
and 3re↵ of the stellar light profile, with re↵ the Sérsic radius. Right: A scatter plot of objects from the left panel, divided into
magnitude bins. The magnitude bins for objects at mV < 25.0 mag are relatively clean from background contamination. In
comparison, contamination is significant for the bin 25.0 < mV < 26.5 mag. In our main analysis, we primarily use the r < 2re↵
data of the mV < 25.0 mag bins. We present a preliminary analysis of the 25.0 < mV < 26.5 mag bin in App. D, showing that
the faint objects also exhibit radial clustering above the background, comparable to the stellar body.
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tance from the center of the galaxy. The data shows a79
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of about 1% for the hypothesis that the data is82

a chance fluctuation and that there is no mass83

segregation (see App. A). This luminosity or mass84

segregation calls for a quantitative dynamical explana-85
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In this paper we show that this explanation can be87
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ation experienced by a GC due to dynamical friction in89

a galactic halo is roughly proportional to the GC mass90

m?. Therefore, more massive GCs inspiral closer to the91

center of the galaxy, resulting in mass segregation. This92

simple picture can be expected to hold over an interme-93

diate duration of time: long enough to enable dynamical94

friction to act, but short enough so that GC mergers do95

not convert a large fraction of the total mass in GCs into96

a nuclear cluster. As we will demonstrate, using more97

detailed analytic estimates as well as a suite of numeri-98

cal simulations, UDG1 as we view it today may indeed99

be in this intermediate stage.100

The paper is organized as follows. In Sec. 2 we dis-101

cuss dynamical e↵ects that shape the GC population in102

UDG1 and similar galaxies. In Sec. 3 we recapitulate103

observational studies of UDG1, and define benchmark104

mass models. In Sec. 4 we set up and study N-body105

simulations, in which some dynamical e↵ects (notably106

dynamical friction and GC mass loss) are modeled semi-107

Evidence for dynamical friction 
in dark matter-dominated, GC-rich ultra diffuse galaxy
Danieli, Bar, KB 2202.10179

4

II. PHENOMENOLOGY

A. Segregation

From an observational point of view, we expect GC data arranged as {r?i, Li}, where r?i is the projected radius
of GC i from its host galaxy’s center2 and Li is the GC’s absolute luminosity. While we assume that the luminosity
can be relatively-reliably converted to mass (perhaps to an overall fudge factor), the projected distance is an un-
certainty that we should try to theoretically address. It turns out that it is very simple when one integrates the GC
distribution radially to infinity, i.e. (using r? = r sin ✓ in spherical coordinates)

hr?i =

Z
d3rn(r)r? =

⇡

4
hri . (14)

This would naı̈vely allow us to adopt Eq. (13), replacing r ! r?, r0 ! r0?.

B. Preliminary application to a galaxy

Though the theory developed so far is very simplistic, let us gallop a little and try to apply it to real data.
We adopt the data of NGC5846-UDG1. Its distance is estimated to be D ⇠ 25 Mpc (let us adopt 26.3 Mpc for con-

sistency we some earlier works). Its star luminosity is reported to be well-fit by a Sersic profile with n = 0.61 (let us
adopt n = 0.6 for now as it simplifies some calculations) and r1/2 = 15 ± 0.8 arcsec or 1.9 kpc for D = 26.3 Mpc.
With total luminosity of 5.8 ⇥ 107 L�, its mass is estimated to be ⇠ 1.2 ⇥ 108 M� (taking M/L = 2M�/L�). Spec-
troscopy is inconclusive yet in determining the dynamics of the galaxy, yielding a line-of-sight velocity dispersion
of ⇠ 10 ± 10 km/s – probably consistent with either baryon-only model or dominating dark-matter model. The
candidate GCs (31, of which 13 are reported to be spectroscopically confirmed) have mass estimated to vary within
⇠ 105 to ⇠ 2⇥106 M�. Their total mass is estimated to be ⇠ 1.3⇥107 M�, constituting ⇠ 10% of the baryonic mass.
Removal of GCs that were not spectroscopically confirmed still yields a large total GC mass of ⇠ 0.9⇥ 107 M�.

To facilitate comparison with Eq. (13), we bin the GC data into mass ranges (in linear space) and compute their
hMi and hr?i. The result of this exercise is shown in Fig. 2.
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FIG. 1: Result of binning the GC data into mass bins and computing hMi and hr?i, excluding GCs beyond 2 kpc projected ra-
dius. Different binning yield slightly different results, though retaining a similar decreasing trend. Using only spectroscopically
confirmed GCs (13 out of 31) also yields a similar result. Errors on radius are estimated via standard deviation when possible
(more than 1 GC in the bin) or constant 0.2 (rather arbitrary choice) when number of elements in the bin is 1 (which is the case
for the left bins). Errors on mass are estimated either by bin size or standard deviation of the masses in the bin.

2 Going beyond projected distance requires knowing the proper distance to the GC to better than⇠kpc, which may be feasible in MW satellites,
but probably not for farther galaxies.
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Figure 1. Left: Reproduction of V-band data obtained in Danieli et al. (2022) using Hubble Space Telescope WFC3/UVIS
camera, containing UDG1 and a nearby field (post-selection criteria described in Danieli et al. (2022)). Circles represent 2re↵
and 3re↵ of the stellar light profile, with re↵ the Sérsic radius. Right: A scatter plot of objects from the left panel, divided into
magnitude bins. The magnitude bins for objects at mV < 25.0 mag are relatively clean from background contamination. In
comparison, contamination is significant for the bin 25.0 < mV < 26.5 mag. In our main analysis, we primarily use the r < 2re↵
data of the mV < 25.0 mag bins. We present a preliminary analysis of the 25.0 < mV < 26.5 mag bin in App. D, showing that
the faint objects also exhibit radial clustering above the background, comparable to the stellar body.
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and its nearby field, adapted from Danieli et al. (2022).63
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lar body; inner circle in Fig. 1), which has a background70

contamination of about 1 object, estimated by compar-71
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scopic information is available for 11 of these bright GCs73
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It is noteworthy that most of the brighter GCs in75

the right panel of Fig. 1 are concentrated in the region76

r < re↵ . To explore this further, in Fig. 2 we show the77

luminosity of this sample of GCs vs. their projected dis-78

tance from the center of the galaxy. The data shows a79

clear trend: more luminous GCs are on average closer80

to the center of the galaxy. We estimate a p-value81

of about 1% for the hypothesis that the data is82

a chance fluctuation and that there is no mass83

segregation (see App. A). This luminosity or mass84

segregation calls for a quantitative dynamical explana-85

tion.86

In this paper we show that this explanation can be87

naturally provided by dynamical friction. The deceler-88

ation experienced by a GC due to dynamical friction in89

a galactic halo is roughly proportional to the GC mass90

m?. Therefore, more massive GCs inspiral closer to the91

center of the galaxy, resulting in mass segregation. This92

simple picture can be expected to hold over an interme-93

diate duration of time: long enough to enable dynamical94

friction to act, but short enough so that GC mergers do95

not convert a large fraction of the total mass in GCs into96

a nuclear cluster. As we will demonstrate, using more97

detailed analytic estimates as well as a suite of numeri-98

cal simulations, UDG1 as we view it today may indeed99

be in this intermediate stage.100

The paper is organized as follows. In Sec. 2 we dis-101
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can be relatively-reliably converted to mass (perhaps to an overall fudge factor), the projected distance is an un-
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This would naı̈vely allow us to adopt Eq. (13), replacing r ! r?, r0 ! r0?.
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Though the theory developed so far is very simplistic, let us gallop a little and try to apply it to real data.
We adopt the data of NGC5846-UDG1. Its distance is estimated to be D ⇠ 25 Mpc (let us adopt 26.3 Mpc for con-

sistency we some earlier works). Its star luminosity is reported to be well-fit by a Sersic profile with n = 0.61 (let us
adopt n = 0.6 for now as it simplifies some calculations) and r1/2 = 15 ± 0.8 arcsec or 1.9 kpc for D = 26.3 Mpc.
With total luminosity of 5.8 ⇥ 107 L�, its mass is estimated to be ⇠ 1.2 ⇥ 108 M� (taking M/L = 2M�/L�). Spec-
troscopy is inconclusive yet in determining the dynamics of the galaxy, yielding a line-of-sight velocity dispersion
of ⇠ 10 ± 10 km/s – probably consistent with either baryon-only model or dominating dark-matter model. The
candidate GCs (31, of which 13 are reported to be spectroscopically confirmed) have mass estimated to vary within
⇠ 105 to ⇠ 2⇥106 M�. Their total mass is estimated to be ⇠ 1.3⇥107 M�, constituting ⇠ 10% of the baryonic mass.
Removal of GCs that were not spectroscopically confirmed still yields a large total GC mass of ⇠ 0.9⇥ 107 M�.

To facilitate comparison with Eq. (13), we bin the GC data into mass ranges (in linear space) and compute their
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FIG. 1: Result of binning the GC data into mass bins and computing hMi and hr?i, excluding GCs beyond 2 kpc projected ra-
dius. Different binning yield slightly different results, though retaining a similar decreasing trend. Using only spectroscopically
confirmed GCs (13 out of 31) also yields a similar result. Errors on radius are estimated via standard deviation when possible
(more than 1 GC in the bin) or constant 0.2 (rather arbitrary choice) when number of elements in the bin is 1 (which is the case
for the left bins). Errors on mass are estimated either by bin size or standard deviation of the masses in the bin.

2 Going beyond projected distance requires knowing the proper distance to the GC to better than⇠kpc, which may be feasible in MW satellites,
but probably not for farther galaxies.
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massive dark matter halo: no dark matter, only stars:

 

Lack of dark matter, or a low mass halo, comes with small velocity dispersion, and overshoots friction.
To compensate, need tuned initial conditions.

Consistent with, and independent of stellar and GC kinematics (Forbes et al 2021).

Danieli, Bar, KB 2202.10179
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Appendix A: Semianalytic formulation of dynamical friction

Consider a massive probe of mass M⇤ moving in a background of gas particles of mass m. Encounters with background
particles causes the probe to undergo di↵usive motion in momentum space, that can be described by the Fokker-Planck
equation. The phase space distribution function fM of the massive probe particles evolves via

dfM
dt

= � @

@Vi
(fM Di) +

@2

@Vi@Vj
(fM Dij) . (A1)

FIG. 3: Histogram plots: cumulative luminosity of GCs, normalized to the total GC luminosity at R? = 2Re. Thick black: observed
GC luminosity in UDG1. Cyan: semianalytic calculation, with random initial distribution of GCs from a Sérsic profile with re = 1.9 kpc
and n = 0.61, consistent with the stellar light profile of UDG1. Evolution duration: 10 Gyr. The initial GC mass function in the
simulations is identical to that observed in UDG1. Magenta (green): N-body simulations with Rsim = 1 kpc and 5K particles
(Rsim = 2 kpc and 10K particles). Bottom right panel: LOSVD for the three profiles, compared with the measurement.

Forbes et al 
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Figure 1. Left: Reproduction of V-band data obtained in Danieli et al. (2022) using Hubble Space Telescope WFC3/UVIS
camera, containing UDG1 and a nearby field (post-selection criteria described in Danieli et al. (2022)). Circles represent 2re↵
and 3re↵ of the stellar light profile, with re↵ the Sérsic radius. Right: A scatter plot of objects from the left panel, divided into
magnitude bins. The magnitude bins for objects at mV < 25.0 mag are relatively clean from background contamination. In
comparison, contamination is significant for the bin 25.0 < mV < 26.5 mag. In our main analysis, we primarily use the r < 2re↵
data of the mV < 25.0 mag bins. We present a preliminary analysis of the 25.0 < mV < 26.5 mag bin in App. D, showing that
the faint objects also exhibit radial clustering above the background, comparable to the stellar body.

The left panel of Fig. 1 shows the V -band Hubble61

Space Telescope (HST) WFC3/UVIS image of UDG162

and its nearby field, adapted from Danieli et al. (2022).63

The right panel shows all compact sources that were64

selected as GC candidates based on the photometric se-65

lection criteria in Danieli et al. (2022). In this work we66

focus on a low contamination sample of GC candidates,67

consisting of the 33 mV < 25.0 mag objects contained68

within 2re↵ (twice the Sérsic half-light radius of the stel-69

lar body; inner circle in Fig. 1), which has a background70

contamination of about 1 object, estimated by compar-71

ison to the nearby field (Danieli et al. 2022). Spectroc-72

scopic information is available for 11 of these bright GCs73

(Müller et al. 2020).74

It is noteworthy that most of the brighter GCs in75

the right panel of Fig. 1 are concentrated in the region76

r < re↵ . To explore this further, in Fig. 2 we show the77

luminosity of this sample of GCs vs. their projected dis-78

tance from the center of the galaxy. The data shows a79

clear trend: more luminous GCs are on average closer80

to the center of the galaxy. We estimate a p-value81

of about 1% for the hypothesis that the data is82

a chance fluctuation and that there is no mass83

segregation (see App. A). This luminosity or mass84

segregation calls for a quantitative dynamical explana-85

tion.86

In this paper we show that this explanation can be87

naturally provided by dynamical friction. The deceler-88

ation experienced by a GC due to dynamical friction in89

a galactic halo is roughly proportional to the GC mass90

m?. Therefore, more massive GCs inspiral closer to the91

center of the galaxy, resulting in mass segregation. This92

simple picture can be expected to hold over an interme-93

diate duration of time: long enough to enable dynamical94

friction to act, but short enough so that GC mergers do95

not convert a large fraction of the total mass in GCs into96

a nuclear cluster. As we will demonstrate, using more97

detailed analytic estimates as well as a suite of numeri-98

cal simulations, UDG1 as we view it today may indeed99

be in this intermediate stage.100

The paper is organized as follows. In Sec. 2 we dis-101

cuss dynamical e↵ects that shape the GC population in102

UDG1 and similar galaxies. In Sec. 3 we recapitulate103

observational studies of UDG1, and define benchmark104

mass models. In Sec. 4 we set up and study N-body105

simulations, in which some dynamical e↵ects (notably106

dynamical friction and GC mass loss) are modeled semi-107
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II. PHENOMENOLOGY

A. Segregation

From an observational point of view, we expect GC data arranged as {r?i, Li}, where r?i is the projected radius
of GC i from its host galaxy’s center2 and Li is the GC’s absolute luminosity. While we assume that the luminosity
can be relatively-reliably converted to mass (perhaps to an overall fudge factor), the projected distance is an un-
certainty that we should try to theoretically address. It turns out that it is very simple when one integrates the GC
distribution radially to infinity, i.e. (using r? = r sin ✓ in spherical coordinates)

hr?i =

Z
d3rn(r)r? =

⇡

4
hri . (14)

This would naı̈vely allow us to adopt Eq. (13), replacing r ! r?, r0 ! r0?.

B. Preliminary application to a galaxy

Though the theory developed so far is very simplistic, let us gallop a little and try to apply it to real data.
We adopt the data of NGC5846-UDG1. Its distance is estimated to be D ⇠ 25 Mpc (let us adopt 26.3 Mpc for con-

sistency we some earlier works). Its star luminosity is reported to be well-fit by a Sersic profile with n = 0.61 (let us
adopt n = 0.6 for now as it simplifies some calculations) and r1/2 = 15 ± 0.8 arcsec or 1.9 kpc for D = 26.3 Mpc.
With total luminosity of 5.8 ⇥ 107 L�, its mass is estimated to be ⇠ 1.2 ⇥ 108 M� (taking M/L = 2M�/L�). Spec-
troscopy is inconclusive yet in determining the dynamics of the galaxy, yielding a line-of-sight velocity dispersion
of ⇠ 10 ± 10 km/s – probably consistent with either baryon-only model or dominating dark-matter model. The
candidate GCs (31, of which 13 are reported to be spectroscopically confirmed) have mass estimated to vary within
⇠ 105 to ⇠ 2⇥106 M�. Their total mass is estimated to be ⇠ 1.3⇥107 M�, constituting ⇠ 10% of the baryonic mass.
Removal of GCs that were not spectroscopically confirmed still yields a large total GC mass of ⇠ 0.9⇥ 107 M�.

To facilitate comparison with Eq. (13), we bin the GC data into mass ranges (in linear space) and compute their
hMi and hr?i. The result of this exercise is shown in Fig. 2.
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FIG. 1: Result of binning the GC data into mass bins and computing hMi and hr?i, excluding GCs beyond 2 kpc projected ra-
dius. Different binning yield slightly different results, though retaining a similar decreasing trend. Using only spectroscopically
confirmed GCs (13 out of 31) also yields a similar result. Errors on radius are estimated via standard deviation when possible
(more than 1 GC in the bin) or constant 0.2 (rather arbitrary choice) when number of elements in the bin is 1 (which is the case
for the left bins). Errors on mass are estimated either by bin size or standard deviation of the masses in the bin.

2 Going beyond projected distance requires knowing the proper distance to the GC to better than⇠kpc, which may be feasible in MW satellites,
but probably not for farther galaxies.
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UGC7369

Many more UDGs/dwarfs to investigate. 
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Figure 1. Left: Reproduction of V-band data obtained in Danieli et al. (2022) using Hubble Space Telescope WFC3/UVIS
camera, containing UDG1 and a nearby field (post-selection criteria described in Danieli et al. (2022)). Circles represent 2re↵
and 3re↵ of the stellar light profile, with re↵ the Sérsic radius. Right: A scatter plot of objects from the left panel, divided into
magnitude bins. The magnitude bins for objects at mV < 25.0 mag are relatively clean from background contamination. In
comparison, contamination is significant for the bin 25.0 < mV < 26.5 mag. In our main analysis, we primarily use the r < 2re↵
data of the mV < 25.0 mag bins. We present a preliminary analysis of the 25.0 < mV < 26.5 mag bin in App. D, showing that
the faint objects also exhibit radial clustering above the background, comparable to the stellar body.

The left panel of Fig. 1 shows the V -band Hubble61

Space Telescope (HST) WFC3/UVIS image of UDG162

and its nearby field, adapted from Danieli et al. (2022).63

The right panel shows all compact sources that were64

selected as GC candidates based on the photometric se-65

lection criteria in Danieli et al. (2022). In this work we66

focus on a low contamination sample of GC candidates,67

consisting of the 33 mV < 25.0 mag objects contained68

within 2re↵ (twice the Sérsic half-light radius of the stel-69

lar body; inner circle in Fig. 1), which has a background70

contamination of about 1 object, estimated by compar-71

ison to the nearby field (Danieli et al. 2022). Spectroc-72

scopic information is available for 11 of these bright GCs73

(Müller et al. 2020).74

It is noteworthy that most of the brighter GCs in75

the right panel of Fig. 1 are concentrated in the region76

r < re↵ . To explore this further, in Fig. 2 we show the77

luminosity of this sample of GCs vs. their projected dis-78

tance from the center of the galaxy. The data shows a79

clear trend: more luminous GCs are on average closer80

to the center of the galaxy. We estimate a p-value81

of about 1% for the hypothesis that the data is82

a chance fluctuation and that there is no mass83

segregation (see App. A). This luminosity or mass84

segregation calls for a quantitative dynamical explana-85

tion.86

In this paper we show that this explanation can be87

naturally provided by dynamical friction. The deceler-88

ation experienced by a GC due to dynamical friction in89

a galactic halo is roughly proportional to the GC mass90

m?. Therefore, more massive GCs inspiral closer to the91

center of the galaxy, resulting in mass segregation. This92

simple picture can be expected to hold over an interme-93

diate duration of time: long enough to enable dynamical94

friction to act, but short enough so that GC mergers do95

not convert a large fraction of the total mass in GCs into96

a nuclear cluster. As we will demonstrate, using more97

detailed analytic estimates as well as a suite of numeri-98

cal simulations, UDG1 as we view it today may indeed99

be in this intermediate stage.100

The paper is organized as follows. In Sec. 2 we dis-101

cuss dynamical e↵ects that shape the GC population in102

UDG1 and similar galaxies. In Sec. 3 we recapitulate103

observational studies of UDG1, and define benchmark104

mass models. In Sec. 4 we set up and study N-body105

simulations, in which some dynamical e↵ects (notably106

dynamical friction and GC mass loss) are modeled semi-107

Summary 
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II. PHENOMENOLOGY

A. Segregation

From an observational point of view, we expect GC data arranged as {r?i, Li}, where r?i is the projected radius
of GC i from its host galaxy’s center2 and Li is the GC’s absolute luminosity. While we assume that the luminosity
can be relatively-reliably converted to mass (perhaps to an overall fudge factor), the projected distance is an un-
certainty that we should try to theoretically address. It turns out that it is very simple when one integrates the GC
distribution radially to infinity, i.e. (using r? = r sin ✓ in spherical coordinates)

hr?i =

Z
d3rn(r)r? =

⇡

4
hri . (14)

This would naı̈vely allow us to adopt Eq. (13), replacing r ! r?, r0 ! r0?.

B. Preliminary application to a galaxy

Though the theory developed so far is very simplistic, let us gallop a little and try to apply it to real data.
We adopt the data of NGC5846-UDG1. Its distance is estimated to be D ⇠ 25 Mpc (let us adopt 26.3 Mpc for con-

sistency we some earlier works). Its star luminosity is reported to be well-fit by a Sersic profile with n = 0.61 (let us
adopt n = 0.6 for now as it simplifies some calculations) and r1/2 = 15 ± 0.8 arcsec or 1.9 kpc for D = 26.3 Mpc.
With total luminosity of 5.8 ⇥ 107 L�, its mass is estimated to be ⇠ 1.2 ⇥ 108 M� (taking M/L = 2M�/L�). Spec-
troscopy is inconclusive yet in determining the dynamics of the galaxy, yielding a line-of-sight velocity dispersion
of ⇠ 10 ± 10 km/s – probably consistent with either baryon-only model or dominating dark-matter model. The
candidate GCs (31, of which 13 are reported to be spectroscopically confirmed) have mass estimated to vary within
⇠ 105 to ⇠ 2⇥106 M�. Their total mass is estimated to be ⇠ 1.3⇥107 M�, constituting ⇠ 10% of the baryonic mass.
Removal of GCs that were not spectroscopically confirmed still yields a large total GC mass of ⇠ 0.9⇥ 107 M�.

To facilitate comparison with Eq. (13), we bin the GC data into mass ranges (in linear space) and compute their
hMi and hr?i. The result of this exercise is shown in Fig. 2.
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FIG. 1: Result of binning the GC data into mass bins and computing hMi and hr?i, excluding GCs beyond 2 kpc projected ra-
dius. Different binning yield slightly different results, though retaining a similar decreasing trend. Using only spectroscopically
confirmed GCs (13 out of 31) also yields a similar result. Errors on radius are estimated via standard deviation when possible
(more than 1 GC in the bin) or constant 0.2 (rather arbitrary choice) when number of elements in the bin is 1 (which is the case
for the left bins). Errors on mass are estimated either by bin size or standard deviation of the masses in the bin.

2 Going beyond projected distance requires knowing the proper distance to the GC to better than⇠kpc, which may be feasible in MW satellites,
but probably not for farther galaxies.

Thank You!

Look for qualitatively new classes of observable phenomena to probe dark matter.

Dynamical friction in dark matter-dominated galaxies: beyond mean-field effect (Bar et al 2021).

Fornax dwarf galaxy: puzzling lack of nuclear star cluster? …but small statistics… 
Puzzle extends to other dwarf galaxies? (Lotz et al 2001; but simplified study, should improve!).
Ultra-diffuse GC-rich galaxies: UDG1 — smoking gun? (Danieli, Bar, KB 2022).

A lot of work to do: many more galaxies to analyze; 
case of UDG1 must repeat itself; match velocity measurements.

Numerical challenge: develop fast N-body-calibrated semi-analytic sims.
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Eq. (A8), where the C coe�cient of Eq. (A9) is computed numerically over the host halo velocity distribution function.
The host halo velocity distribution is, in turn, defined from the host halo density profile by assuming it to be ergodic,
isotropic, and spherically-symmetric.

• N-body: when using this method, we construct an N-body realization of the host halo. This is initialized as an
ergodic, isotropic, spherically-symmetric distribution function, defined from the assumed halo mass density (including
both DM and stars). DM particles and star particles in the simulation have the same mass per particle, the ratio of
DM and star particles equals the ratio of the total masses of the DM and stellar halos in the simulated region, and
the initial spatial distributions of DM and star particles follow the assumed DM and stellar densities. GCs are added
as additional particles in the simulation, and evolved alongside the DM and star particles. GM mergers are modeled
with the same prescription as for the semianalytic method. In the N-body mode, DF is not introduced by hand, but
is rather expected to emerge from the dynamics.

To accelerate the calculation, the N-body simulation for DM and star particles (but not for GCs) is restricted to
a spherical region of radius Rsim with reflective boundary conditions. GCs are allowed to travel out of Rsim. In
the region outside of Rsim, we turn on DF artificially using the semianalytic calculation, and replace the N-body
mass density by the mean field of the halo (DM + stars). The Rsim approximation allows us to concentrate N-body
computational resources in the region that is most interesting for the question of GC interactions and mergers. We
test the approximation by considering results obtained at various values of Rsim.

As a test of the semianalytic calculation, we initiate a single GC particle in a circular orbit around an NFW halo and
a Burkert halo, and track the evolution of the orbit over time, comparing the results of the semianalytic calculation with
direct N-body simulations. The results are shown in Fig. 1. The thick black line is the semianalytic result. Thin lines are
N-body results. The curves marked nK in the plot are N-body results with N = n.
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FIG. 1: Orbital decay of a single GC, in an NFW (lest) and Burkert (right) halo. Comparison of N-body simulations with semianalytic
integration of the Chandrasekhar formula. The initial radius of the GC orbit is RGC(t = 0) = 0.75 kpc.

In Fig. 1, the N-body simulations follow the semianalytic orbit reasonably well. Extra wiggles in the N-body orbits are due
to the discrete nature of GC-halo particle encounters, which occasionally deflect the GC away from the inspiral predicted
by the continuum limit. To demonstrate the random nature of these wiggles, we repeat the 5K N-body simulation three
times with di↵erent initialization random seeds.

The wiggles become less pronounced when the number of particles in the N-body code is increased. Results obtained
with 5K particles are therefore not fully converged: they are “noisy”. However, our main problem in this work is the
dynamics of a collection (several to several dozens) of interacting GCs on random orbits. The main role of DF in this
problem is mostly to bring GC orbits closer to the dynamical center of the halo, where GC-GC interactions take over. The
key feature of DF, namely, the average DF deceleration time, is therefore the most essential feature of the problem. Since
the discreteness noise due to GC-halo particle encounters in the N-body calculation will be added to the inevitable (and
physical) GC-GC encounters, we expect this noise to become unimportant as long as the mass ratio between GCs and halo
particles is su�ciently large. This expectation can be verified in two ways: (i) first, the low resolution (5K) N-body results

Exploring the parameter space with fast semianalytic simulations  
(implementing core stalling, calibrating Coulomb Log) 

·V = − ∇Φ −
1
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KB, in prep
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The e↵ective acceleration acting on the probe is

aM =

Z
d3V

(2⇡)3
VḟM (V)

= �
Z

d3V

(2⇡)3
V

@

@Vi
(fM Di) +

Z
d3V

(2⇡)3
V

@2

@V i@V j
(fM Dij)

= D||V̂M . (A7)

The second di↵usion coe�cient drops from this equation. The first di↵usion coe�cient appears as D||, which is Di

evaluated along VM (t). Evaluating Eq. (A2) using Eq. (A4) gives the Chandrasekhar formula

a = �4⇡G2M⇤⇢CDF ln⇤

V 3
V, (A8)

CDF = 4⇡

Z V

0

dv v2 f(v). (A9)

While the Chandrasekhar formula above was derived for a spatially homogeneous distribution of the background gas, our
practical application is to the spatially inhomogeneous halos of galaxies. A simple and common approximate adaptation
to the Chandrasekhar formula in that case is to interpret Eq. (A8) as expressing the local deceleration experienced by the

FIG. 5: Comparison of GC distributions obtained with di↵erent parameters of an underlying DM Burkert halo. The lower-right panel
shows the LOSVD of each halo. The kinematics measurement from Ref., �LOS = 17 ± 2 km/sec, is shown by the grey band. The
initial distribution of GCs matches the current observed distribution of stars.

What we hope to learn KB, in prep
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Figure 1. Left: Reproduction of V-band data obtained in Danieli et al. (2022) using Hubble Space Telescope WFC3/UVIS
camera, containing UDG1 and a nearby field (post-selection criteria described in Danieli et al. (2022)). Circles represent 2re↵
and 3re↵ of the stellar light profile, with re↵ the Sérsic radius. Right: A scatter plot of objects from the left panel, divided into
magnitude bins. The magnitude bins for objects at mV < 25.0 mag are relatively clean from background contamination. In
comparison, contamination is significant for the bin 25.0 < mV < 26.5 mag. In our main analysis, we primarily use the r < 2re↵
data of the mV < 25.0 mag bins. We present a preliminary analysis of the 25.0 < mV < 26.5 mag bin in App. D, showing that
the faint objects also exhibit radial clustering above the background, comparable to the stellar body.

The left panel of Fig. 1 shows the V -band Hubble61

Space Telescope (HST) WFC3/UVIS image of UDG162

and its nearby field, adapted from Danieli et al. (2022).63

The right panel shows all compact sources that were64

selected as GC candidates based on the photometric se-65

lection criteria in Danieli et al. (2022). In this work we66

focus on a low contamination sample of GC candidates,67

consisting of the 33 mV < 25.0 mag objects contained68

within 2re↵ (twice the Sérsic half-light radius of the stel-69

lar body; inner circle in Fig. 1), which has a background70

contamination of about 1 object, estimated by compar-71

ison to the nearby field (Danieli et al. 2022). Spectroc-72

scopic information is available for 11 of these bright GCs73

(Müller et al. 2020).74

It is noteworthy that most of the brighter GCs in75

the right panel of Fig. 1 are concentrated in the region76

r < re↵ . To explore this further, in Fig. 2 we show the77

luminosity of this sample of GCs vs. their projected dis-78

tance from the center of the galaxy. The data shows a79

clear trend: more luminous GCs are on average closer80

to the center of the galaxy. We estimate a p-value81

of about 1% for the hypothesis that the data is82

a chance fluctuation and that there is no mass83

segregation (see App. A). This luminosity or mass84

segregation calls for a quantitative dynamical explana-85

tion.86

In this paper we show that this explanation can be87

naturally provided by dynamical friction. The deceler-88

ation experienced by a GC due to dynamical friction in89

a galactic halo is roughly proportional to the GC mass90

m?. Therefore, more massive GCs inspiral closer to the91

center of the galaxy, resulting in mass segregation. This92

simple picture can be expected to hold over an interme-93

diate duration of time: long enough to enable dynamical94

friction to act, but short enough so that GC mergers do95

not convert a large fraction of the total mass in GCs into96

a nuclear cluster. As we will demonstrate, using more97

detailed analytic estimates as well as a suite of numeri-98

cal simulations, UDG1 as we view it today may indeed99

be in this intermediate stage.100

The paper is organized as follows. In Sec. 2 we dis-101

cuss dynamical e↵ects that shape the GC population in102

UDG1 and similar galaxies. In Sec. 3 we recapitulate103

observational studies of UDG1, and define benchmark104

mass models. In Sec. 4 we set up and study N-body105

simulations, in which some dynamical e↵ects (notably106

dynamical friction and GC mass loss) are modeled semi-107

4

II. PHENOMENOLOGY

A. Segregation

From an observational point of view, we expect GC data arranged as {r?i, Li}, where r?i is the projected radius
of GC i from its host galaxy’s center2 and Li is the GC’s absolute luminosity. While we assume that the luminosity
can be relatively-reliably converted to mass (perhaps to an overall fudge factor), the projected distance is an un-
certainty that we should try to theoretically address. It turns out that it is very simple when one integrates the GC
distribution radially to infinity, i.e. (using r? = r sin ✓ in spherical coordinates)

hr?i =

Z
d3rn(r)r? =

⇡

4
hri . (14)

This would naı̈vely allow us to adopt Eq. (13), replacing r ! r?, r0 ! r0?.

B. Preliminary application to a galaxy

Though the theory developed so far is very simplistic, let us gallop a little and try to apply it to real data.
We adopt the data of NGC5846-UDG1. Its distance is estimated to be D ⇠ 25 Mpc (let us adopt 26.3 Mpc for con-

sistency we some earlier works). Its star luminosity is reported to be well-fit by a Sersic profile with n = 0.61 (let us
adopt n = 0.6 for now as it simplifies some calculations) and r1/2 = 15 ± 0.8 arcsec or 1.9 kpc for D = 26.3 Mpc.
With total luminosity of 5.8 ⇥ 107 L�, its mass is estimated to be ⇠ 1.2 ⇥ 108 M� (taking M/L = 2M�/L�). Spec-
troscopy is inconclusive yet in determining the dynamics of the galaxy, yielding a line-of-sight velocity dispersion
of ⇠ 10 ± 10 km/s – probably consistent with either baryon-only model or dominating dark-matter model. The
candidate GCs (31, of which 13 are reported to be spectroscopically confirmed) have mass estimated to vary within
⇠ 105 to ⇠ 2⇥106 M�. Their total mass is estimated to be ⇠ 1.3⇥107 M�, constituting ⇠ 10% of the baryonic mass.
Removal of GCs that were not spectroscopically confirmed still yields a large total GC mass of ⇠ 0.9⇥ 107 M�.

To facilitate comparison with Eq. (13), we bin the GC data into mass ranges (in linear space) and compute their
hMi and hr?i. The result of this exercise is shown in Fig. 2.
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FIG. 1: Result of binning the GC data into mass bins and computing hMi and hr?i, excluding GCs beyond 2 kpc projected ra-
dius. Different binning yield slightly different results, though retaining a similar decreasing trend. Using only spectroscopically
confirmed GCs (13 out of 31) also yields a similar result. Errors on radius are estimated via standard deviation when possible
(more than 1 GC in the bin) or constant 0.2 (rather arbitrary choice) when number of elements in the bin is 1 (which is the case
for the left bins). Errors on mass are estimated either by bin size or standard deviation of the masses in the bin.

2 Going beyond projected distance requires knowing the proper distance to the GC to better than⇠kpc, which may be feasible in MW satellites,
but probably not for farther galaxies.

FΔtðrÞ ¼ F0ðr0ðr;ΔtÞÞ: ðF1Þ

Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),

Δt ¼
Z

r0

r

dr0

2r0
ð1þ αðr0ÞÞτðr0Þ; ðF2Þ

where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have

rcr ¼ r̄
!

2β
1þ α

Δt
τ̄

"
1=β

: ðF4Þ

In terms of rcr, the solution of Eq. (F2) evaluates to

r0ðr;ΔtÞ ¼ rcr

!
1þ

!
r
rcr

"
β
"

1=β
: ðF5Þ

For GCs that satisfy r ≪ rcr today, we can expand their
starting point:

r0ðr;ΔtÞ ¼ rcr þ
rcr
β

!
r
rcr

"
β
þ % % %

¼ rcr

!
1þ 1þ α

2β2
τðrÞ
Δt

þ % % %
"
: ðF6Þ

In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
Δt

þ % % % ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.

ASSESSING THE FORNAX GLOBULAR CLUSTER TIMING … PHYS. REV. D 104, 043021 (2021)

043021-21

α (r) =
d ln M(r)

d ln r

σr ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄2rðr ≪ rc; β ¼ 0Þ

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πGρð0Þ

3

r
rc

≈ 30

"
ρð0Þ

108 M⊙
kpc3

#1
2 rc
1 kpc

km
s
: ðD4Þ

We can also note the ratio,

X ≡ Vcircffiffiffi
2

p
σr

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ
2r

r $ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πGρð0Þr2c

3

r
¼ r

rc
; ðD5Þ

indicating that the low-velocity approximation of the
Chandrasekhar deceleration may apply inside a core; see
Eq. (5). This implies a “phase-space suppression” to DF, as
discussed in the main text (Sec. III).

APPENDIX E: ORBITS UNDER
DYNAMICAL FRICTION

In this Appendix we review the solution of an orbit under
the influence of DF. We write the equations of motion
(EoM) in circular coordinates,

̈r ¼ ð̈r − r _φ2Þr̂þ ð2_r _φþrφ̈Þφ̂ ðE1Þ

¼ −
GMðrÞ

r2
r̂−

%%%%
d_r
dt

%%%%
DF

_r
j_rj

: ðE2Þ

We express the deceleration jd_r=dtjDF as j_rj=τ, where τ
appears in Eq. (10).
Defining r ¼ R0x, t ¼ T0 t̄, T2

0 ¼ R3
0=GMðR0Þ, we find

x00 − xφ02 ¼ −
1

x2
MðR0xÞ
MðR0Þ

−
x0

τ=T0

; ðE3Þ

2x0φ0 þ xφ00 ¼ − xφ0

τ=T0

ðE4Þ

where 0 is differentiation with respect to t̄. Note, τ can
depend on r and j_rj. For a circular orbit, for example, the
initial conditions can be set as xð0Þ ¼ 1, x0ð0Þ ¼ 0, φð0Þ ¼
0 and φ0ð0Þ ¼ 1=xð0Þ ¼ 1, which has a revolution time
of Δt̃ ¼ 2π.
Solving the orbit of a decelerating test object generally

requires numerical integration. We can understand some
features of the solution analytically, however. Defining
vφ ≡ r _φ, the φ̂ part of the EoM has the solution

rvφ ¼ ðrvφÞ0 exp
"
−
Z

t

0

dt0

τ

#
: ðE5Þ

This solution expresses the decay of angular momentum of
the test object. Using the circular velocity v2circ ¼ GMðrÞ=r,
we can express the r̂ part of the EoM as

v2φ − v2circ ¼ r
"
̈rþ

_r
τ

#
: ðE6Þ

We can gain more analytical intuition by considering
nearly circular orbits, assuming that the inspiral rate is much
smaller than the circular velocity, r=τ ≪ vcirc. Assuming
that _r ∼ r=τ, ̈r ∼ r=τ2 and r=τ ≪ vcirc, Eq. (E6) implies
vφ ≈ vcirc. We can use this to write

−
rvφ
τ

¼ _rvφ þ r _vφ ≈ _rvcirc þ r _vcirc ðE7Þ

¼ 1

2
vcirc _r

"
1þ d lnM

d ln r

#
: ðE8Þ

Rearranging, we find

_r
r
≈ −

2

ð1þ d lnM
d ln r Þτ

: ðE9Þ

Using this,we can estimate the time it takes a test object to fall
from r0 down to r < r0:

tðr; r0Þ ¼
Z

r0

r

dr
2r

"
1þ d lnM

d ln r

#
τðr; vcircðrÞÞ: ðE10Þ

Given the mass profile of the halo, MðrÞ, and a DF model
encapsulated by τ, Eq. (E10) is a simple and quick estimate of
the inspiral time of a test object.
For eccentric orbits, the approximation above is less

justified. Defining eccentricity as e≡ ðrapo − rperiÞ=ðrapo þ
rperiÞ with apocenter radius rapo and pericenter radius rperi,
we numerically tested Eq. (E10) for e > 0. In these
calculations we defined r0 and r via ðrapo þ rperiÞ=2, where
rapo and rperi are obtained per cycle of the orbital phase.
With these definitions, in numerical experiments represen-
tative of Fornax GCs we find that Eq. (E10) holds to better
than 30% accuracy for e≲ 0.5.

APPENDIX F: THE RADIAL AND
PROJECTED CDF OF GCs

Consider a population of identical GCs (all with the same
mass), that start off their life at some initial time t ¼ 0 on
approximately circular orbits with a radial probability
distribution function (PDF) f0ðr0Þ with respect to an initial
radial coordinate r0. The CDF of initial GC positions is
F0ðr0Þ ¼

R r0
0 dyf0ðyÞ. We are interested in computing the

PDF and CDF of GC radial positions today, at t ¼ Δt; call
these fΔtðrÞ and FΔtðrÞ.
DF causes GC orbits to inspiral inwards, and by

integrating along the orbit we can compute the function
r ¼ rðr0;ΔtÞ and invert it to obtain r0 ¼ r0ðr;ΔtÞ.17
Neglecting tidal disruption, we have

17The monotonous decrease of r with time, that allowed this
inversion, is lost for noncircular orbits. We could accommodate
elliptical orbits approximately, by letting r represent the average
between the peri- and apocenter per cycle.
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Figure 1. Left: Reproduction of V-band data obtained in Danieli et al. (2022) using Hubble Space Telescope WFC3/UVIS
camera, containing UDG1 and a nearby field (post-selection criteria described in Danieli et al. (2022)). Circles represent 2re↵
and 3re↵ of the stellar light profile, with re↵ the Sérsic radius. Right: A scatter plot of objects from the left panel, divided into
magnitude bins. The magnitude bins for objects at mV < 25.0 mag are relatively clean from background contamination. In
comparison, contamination is significant for the bin 25.0 < mV < 26.5 mag. In our main analysis, we primarily use the r < 2re↵
data of the mV < 25.0 mag bins. We present a preliminary analysis of the 25.0 < mV < 26.5 mag bin in App. D, showing that
the faint objects also exhibit radial clustering above the background, comparable to the stellar body.

The left panel of Fig. 1 shows the V -band Hubble61

Space Telescope (HST) WFC3/UVIS image of UDG162

and its nearby field, adapted from Danieli et al. (2022).63

The right panel shows all compact sources that were64

selected as GC candidates based on the photometric se-65

lection criteria in Danieli et al. (2022). In this work we66

focus on a low contamination sample of GC candidates,67

consisting of the 33 mV < 25.0 mag objects contained68

within 2re↵ (twice the Sérsic half-light radius of the stel-69

lar body; inner circle in Fig. 1), which has a background70

contamination of about 1 object, estimated by compar-71

ison to the nearby field (Danieli et al. 2022). Spectroc-72

scopic information is available for 11 of these bright GCs73

(Müller et al. 2020).74

It is noteworthy that most of the brighter GCs in75

the right panel of Fig. 1 are concentrated in the region76

r < re↵ . To explore this further, in Fig. 2 we show the77

luminosity of this sample of GCs vs. their projected dis-78

tance from the center of the galaxy. The data shows a79

clear trend: more luminous GCs are on average closer80

to the center of the galaxy. We estimate a p-value81

of about 1% for the hypothesis that the data is82

a chance fluctuation and that there is no mass83

segregation (see App. A). This luminosity or mass84

segregation calls for a quantitative dynamical explana-85

tion.86

In this paper we show that this explanation can be87

naturally provided by dynamical friction. The deceler-88

ation experienced by a GC due to dynamical friction in89

a galactic halo is roughly proportional to the GC mass90

m?. Therefore, more massive GCs inspiral closer to the91

center of the galaxy, resulting in mass segregation. This92

simple picture can be expected to hold over an interme-93

diate duration of time: long enough to enable dynamical94

friction to act, but short enough so that GC mergers do95

not convert a large fraction of the total mass in GCs into96

a nuclear cluster. As we will demonstrate, using more97

detailed analytic estimates as well as a suite of numeri-98

cal simulations, UDG1 as we view it today may indeed99

be in this intermediate stage.100

The paper is organized as follows. In Sec. 2 we dis-101

cuss dynamical e↵ects that shape the GC population in102

UDG1 and similar galaxies. In Sec. 3 we recapitulate103

observational studies of UDG1, and define benchmark104

mass models. In Sec. 4 we set up and study N-body105

simulations, in which some dynamical e↵ects (notably106

dynamical friction and GC mass loss) are modeled semi-107

NΔt(r) = N0 (r0(r, Δt)) ≈ N0 (e
Δt
2τ̄ r)For a core density profile:

⟨r⊥⟩Δt ≈ e− Δt
2τ̄ ⟨r⊥⟩0

4

II. PHENOMENOLOGY

A. Segregation

From an observational point of view, we expect GC data arranged as {r?i, Li}, where r?i is the projected radius
of GC i from its host galaxy’s center2 and Li is the GC’s absolute luminosity. While we assume that the luminosity
can be relatively-reliably converted to mass (perhaps to an overall fudge factor), the projected distance is an un-
certainty that we should try to theoretically address. It turns out that it is very simple when one integrates the GC
distribution radially to infinity, i.e. (using r? = r sin ✓ in spherical coordinates)

hr?i =

Z
d3rn(r)r? =

⇡

4
hri . (14)

This would naı̈vely allow us to adopt Eq. (13), replacing r ! r?, r0 ! r0?.

B. Preliminary application to a galaxy

Though the theory developed so far is very simplistic, let us gallop a little and try to apply it to real data.
We adopt the data of NGC5846-UDG1. Its distance is estimated to be D ⇠ 25 Mpc (let us adopt 26.3 Mpc for con-

sistency we some earlier works). Its star luminosity is reported to be well-fit by a Sersic profile with n = 0.61 (let us
adopt n = 0.6 for now as it simplifies some calculations) and r1/2 = 15 ± 0.8 arcsec or 1.9 kpc for D = 26.3 Mpc.
With total luminosity of 5.8 ⇥ 107 L�, its mass is estimated to be ⇠ 1.2 ⇥ 108 M� (taking M/L = 2M�/L�). Spec-
troscopy is inconclusive yet in determining the dynamics of the galaxy, yielding a line-of-sight velocity dispersion
of ⇠ 10 ± 10 km/s – probably consistent with either baryon-only model or dominating dark-matter model. The
candidate GCs (31, of which 13 are reported to be spectroscopically confirmed) have mass estimated to vary within
⇠ 105 to ⇠ 2⇥106 M�. Their total mass is estimated to be ⇠ 1.3⇥107 M�, constituting ⇠ 10% of the baryonic mass.
Removal of GCs that were not spectroscopically confirmed still yields a large total GC mass of ⇠ 0.9⇥ 107 M�.

To facilitate comparison with Eq. (13), we bin the GC data into mass ranges (in linear space) and compute their
hMi and hr?i. The result of this exercise is shown in Fig. 2.
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FIG. 1: Result of binning the GC data into mass bins and computing hMi and hr?i, excluding GCs beyond 2 kpc projected ra-
dius. Different binning yield slightly different results, though retaining a similar decreasing trend. Using only spectroscopically
confirmed GCs (13 out of 31) also yields a similar result. Errors on radius are estimated via standard deviation when possible
(more than 1 GC in the bin) or constant 0.2 (rather arbitrary choice) when number of elements in the bin is 1 (which is the case
for the left bins). Errors on mass are estimated either by bin size or standard deviation of the masses in the bin.

2 Going beyond projected distance requires knowing the proper distance to the GC to better than⇠kpc, which may be feasible in MW satellites,
but probably not for farther galaxies.
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Dynamical friction in a massive dark matter halo naturally produces observed mass segregation.

Lack of dark matter, or a low mass halo, comes with small velocity dispersion, and overshoots friction.
…Alternatively, compensate by fine-tuned initial condition for GCs?

Consistent with, and independent of stellar and GC kinematics (Forbes et al 2021).
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function as the diffusion coefficient of a degenerate gas
[cf. Eq. (A12) and Eq. (A21)]. This is somewhat surprising,
because the Fokker-Planck calculation took into account
Pauli exclusion in the medium whereas Eq. (4) does not.
Moreover, according to Eq. (4), only particles with veloc-
ities smaller than the probe object’s contribute to the DF.
For the case of degenerate matter, one could have expected
that the opposite should happen: only particles close to the
Fermi surface contribute to DF. We refer the reader again to
Appendix A 2 for the detailed computation that leads us
to Eq. (7).
Finally, note that above we evaluated DF in the zero-

temperature limit and not in the finite-temperature limit. In
Sec. IV we consider a finite-temperature density profile, so
we should keep this caveat in mind. We have not explored
DF of degenerate matter within the more sophisticated
treatment of Refs. [53,54].

C. Bose gas

This is the relevant limit for the case where halo particles
follow the Bose-Einstein statistics, as in the ULDM model.
The diffusion coefficients can be obtained either by solving
a Langevin equation with stochastic fluctuations of the
gravitational potential [38] or, as we do in Appendix A 3,
by using a kinetic equation.4 Both approaches provide
identical results.
Up to a slight modification of the Coulomb logarithm,

DF for the bosonic gas includes a contribution to the C term
that is identical to that of the classical gas in Eq. (5). In
addition to this, ULDM large-scale density fluctuations
(manifested byBose-enhancement terms in the kinetic theory
computation) cause additional velocity drift that can be
characterized by an extra term to C → Cþ ΔC, with5

ΔC ¼ lnΛ
!
meff

m⋆

"!
erfðXeffÞ −

2Xeffffiffiffi
π

p e−X
2
eff

"
; ð8Þ

where meff ¼ π3=2ρ=ðmσÞ3 is the ULDM mass enclosed in
an effective de Broglie volume and Xeff ≡ v=

ffiffiffi
2

p
σeff with

σeff ¼ σ=
ffiffiffi
2

p
. Numerically, meff≈1.2×106ð10−21 eV=

mÞ3½ρ=ð3×107M⊙=kpc3Þ&½ð10km=sÞ=σ&3M⊙. With these
numbers and keeping in mind a typical GC mass
m' ∼ 105 M⊙, the ΔC effect becomes quantitatively impor-
tant in Fornax for m≲ 3 × 10−20 eV.
The kinetic theory result summarized above assumed

that the scale size of the system—e.g., the radius r of a GC
orbit—is much larger than the effective de Broglie wave-
length of the ULDM particles,

rdB ≈
2π
mσ

≈ 300

!
10 km=s

σ

"!
10 −21 eV

m

"
pc; ð9Þ

and thus much larger than ULDM quasiparticle excitations
or than the soliton core that is ubiquitously found in ULDM
simulations (see Ref. [33] for a review). For r < rdB, the
treatment above breaks down and must be modified by
taking into account large-scale coherence effects of the
ULDM. This can be done via solving the Schrödinger
equation, as shown in Refs. [33,39], which indeed found
that DF becomes suppressed at r≲ rdB. We refer the reader
to Refs. [33,39] for more details on DF and the Fornax
GC puzzle in the context of ULDM. Here we only note
that for m≳ 10−20 eV, where r ≫ rdB and meff ≪ m' for
the Fornax GCs, DF in the ULDM medium becomes
quantitatively similar to DF in a classical medium.

III. DYNAMICAL FRICTION IN A CDM HALO:
CORE VS CUSP

It is natural to define an instantaneous DF time, τ, via

τ ¼ V3

4πG2m⋆ρC
; ð10Þ

such that (including here only the DF effect)

_V ¼ −
1

τ
V: ð11Þ

A crude estimate of the time scale it would take a GC to
settle down to the dynamical center of a halo can be
obtained by computing τ, using the current instantaneous
position and velocity of the GC. Assuming a CDM NFW
distribution, and plugging an estimate of the dark matter
density and velocity dispersion corresponding to the
present observed position of each GC into Eqs. (5) and
(10), the result we find is summarized in the column
marked τCDM (highlighted in blue) in Table I. For GC3 and
GC4 the DF time estimated in this way is 2.6 and 0.9 Gyr,
respectively, much shorter than the age of the system.6

However, estimating an orbital decay time from the
instantaneous value of τ can be misleading. In a realistic
galaxy, the DM phase-space distribution and with it the
instantaneous value of τ could change along the orbit of the
GC. To obtain a better estimate of the actual settling time one
could track the orbit of the GC semianalytically, using the
phase-space-dependent value of τ along the orbit [32,46,62].
Some details of this calculation are given in Appendix E.
The semianalytic integration reproduces results from

N-body simulations [17]. To demonstrate this, we use
Eqs. (5) and (10) while reading the CDM density and
velocity dispersion from the N-body simulations of
Ref. [17] to integrate the orbit of a GC. In Fig. 2

4While this paper was being prepared for publication, Ref. [55]
appeared which also presents a kinetic theory derivation of the
ULDM diffusion coefficients.

5Formally, the ΔC term is there also for standard CDM but is
negligible unless the individual DM particles are extremely
massive.

6Our estimates are larger than those previously obtained in
Ref. [33]; we discuss the differences in Sec. VI.
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function as the diffusion coefficient of a degenerate gas
[cf. Eq. (A12) and Eq. (A21)]. This is somewhat surprising,
because the Fokker-Planck calculation took into account
Pauli exclusion in the medium whereas Eq. (4) does not.
Moreover, according to Eq. (4), only particles with veloc-
ities smaller than the probe object’s contribute to the DF.
For the case of degenerate matter, one could have expected
that the opposite should happen: only particles close to the
Fermi surface contribute to DF. We refer the reader again to
Appendix A 2 for the detailed computation that leads us
to Eq. (7).
Finally, note that above we evaluated DF in the zero-

temperature limit and not in the finite-temperature limit. In
Sec. IV we consider a finite-temperature density profile, so
we should keep this caveat in mind. We have not explored
DF of degenerate matter within the more sophisticated
treatment of Refs. [53,54].

C. Bose gas

This is the relevant limit for the case where halo particles
follow the Bose-Einstein statistics, as in the ULDM model.
The diffusion coefficients can be obtained either by solving
a Langevin equation with stochastic fluctuations of the
gravitational potential [38] or, as we do in Appendix A 3,
by using a kinetic equation.4 Both approaches provide
identical results.
Up to a slight modification of the Coulomb logarithm,

DF for the bosonic gas includes a contribution to the C term
that is identical to that of the classical gas in Eq. (5). In
addition to this, ULDM large-scale density fluctuations
(manifested byBose-enhancement terms in the kinetic theory
computation) cause additional velocity drift that can be
characterized by an extra term to C → Cþ ΔC, with5
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where meff ¼ π3=2ρ=ðmσÞ3 is the ULDM mass enclosed in
an effective de Broglie volume and Xeff ≡ v=

ffiffiffi
2

p
σeff with

σeff ¼ σ=
ffiffiffi
2

p
. Numerically, meff≈1.2×106ð10−21 eV=

mÞ3½ρ=ð3×107M⊙=kpc3Þ&½ð10km=sÞ=σ&3M⊙. With these
numbers and keeping in mind a typical GC mass
m' ∼ 105 M⊙, the ΔC effect becomes quantitatively impor-
tant in Fornax for m≲ 3 × 10−20 eV.
The kinetic theory result summarized above assumed

that the scale size of the system—e.g., the radius r of a GC
orbit—is much larger than the effective de Broglie wave-
length of the ULDM particles,
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and thus much larger than ULDM quasiparticle excitations
or than the soliton core that is ubiquitously found in ULDM
simulations (see Ref. [33] for a review). For r < rdB, the
treatment above breaks down and must be modified by
taking into account large-scale coherence effects of the
ULDM. This can be done via solving the Schrödinger
equation, as shown in Refs. [33,39], which indeed found
that DF becomes suppressed at r≲ rdB. We refer the reader
to Refs. [33,39] for more details on DF and the Fornax
GC puzzle in the context of ULDM. Here we only note
that for m≳ 10−20 eV, where r ≫ rdB and meff ≪ m' for
the Fornax GCs, DF in the ULDM medium becomes
quantitatively similar to DF in a classical medium.

III. DYNAMICAL FRICTION IN A CDM HALO:
CORE VS CUSP

It is natural to define an instantaneous DF time, τ, via

τ ¼ V3

4πG2m⋆ρC
; ð10Þ

such that (including here only the DF effect)

_V ¼ −
1

τ
V: ð11Þ

A crude estimate of the time scale it would take a GC to
settle down to the dynamical center of a halo can be
obtained by computing τ, using the current instantaneous
position and velocity of the GC. Assuming a CDM NFW
distribution, and plugging an estimate of the dark matter
density and velocity dispersion corresponding to the
present observed position of each GC into Eqs. (5) and
(10), the result we find is summarized in the column
marked τCDM (highlighted in blue) in Table I. For GC3 and
GC4 the DF time estimated in this way is 2.6 and 0.9 Gyr,
respectively, much shorter than the age of the system.6

However, estimating an orbital decay time from the
instantaneous value of τ can be misleading. In a realistic
galaxy, the DM phase-space distribution and with it the
instantaneous value of τ could change along the orbit of the
GC. To obtain a better estimate of the actual settling time one
could track the orbit of the GC semianalytically, using the
phase-space-dependent value of τ along the orbit [32,46,62].
Some details of this calculation are given in Appendix E.
The semianalytic integration reproduces results from

N-body simulations [17]. To demonstrate this, we use
Eqs. (5) and (10) while reading the CDM density and
velocity dispersion from the N-body simulations of
Ref. [17] to integrate the orbit of a GC. In Fig. 2

4While this paper was being prepared for publication, Ref. [55]
appeared which also presents a kinetic theory derivation of the
ULDM diffusion coefficients.

5Formally, the ΔC term is there also for standard CDM but is
negligible unless the individual DM particles are extremely
massive.

6Our estimates are larger than those previously obtained in
Ref. [33]; we discuss the differences in Sec. VI.
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function as the diffusion coefficient of a degenerate gas
[cf. Eq. (A12) and Eq. (A21)]. This is somewhat surprising,
because the Fokker-Planck calculation took into account
Pauli exclusion in the medium whereas Eq. (4) does not.
Moreover, according to Eq. (4), only particles with veloc-
ities smaller than the probe object’s contribute to the DF.
For the case of degenerate matter, one could have expected
that the opposite should happen: only particles close to the
Fermi surface contribute to DF. We refer the reader again to
Appendix A 2 for the detailed computation that leads us
to Eq. (7).
Finally, note that above we evaluated DF in the zero-

temperature limit and not in the finite-temperature limit. In
Sec. IV we consider a finite-temperature density profile, so
we should keep this caveat in mind. We have not explored
DF of degenerate matter within the more sophisticated
treatment of Refs. [53,54].

C. Bose gas

This is the relevant limit for the case where halo particles
follow the Bose-Einstein statistics, as in the ULDM model.
The diffusion coefficients can be obtained either by solving
a Langevin equation with stochastic fluctuations of the
gravitational potential [38] or, as we do in Appendix A 3,
by using a kinetic equation.4 Both approaches provide
identical results.
Up to a slight modification of the Coulomb logarithm,

DF for the bosonic gas includes a contribution to the C term
that is identical to that of the classical gas in Eq. (5). In
addition to this, ULDM large-scale density fluctuations
(manifested byBose-enhancement terms in the kinetic theory
computation) cause additional velocity drift that can be
characterized by an extra term to C → Cþ ΔC, with5

ΔC ¼ lnΛ
!
meff

m⋆

"!
erfðXeffÞ −

2Xeffffiffiffi
π

p e−X
2
eff

"
; ð8Þ

where meff ¼ π3=2ρ=ðmσÞ3 is the ULDM mass enclosed in
an effective de Broglie volume and Xeff ≡ v=
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. Numerically, meff≈1.2×106ð10−21 eV=

mÞ3½ρ=ð3×107M⊙=kpc3Þ&½ð10km=sÞ=σ&3M⊙. With these
numbers and keeping in mind a typical GC mass
m' ∼ 105 M⊙, the ΔC effect becomes quantitatively impor-
tant in Fornax for m≲ 3 × 10−20 eV.
The kinetic theory result summarized above assumed

that the scale size of the system—e.g., the radius r of a GC
orbit—is much larger than the effective de Broglie wave-
length of the ULDM particles,
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and thus much larger than ULDM quasiparticle excitations
or than the soliton core that is ubiquitously found in ULDM
simulations (see Ref. [33] for a review). For r < rdB, the
treatment above breaks down and must be modified by
taking into account large-scale coherence effects of the
ULDM. This can be done via solving the Schrödinger
equation, as shown in Refs. [33,39], which indeed found
that DF becomes suppressed at r≲ rdB. We refer the reader
to Refs. [33,39] for more details on DF and the Fornax
GC puzzle in the context of ULDM. Here we only note
that for m≳ 10−20 eV, where r ≫ rdB and meff ≪ m' for
the Fornax GCs, DF in the ULDM medium becomes
quantitatively similar to DF in a classical medium.

III. DYNAMICAL FRICTION IN A CDM HALO:
CORE VS CUSP

It is natural to define an instantaneous DF time, τ, via

τ ¼ V3

4πG2m⋆ρC
; ð10Þ

such that (including here only the DF effect)

_V ¼ −
1
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V: ð11Þ

A crude estimate of the time scale it would take a GC to
settle down to the dynamical center of a halo can be
obtained by computing τ, using the current instantaneous
position and velocity of the GC. Assuming a CDM NFW
distribution, and plugging an estimate of the dark matter
density and velocity dispersion corresponding to the
present observed position of each GC into Eqs. (5) and
(10), the result we find is summarized in the column
marked τCDM (highlighted in blue) in Table I. For GC3 and
GC4 the DF time estimated in this way is 2.6 and 0.9 Gyr,
respectively, much shorter than the age of the system.6

However, estimating an orbital decay time from the
instantaneous value of τ can be misleading. In a realistic
galaxy, the DM phase-space distribution and with it the
instantaneous value of τ could change along the orbit of the
GC. To obtain a better estimate of the actual settling time one
could track the orbit of the GC semianalytically, using the
phase-space-dependent value of τ along the orbit [32,46,62].
Some details of this calculation are given in Appendix E.
The semianalytic integration reproduces results from

N-body simulations [17]. To demonstrate this, we use
Eqs. (5) and (10) while reading the CDM density and
velocity dispersion from the N-body simulations of
Ref. [17] to integrate the orbit of a GC. In Fig. 2

4While this paper was being prepared for publication, Ref. [55]
appeared which also presents a kinetic theory derivation of the
ULDM diffusion coefficients.

5Formally, the ΔC term is there also for standard CDM but is
negligible unless the individual DM particles are extremely
massive.

6Our estimates are larger than those previously obtained in
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function as the diffusion coefficient of a degenerate gas
[cf. Eq. (A12) and Eq. (A21)]. This is somewhat surprising,
because the Fokker-Planck calculation took into account
Pauli exclusion in the medium whereas Eq. (4) does not.
Moreover, according to Eq. (4), only particles with veloc-
ities smaller than the probe object’s contribute to the DF.
For the case of degenerate matter, one could have expected
that the opposite should happen: only particles close to the
Fermi surface contribute to DF. We refer the reader again to
Appendix A 2 for the detailed computation that leads us
to Eq. (7).
Finally, note that above we evaluated DF in the zero-

temperature limit and not in the finite-temperature limit. In
Sec. IV we consider a finite-temperature density profile, so
we should keep this caveat in mind. We have not explored
DF of degenerate matter within the more sophisticated
treatment of Refs. [53,54].

C. Bose gas

This is the relevant limit for the case where halo particles
follow the Bose-Einstein statistics, as in the ULDM model.
The diffusion coefficients can be obtained either by solving
a Langevin equation with stochastic fluctuations of the
gravitational potential [38] or, as we do in Appendix A 3,
by using a kinetic equation.4 Both approaches provide
identical results.
Up to a slight modification of the Coulomb logarithm,

DF for the bosonic gas includes a contribution to the C term
that is identical to that of the classical gas in Eq. (5). In
addition to this, ULDM large-scale density fluctuations
(manifested byBose-enhancement terms in the kinetic theory
computation) cause additional velocity drift that can be
characterized by an extra term to C → Cþ ΔC, with5

ΔC ¼ lnΛ
!
meff

m⋆

"!
erfðXeffÞ −

2Xeffffiffiffi
π

p e−X
2
eff

"
; ð8Þ

where meff ¼ π3=2ρ=ðmσÞ3 is the ULDM mass enclosed in
an effective de Broglie volume and Xeff ≡ v=

ffiffiffi
2

p
σeff with

σeff ¼ σ=
ffiffiffi
2

p
. Numerically, meff≈1.2×106ð10−21 eV=

mÞ3½ρ=ð3×107M⊙=kpc3Þ&½ð10km=sÞ=σ&3M⊙. With these
numbers and keeping in mind a typical GC mass
m' ∼ 105 M⊙, the ΔC effect becomes quantitatively impor-
tant in Fornax for m≲ 3 × 10−20 eV.
The kinetic theory result summarized above assumed

that the scale size of the system—e.g., the radius r of a GC
orbit—is much larger than the effective de Broglie wave-
length of the ULDM particles,

rdB ≈
2π
mσ

≈ 300

!
10 km=s

σ

"!
10 −21 eV

m

"
pc; ð9Þ

and thus much larger than ULDM quasiparticle excitations
or than the soliton core that is ubiquitously found in ULDM
simulations (see Ref. [33] for a review). For r < rdB, the
treatment above breaks down and must be modified by
taking into account large-scale coherence effects of the
ULDM. This can be done via solving the Schrödinger
equation, as shown in Refs. [33,39], which indeed found
that DF becomes suppressed at r≲ rdB. We refer the reader
to Refs. [33,39] for more details on DF and the Fornax
GC puzzle in the context of ULDM. Here we only note
that for m≳ 10−20 eV, where r ≫ rdB and meff ≪ m' for
the Fornax GCs, DF in the ULDM medium becomes
quantitatively similar to DF in a classical medium.

III. DYNAMICAL FRICTION IN A CDM HALO:
CORE VS CUSP

It is natural to define an instantaneous DF time, τ, via

τ ¼ V3

4πG2m⋆ρC
; ð10Þ

such that (including here only the DF effect)

_V ¼ −
1

τ
V: ð11Þ

A crude estimate of the time scale it would take a GC to
settle down to the dynamical center of a halo can be
obtained by computing τ, using the current instantaneous
position and velocity of the GC. Assuming a CDM NFW
distribution, and plugging an estimate of the dark matter
density and velocity dispersion corresponding to the
present observed position of each GC into Eqs. (5) and
(10), the result we find is summarized in the column
marked τCDM (highlighted in blue) in Table I. For GC3 and
GC4 the DF time estimated in this way is 2.6 and 0.9 Gyr,
respectively, much shorter than the age of the system.6

However, estimating an orbital decay time from the
instantaneous value of τ can be misleading. In a realistic
galaxy, the DM phase-space distribution and with it the
instantaneous value of τ could change along the orbit of the
GC. To obtain a better estimate of the actual settling time one
could track the orbit of the GC semianalytically, using the
phase-space-dependent value of τ along the orbit [32,46,62].
Some details of this calculation are given in Appendix E.
The semianalytic integration reproduces results from

N-body simulations [17]. To demonstrate this, we use
Eqs. (5) and (10) while reading the CDM density and
velocity dispersion from the N-body simulations of
Ref. [17] to integrate the orbit of a GC. In Fig. 2

4While this paper was being prepared for publication, Ref. [55]
appeared which also presents a kinetic theory derivation of the
ULDM diffusion coefficients.

5Formally, the ΔC term is there also for standard CDM but is
negligible unless the individual DM particles are extremely
massive.

6Our estimates are larger than those previously obtained in
Ref. [33]; we discuss the differences in Sec. VI.
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We summarize in Sec. VII. Many details of the calcu-
lations are deferred to the Appendixes.

II. DYNAMICAL FRICTION: MICROPHYSICS

Dynamical friction can be described in terms of the
Fokker-Planck theory for the motion of a probe particle
(a GC in our case) traveling through a gas of spectator
particles (DM particles in our case). In Appendix A we
derive the Fokker-Planck equation as the small-momentum-
exchange limit of the Boltzmann equation, governing the
motion of a probe object in different background media,
accounting for the gravitational interaction between the
probe and the medium particles. Our calculation is direct, in
the sense that it simply amounts to computing the collision
integral while taking care to account for the quantum
statistics of spectator gas particles. Here we bypass the
details of the calculation, while utilizing the main results.
The Fokker-Planck equation is characterized by a set of

momentum space diffusion coefficients, calculated in
Appendixes A 1, A 2, and A 3 for the case of a medium
composed of a classical gas, degenerate Fermi gas, and
Bose gas, respectively. Of particular importance for our
analysis is the diffusion coefficient Djj, corresponding to
the diffusion in momentum parallel to the probe object’s
instantaneous velocity. The DF deceleration acting on a
probe with mass m⋆ moving with instantaneous velocity V
with respect to the medium is computed as [51]

dV
dt

¼
Djj

m⋆
V̂

¼ −
4πG2m⋆ρ

V3
CV: ð2Þ

In the second line, to compare the DF arising in different
types of media we define the dimensionless coefficient C as
follows [33]:

C ¼ −
V2Djj

4πG2m2⋆ρ
; ð3Þ

where ρ is the mass density of the medium.
Different microphysics properties of the medium (in our

case, the DM galactic halo) predict different results for C.
In the next subsection we discuss three scenarios.

A. Classical gas

This is the appropriate limit for a halo composed of a gas
of classical particles. Wewill adopt this limit to describe DF
in the ordinary CDM model, as well as for the SIDM
model.2 For a homogeneous classical gas with an isotropic

distribution function fvðvÞ, DF is described by the
Chandrasekhar formula [16] (see also Appendix A 1),

Cclass ¼ 4π lnΛ
Z

V

0
dvmv2mfvðvmÞ; ð4Þ

where lnΛ is the Coulomb logarithm. If the gas distribution
function is a Maxwellian with velocity dispersion σ,
fvðvÞ ¼ ð2πσ2Þ−3=2 expð−v2=ð2σ2ÞÞ, we have

CMax ¼ lnΛ
!
erfðXÞ − 2Xffiffiffi

π
p e−X

2

#

→ lnΛ

(
1 V ≫ σ;ffiffi

2
p

3
ffiffi
π

p V3

σ3 V ≪ σ;
ð5Þ

where X ≡ V=ð
ffiffiffi
2

p
σÞ and where in the second line we show

the asymptotic scaling of C at large and small X.

B. Degenerate Fermi gas

This is the relevant limit for DF at the core of a halo
supported by the degeneracy pressure of light fermionic
DM (DDM model [44,45]). In the high-degeneracy limit
we have fvðvÞ ¼ 3=ð4πv3FÞθðvF − vÞ, where θðxÞ is the
Heaviside function, the Fermi velocity vF is related to the
medium density via

ρ ¼ gm4v3F
6π2

; ð6Þ

m is the mass of the particles and g is the number of degrees
of freedom (e.g., g ¼ 2 for Weyl fermions). The calculation
in Appendix A 2 gives the following limiting behavior:

CDDM → lnΛ

(
1 V ≫ vF;
V3

v3F
V ≪ vF

ð7Þ

Thus, in both limits V ≫ vF and v ≪ vF, we find that
DF in a degenerate medium is equivalent to DF in a classical
medium with the replacement σ → ð 2

9πÞ
2
3vF ≈ 0.17vF. Note

that the three-dimensional velocity dispersion associated
with the classical isotropic Maxwellian distribution is
hv2x þ v2y þ v2zi ¼ hv2i ¼ 3σ2, while the dispersion for the
degenerate distribution is hv2i ¼ ð3=5Þv2F. Therefore, the
pressure in the different types of media matches when
vF ≈ 2.2σ. Similarly, Eqs. (7) and (5) tell us that DF in
thesemediamatch when vF ≈ 5.8σ. We note that the form of
Eq. (7) agrees with the results of Ref. [52].3

As an aside, it is interesting to note that to leading order
in m=m⋆, the diffusion coefficient of a classical gas has the
same functional form with respect to the distribution

2This is a good approximation for the SIDM cross sections of
interest, which are small enough such that SIDM particles travel
across distances larger than the size of the system without
colliding with each other. See Sec. V. 3We thank P. H. Chavanis for pointing it out to us.
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DDM could lead to significant suppression of DF and
prolongation of the settling time of GC3 and GC4.
For SIDM, stellar kinematics allows a considerable core.

If the SIDM cross section is as large as that considered in
Ref. [47], then the DF settling time for GC3 and GC4 can
be significantly longer than in the cuspy halo CDM model.
We also considered the possibility that baryonic feed-

back deforms a CDM cusp into a core. In that case, the
deformation of the halo is expected primarily within the
half-light radius [10,17,48,49]. This makes the core spa-
tially smaller than the typical cores that were previously
suggested as an explanation of the GC timing puzzle
[17,28]. For our analysis, we adopted the density profile
fit in Ref. [10]. This intermediate-size baryonic-driven core
can also prolong GC orbital decay times within the inner
few hundred parsecs compared to the cusp case.
Altogether, we considered DM microphysics (and indi-

rectly, also baryonic feedback) as a possible source for the
formation of a core in Fornax, and computed the detailed
effects on dynamical friction. In general, both the detailed
microphysics and the mere presence of a core (regardless of
how it formed) affect the settling of GC orbits. Our analysis
suggests that the most relevant factor is the presence of the
core itself, rather than the specific microphysics scenario.
Further analysis, including other galaxies, and in particular
the search for nuclear star clusters in Fornax-like systems,
may be able to differentiate between these possibilities.
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APPENDIX A: DYNAMICAL FRICTION IN
EXOTIC MEDIA: DERIVATION FROM THE

BOLTZMANN EQUATION

In this Appendix we provide an economical derivation of
gravitational DF acting on a nonrelativistic probe object
moving in a medium, with different medium microphysics
including a classical gas as well as quantum Fermi and
Bose gases. We neglect interactions apart from minimal
gravity. We start with a quick recap of the derivation of the
Fokker-Planck equation, governing the phase-space distri-
bution functions of the probe and medium particles.
We consider the following elastic scattering process of

two particle species:

1ðpÞ þ 2ðkÞ → 1ðp0Þ þ 2ðk0Þ:

The phase-space distribution function for the particle
species 1 evolves according to the Boltzmann equation,

df1
dt

¼ C½f1&: ðA1Þ

The collision integral C½f1& contains information about the
elastic scattering process, and is written as

C½f1& ¼
ð2πÞ4

2Ep

Z
dΠkdΠp0dΠk0δð4Þðpþ k − p0 − k0ÞjM̄j2

× ½f1ðp0Þf2ðk0Þð1' f1ðpÞÞð1' f2ðkÞÞ
− f1ðpÞf2ðkÞð1' f1ðp0ÞÞð1' f2ðk0ÞÞ&; ðA2Þ

where jM̄j2 is a squared matrix element averaged over
initial and final spins, and dΠk ¼ g

2Ek

d3k
ð2πÞ3 is the Lorentz-

invariant phase element with the number of internal degrees
of freedom g. The sign in 1' fi refers to bosons (þ) or
fermions (−), respectively. It is convenient to write the
above Boltzmann equation in the following form:

df1
dt

¼
Z

d3p0

ð2πÞ3
½Sðp0;pÞf1ðp0Þð1' f1ðpÞÞ

− Sðp;p0Þf1ðpÞð1' f1ðp0ÞÞ&; ðA3Þ

where the function S encodes the response of the medium,
and is defined as

Sðp;p0Þ≡ ð2πÞ4

2Ep2Ep0

Z
dΠkdΠk0δð4Þðpþ k − p0 − k0Þ

× jM̄j2f2ðkÞð1' f2ðk0ÞÞ: ðA4Þ

The function Sðp;p0Þ can be interpreted as a differential
rate at which a particle of momentum p is converted into a
particle with momentum p0.
The Boltzmann equation can be greatly simplified if the

momentum exchange

q ¼ p0 − p ðA5Þ

is smaller than the typical momentum given by the distri-
bution function f1. In such cases, the Boltzmann equation is
reduced to the nonlinear Fokker-Planck equation,

df1
dt

¼ −
∂
∂pi ½f1ð1' f1ÞDi&

þ 1

2

∂
∂pi

! ∂
∂pj ðDijf1Þ ' f21

∂
∂pj Dij

"
; ðA6Þ

where the diffusion coefficients are defined as
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DDM could lead to significant suppression of DF and
prolongation of the settling time of GC3 and GC4.
For SIDM, stellar kinematics allows a considerable core.

If the SIDM cross section is as large as that considered in
Ref. [47], then the DF settling time for GC3 and GC4 can
be significantly longer than in the cuspy halo CDM model.
We also considered the possibility that baryonic feed-

back deforms a CDM cusp into a core. In that case, the
deformation of the halo is expected primarily within the
half-light radius [10,17,48,49]. This makes the core spa-
tially smaller than the typical cores that were previously
suggested as an explanation of the GC timing puzzle
[17,28]. For our analysis, we adopted the density profile
fit in Ref. [10]. This intermediate-size baryonic-driven core
can also prolong GC orbital decay times within the inner
few hundred parsecs compared to the cusp case.
Altogether, we considered DM microphysics (and indi-

rectly, also baryonic feedback) as a possible source for the
formation of a core in Fornax, and computed the detailed
effects on dynamical friction. In general, both the detailed
microphysics and the mere presence of a core (regardless of
how it formed) affect the settling of GC orbits. Our analysis
suggests that the most relevant factor is the presence of the
core itself, rather than the specific microphysics scenario.
Further analysis, including other galaxies, and in particular
the search for nuclear star clusters in Fornax-like systems,
may be able to differentiate between these possibilities.
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EXOTIC MEDIA: DERIVATION FROM THE

BOLTZMANN EQUATION

In this Appendix we provide an economical derivation of
gravitational DF acting on a nonrelativistic probe object
moving in a medium, with different medium microphysics
including a classical gas as well as quantum Fermi and
Bose gases. We neglect interactions apart from minimal
gravity. We start with a quick recap of the derivation of the
Fokker-Planck equation, governing the phase-space distri-
bution functions of the probe and medium particles.
We consider the following elastic scattering process of

two particle species:

1ðpÞ þ 2ðkÞ → 1ðp0Þ þ 2ðk0Þ:

The phase-space distribution function for the particle
species 1 evolves according to the Boltzmann equation,

df1
dt

¼ C½f1&: ðA1Þ

The collision integral C½f1& contains information about the
elastic scattering process, and is written as

C½f1& ¼
ð2πÞ4

2Ep
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dΠkdΠp0dΠk0δð4Þðpþ k − p0 − k0ÞjM̄j2

× ½f1ðp0Þf2ðk0Þð1' f1ðpÞÞð1' f2ðkÞÞ
− f1ðpÞf2ðkÞð1' f1ðp0ÞÞð1' f2ðk0ÞÞ&; ðA2Þ

where jM̄j2 is a squared matrix element averaged over
initial and final spins, and dΠk ¼ g

2Ek

d3k
ð2πÞ3 is the Lorentz-

invariant phase element with the number of internal degrees
of freedom g. The sign in 1' fi refers to bosons (þ) or
fermions (−), respectively. It is convenient to write the
above Boltzmann equation in the following form:

df1
dt

¼
Z

d3p0

ð2πÞ3
½Sðp0;pÞf1ðp0Þð1' f1ðpÞÞ

− Sðp;p0Þf1ðpÞð1' f1ðp0ÞÞ&; ðA3Þ

where the function S encodes the response of the medium,
and is defined as

Sðp;p0Þ≡ ð2πÞ4

2Ep2Ep0

Z
dΠkdΠk0δð4Þðpþ k − p0 − k0Þ

× jM̄j2f2ðkÞð1' f2ðk0ÞÞ: ðA4Þ

The function Sðp;p0Þ can be interpreted as a differential
rate at which a particle of momentum p is converted into a
particle with momentum p0.
The Boltzmann equation can be greatly simplified if the

momentum exchange

q ¼ p0 − p ðA5Þ

is smaller than the typical momentum given by the distri-
bution function f1. In such cases, the Boltzmann equation is
reduced to the nonlinear Fokker-Planck equation,

df1
dt

¼ −
∂
∂pi ½f1ð1' f1ÞDi&

þ 1

2

∂
∂pi

! ∂
∂pj ðDijf1Þ ' f21

∂
∂pj Dij

"
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where the diffusion coefficients are defined as
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prolongation of the settling time of GC3 and GC4.
For SIDM, stellar kinematics allows a considerable core.

If the SIDM cross section is as large as that considered in
Ref. [47], then the DF settling time for GC3 and GC4 can
be significantly longer than in the cuspy halo CDM model.
We also considered the possibility that baryonic feed-

back deforms a CDM cusp into a core. In that case, the
deformation of the halo is expected primarily within the
half-light radius [10,17,48,49]. This makes the core spa-
tially smaller than the typical cores that were previously
suggested as an explanation of the GC timing puzzle
[17,28]. For our analysis, we adopted the density profile
fit in Ref. [10]. This intermediate-size baryonic-driven core
can also prolong GC orbital decay times within the inner
few hundred parsecs compared to the cusp case.
Altogether, we considered DM microphysics (and indi-

rectly, also baryonic feedback) as a possible source for the
formation of a core in Fornax, and computed the detailed
effects on dynamical friction. In general, both the detailed
microphysics and the mere presence of a core (regardless of
how it formed) affect the settling of GC orbits. Our analysis
suggests that the most relevant factor is the presence of the
core itself, rather than the specific microphysics scenario.
Further analysis, including other galaxies, and in particular
the search for nuclear star clusters in Fornax-like systems,
may be able to differentiate between these possibilities.
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gravitational DF acting on a nonrelativistic probe object
moving in a medium, with different medium microphysics
including a classical gas as well as quantum Fermi and
Bose gases. We neglect interactions apart from minimal
gravity. We start with a quick recap of the derivation of the
Fokker-Planck equation, governing the phase-space distri-
bution functions of the probe and medium particles.
We consider the following elastic scattering process of

two particle species:
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The phase-space distribution function for the particle
species 1 evolves according to the Boltzmann equation,

df1
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¼ C½f1&: ðA1Þ

The collision integral C½f1& contains information about the
elastic scattering process, and is written as

C½f1& ¼
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d3k
ð2πÞ3 is the Lorentz-

invariant phase element with the number of internal degrees
of freedom g. The sign in 1' fi refers to bosons (þ) or
fermions (−), respectively. It is convenient to write the
above Boltzmann equation in the following form:
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rate at which a particle of momentum p is converted into a
particle with momentum p0.
The Boltzmann equation can be greatly simplified if the
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is smaller than the typical momentum given by the distri-
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In this Appendix we provide an economical derivation of
gravitational DF acting on a nonrelativistic probe object
moving in a medium, with different medium microphysics
including a classical gas as well as quantum Fermi and
Bose gases. We neglect interactions apart from minimal
gravity. We start with a quick recap of the derivation of the
Fokker-Planck equation, governing the phase-space distri-
bution functions of the probe and medium particles.
We consider the following elastic scattering process of

two particle species:
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The phase-space distribution function for the particle
species 1 evolves according to the Boltzmann equation,

df1
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ð2πÞ3 is the Lorentz-

invariant phase element with the number of internal degrees
of freedom g. The sign in 1' fi refers to bosons (þ) or
fermions (−), respectively. It is convenient to write the
above Boltzmann equation in the following form:
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¼
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d3p0

ð2πÞ3
½Sðp0;pÞf1ðp0Þð1' f1ðpÞÞ
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where the function S encodes the response of the medium,
and is defined as

Sðp;p0Þ≡ ð2πÞ4

2Ep2Ep0

Z
dΠkdΠk0δð4Þðpþ k − p0 − k0Þ

× jM̄j2f2ðkÞð1' f2ðk0ÞÞ: ðA4Þ

The function Sðp;p0Þ can be interpreted as a differential
rate at which a particle of momentum p is converted into a
particle with momentum p0.
The Boltzmann equation can be greatly simplified if the

momentum exchange

q ¼ p0 − p ðA5Þ

is smaller than the typical momentum given by the distri-
bution function f1. In such cases, the Boltzmann equation is
reduced to the nonlinear Fokker-Planck equation,
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where the diffusion coefficients are defined as

ASSESSING THE FORNAX GLOBULAR CLUSTER TIMING … PHYS. REV. D 104, 043021 (2021)

043021-15

DDM could lead to significant suppression of DF and
prolongation of the settling time of GC3 and GC4.
For SIDM, stellar kinematics allows a considerable core.

If the SIDM cross section is as large as that considered in
Ref. [47], then the DF settling time for GC3 and GC4 can
be significantly longer than in the cuspy halo CDM model.
We also considered the possibility that baryonic feed-

back deforms a CDM cusp into a core. In that case, the
deformation of the halo is expected primarily within the
half-light radius [10,17,48,49]. This makes the core spa-
tially smaller than the typical cores that were previously
suggested as an explanation of the GC timing puzzle
[17,28]. For our analysis, we adopted the density profile
fit in Ref. [10]. This intermediate-size baryonic-driven core
can also prolong GC orbital decay times within the inner
few hundred parsecs compared to the cusp case.
Altogether, we considered DM microphysics (and indi-

rectly, also baryonic feedback) as a possible source for the
formation of a core in Fornax, and computed the detailed
effects on dynamical friction. In general, both the detailed
microphysics and the mere presence of a core (regardless of
how it formed) affect the settling of GC orbits. Our analysis
suggests that the most relevant factor is the presence of the
core itself, rather than the specific microphysics scenario.
Further analysis, including other galaxies, and in particular
the search for nuclear star clusters in Fornax-like systems,
may be able to differentiate between these possibilities.
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APPENDIX A: DYNAMICAL FRICTION IN
EXOTIC MEDIA: DERIVATION FROM THE

BOLTZMANN EQUATION

In this Appendix we provide an economical derivation of
gravitational DF acting on a nonrelativistic probe object
moving in a medium, with different medium microphysics
including a classical gas as well as quantum Fermi and
Bose gases. We neglect interactions apart from minimal
gravity. We start with a quick recap of the derivation of the
Fokker-Planck equation, governing the phase-space distri-
bution functions of the probe and medium particles.
We consider the following elastic scattering process of

two particle species:

1ðpÞ þ 2ðkÞ → 1ðp0Þ þ 2ðk0Þ:

The phase-space distribution function for the particle
species 1 evolves according to the Boltzmann equation,

df1
dt
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C½f1& ¼
ð2πÞ4

2Ep

Z
dΠkdΠp0dΠk0δð4Þðpþ k − p0 − k0ÞjM̄j2

× ½f1ðp0Þf2ðk0Þð1' f1ðpÞÞð1' f2ðkÞÞ
− f1ðpÞf2ðkÞð1' f1ðp0ÞÞð1' f2ðk0ÞÞ&; ðA2Þ
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invariant phase element with the number of internal degrees
of freedom g. The sign in 1' fi refers to bosons (þ) or
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The function Sðp;p0Þ can be interpreted as a differential
rate at which a particle of momentum p is converted into a
particle with momentum p0.
The Boltzmann equation can be greatly simplified if the

momentum exchange

q ¼ p0 − p ðA5Þ

is smaller than the typical momentum given by the distri-
bution function f1. In such cases, the Boltzmann equation is
reduced to the nonlinear Fokker-Planck equation,

df1
dt

¼ −
∂
∂pi ½f1ð1' f1ÞDi&

þ 1

2

∂
∂pi

! ∂
∂pj ðDijf1Þ ' f21

∂
∂pj Dij

"
; ðA6Þ

where the diffusion coefficients are defined as
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APPENDIX A: DYNAMICAL FRICTION IN
EXOTIC MEDIA: DERIVATION FROM THE

BOLTZMANN EQUATION

In this Appendix we provide an economical derivation of
gravitational DF acting on a nonrelativistic probe object
moving in a medium, with different medium microphysics
including a classical gas as well as quantum Fermi and
Bose gases. We neglect interactions apart from minimal
gravity. We start with a quick recap of the derivation of the
Fokker-Planck equation, governing the phase-space distri-
bution functions of the probe and medium particles.
We consider the following elastic scattering process of

two particle species:

1ðpÞ þ 2ðkÞ → 1ðp0Þ þ 2ðk0Þ:

The phase-space distribution function for the particle
species 1 evolves according to the Boltzmann equation,

df1
dt

¼ C½f1&: ðA1Þ

The collision integral C½f1& contains information about the
elastic scattering process, and is written as

C½f1& ¼
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× ½f1ðp0Þf2ðk0Þð1' f1ðpÞÞð1' f2ðkÞÞ
− f1ðpÞf2ðkÞð1' f1ðp0ÞÞð1' f2ðk0ÞÞ&; ðA2Þ

where jM̄j2 is a squared matrix element averaged over
initial and final spins, and dΠk ¼ g

2Ek

d3k
ð2πÞ3 is the Lorentz-

invariant phase element with the number of internal degrees
of freedom g. The sign in 1' fi refers to bosons (þ) or
fermions (−), respectively. It is convenient to write the
above Boltzmann equation in the following form:
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¼
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½Sðp0;pÞf1ðp0Þð1' f1ðpÞÞ
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where the function S encodes the response of the medium,
and is defined as

Sðp;p0Þ≡ ð2πÞ4
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The function Sðp;p0Þ can be interpreted as a differential
rate at which a particle of momentum p is converted into a
particle with momentum p0.
The Boltzmann equation can be greatly simplified if the

momentum exchange

q ¼ p0 − p ðA5Þ

is smaller than the typical momentum given by the distri-
bution function f1. In such cases, the Boltzmann equation is
reduced to the nonlinear Fokker-Planck equation,
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DiðpÞ ¼
Z

d3q
ð2πÞ3

qiSðp;pþ qÞ; ðA7Þ

DijðpÞ ¼
Z

d3q
ð2πÞ3

qiqjSðp;pþ qÞ: ðA8Þ

The gravitational scattering of a probe particle of massM
and a particle in the medium with mass m is described by
the spin-averaged matrix element

jM̄j2 ¼ 1

2sþ 1

ð16πGÞ2m4M4

½ðq0Þ2 − q2&2
; ðA9Þ

entering Eq. (A4). In the nonrelativistic limit, we can
neglect q0 and maintain only q in Eq. (A9).
The problem of calculating the diffusion coefficients for

different types of media amounts to evaluating Eqs. (A7)
and (A8), where in the response function (A4) we can select
the appropriate sign in 1' f2 corresponding to the medium
particle’s spin statistics (or setting 1' f2 → 1 if we wish to
compute the classical gas limit).
For the calculation of DF we are particularly interested in

Djj, the first diffusion coefficient corresponding to motion
parallel to the probe object’s instantaneous velocity. Djj is
simply given by Eq. (A7) when we select qi to align with
the direction of p.

1. A classical gas medium

We first rederive the relaxation of massive classical
objects, such as supermassive black holes or GCs, in a
background medium consisting of other classical objects
such as stars or CDM particles. In the nonrelativistic limit,
the function Sðp;p0Þ is simplified as

Sðp;p0Þ ≃ gχ
ð4πGmMÞ2

q4

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3

× ð2πÞ4δð4Þðpþ k − p0 − k0Þf2ðkÞ ðA10Þ

where gχ is the number of internal degrees of freedom of
dark matter. Here, M and m are the masses of the particle
species 1 and 2, respectively. In the small momentum
exchange limit, the δ function for the energy conservation
can be expanded as

δðEp þ Ek − Ep0 − Ek0Þ

≃
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2μr
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∂
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"
δ

#
q̂ ·

!
k
m
−

p
M

"$
; ðA11Þ

where μr ¼ mM=ðmþMÞ is the reduced mass. Using
these approximate expressions in nonrelativistic and small
momentum exchange limits, we obtain the diffusion
coefficients as

DiðpÞ ¼
Z

d3q
ð2πÞ3

qiSðp;pþ qÞ

¼ 4πG2m2M2

!
1þM

m

"
lnΛ

∂
∂pi hðp; f2Þ ðA12Þ

and

DijðpÞ ¼
Z

d3q
ð2πÞ3

qiqjSðp;pþ qÞ

¼ 4πG2m2M4 lnΛ
∂2

∂pi∂pj gðp; f2Þ ðA13Þ

where lnΛ ¼
R
qmax
qmin

dq=q is the Coulomb logarithm, and
we have used the identities (26)–(27) of Ref. [38] to
perform the angular integration at the second step in each
equation. The Rosenbluth potentials hðpÞ and gðpÞ are
defined as [95]

hðp; fÞ ¼ gχ

Z
d3k
ð2πÞ3

fðkÞ
j km − p

M j
; ðA14Þ

gðp; fÞ ¼ gχ
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m
− p
M

%%%%fðkÞ: ðA15Þ

This reproduces the well-known diffusion coefficients
in a classical system; see Eq. (7.83) in Ref. [51]. For
the Maxwell-Boltzmann distribution f2ðkÞ ¼ ð2πÞ3=2n2=
½gχðmσÞ3&e−v2k=2σ2 , it is straightforward to find
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where v ¼ p=M, v ¼ jvj and

X ¼ vffiffiffi
2

p
σ
: ðA18Þ

2. Degenerate fermionic dark matter

We now consider the diffusion of astrophysical objects
such as GCs in a halo of fermionic dark matter. In this case,
the response function S becomes

Sðp;p0Þ ≃ gχ
ð4πGmMÞ2

q4

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3

× ð2πÞ4δð4Þðpþ k − p0 − k0Þf2ðkÞð1 − f2ðk0ÞÞ:
ðA19Þ
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and a particle in the medium with mass m is described by
the spin-averaged matrix element

jM̄j2 ¼ 1
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ð16πGÞ2m4M4
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entering Eq. (A4). In the nonrelativistic limit, we can
neglect q0 and maintain only q in Eq. (A9).
The problem of calculating the diffusion coefficients for

different types of media amounts to evaluating Eqs. (A7)
and (A8), where in the response function (A4) we can select
the appropriate sign in 1' f2 corresponding to the medium
particle’s spin statistics (or setting 1' f2 → 1 if we wish to
compute the classical gas limit).
For the calculation of DF we are particularly interested in

Djj, the first diffusion coefficient corresponding to motion
parallel to the probe object’s instantaneous velocity. Djj is
simply given by Eq. (A7) when we select qi to align with
the direction of p.

1. A classical gas medium

We first rederive the relaxation of massive classical
objects, such as supermassive black holes or GCs, in a
background medium consisting of other classical objects
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where μr ¼ mM=ðmþMÞ is the reduced mass. Using
these approximate expressions in nonrelativistic and small
momentum exchange limits, we obtain the diffusion
coefficients as
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dq=q is the Coulomb logarithm, and
we have used the identities (26)–(27) of Ref. [38] to
perform the angular integration at the second step in each
equation. The Rosenbluth potentials hðpÞ and gðpÞ are
defined as [95]

hðp; fÞ ¼ gχ

Z
d3k
ð2πÞ3

fðkÞ
j km − p

M j
; ðA14Þ

gðp; fÞ ¼ gχ

Z
d3k
ð2πÞ3

%%%%
k
m
− p
M

%%%%fðkÞ: ðA15Þ

This reproduces the well-known diffusion coefficients
in a classical system; see Eq. (7.83) in Ref. [51]. For
the Maxwell-Boltzmann distribution f2ðkÞ ¼ ð2πÞ3=2n2=
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2. Degenerate fermionic dark matter

We now consider the diffusion of astrophysical objects
such as GCs in a halo of fermionic dark matter. In this case,
the response function S becomes
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The gravitational scattering of a probe particle of massM
and a particle in the medium with mass m is described by
the spin-averaged matrix element

jM̄j2 ¼ 1

2sþ 1

ð16πGÞ2m4M4

½ðq0Þ2 − q2&2
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entering Eq. (A4). In the nonrelativistic limit, we can
neglect q0 and maintain only q in Eq. (A9).
The problem of calculating the diffusion coefficients for

different types of media amounts to evaluating Eqs. (A7)
and (A8), where in the response function (A4) we can select
the appropriate sign in 1' f2 corresponding to the medium
particle’s spin statistics (or setting 1' f2 → 1 if we wish to
compute the classical gas limit).
For the calculation of DF we are particularly interested in

Djj, the first diffusion coefficient corresponding to motion
parallel to the probe object’s instantaneous velocity. Djj is
simply given by Eq. (A7) when we select qi to align with
the direction of p.

1. A classical gas medium

We first rederive the relaxation of massive classical
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where μr ¼ mM=ðmþMÞ is the reduced mass. Using
these approximate expressions in nonrelativistic and small
momentum exchange limits, we obtain the diffusion
coefficients as
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This reproduces the well-known diffusion coefficients
in a classical system; see Eq. (7.83) in Ref. [51]. For
the Maxwell-Boltzmann distribution f2ðkÞ ¼ ð2πÞ3=2n2=
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2

erfðXÞ −GðXÞ
X

$
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where v ¼ p=M, v ¼ jvj and

X ¼ vffiffiffi
2

p
σ
: ðA18Þ

2. Degenerate fermionic dark matter

We now consider the diffusion of astrophysical objects
such as GCs in a halo of fermionic dark matter. In this case,
the response function S becomes

Sðp;p0Þ ≃ gχ
ð4πGmMÞ2

q4

Z
d3k
ð2πÞ3

d3k0

ð2πÞ3

× ð2πÞ4δð4Þðpþ k − p0 − k0Þf2ðkÞð1 − f2ðk0ÞÞ:
ðA19Þ
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In a dark matter-dominated system,
observing the imprint of DF is a probe 
of the ~local~ phase space distribution of DM.

Micorphysics of DM can have an imprint.
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FΔtðrÞ ¼ F0ðr0ðr;ΔtÞÞ: ðF1Þ

Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),

Δt ¼
Z

r0

r

dr0

2r0
ð1þ αðr0ÞÞτðr0Þ; ðF2Þ

where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have

rcr ¼ r̄
!

2β
1þ α

Δt
τ̄

"
1=β

: ðF4Þ

In terms of rcr, the solution of Eq. (F2) evaluates to

r0ðr;ΔtÞ ¼ rcr

!
1þ

!
r
rcr

"
β
"

1=β
: ðF5Þ

For GCs that satisfy r ≪ rcr today, we can expand their
starting point:

r0ðr;ΔtÞ ¼ rcr þ
rcr
β

!
r
rcr

"
β
þ % % %

¼ rcr

!
1þ 1þ α

2β2
τðrÞ
Δt

þ % % %
"
: ðF6Þ

In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
Δt

þ % % % ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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For approximately power law density profile: 
(e.g. NFW                       )β ≈ 2, α ≈ 2

There is a critical radius:

FΔtðrÞ ¼ F0ðr0ðr;ΔtÞÞ: ðF1Þ

Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),

Δt ¼
Z

r0

r

dr0

2r0
ð1þ αðr0ÞÞτðr0Þ; ðF2Þ

where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have

rcr ¼ r̄
!

2β
1þ α

Δt
τ̄

"
1=β

: ðF4Þ

In terms of rcr, the solution of Eq. (F2) evaluates to

r0ðr;ΔtÞ ¼ rcr

!
1þ

!
r
rcr

"
β
"

1=β
: ðF5Þ

For GCs that satisfy r ≪ rcr today, we can expand their
starting point:

r0ðr;ΔtÞ ¼ rcr þ
rcr
β

!
r
rcr

"
β
þ % % %

¼ rcr

!
1þ 1þ α

2β2
τðrÞ
Δt

þ % % %
"
: ðF6Þ

In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
Δt

þ % % % ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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GCs that start at r<rcr at t=0, arrive at r=0 by t=   tΔ

FΔtðrÞ ¼ F0ðr0ðr;ΔtÞÞ: ðF1Þ

Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),

Δt ¼
Z

r0

r

dr0

2r0
ð1þ αðr0ÞÞτðr0Þ; ðF2Þ

where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have

rcr ¼ r̄
!

2β
1þ α

Δt
τ̄

"
1=β

: ðF4Þ

In terms of rcr, the solution of Eq. (F2) evaluates to

r0ðr;ΔtÞ ¼ rcr

!
1þ

!
r
rcr

"
β
"

1=β
: ðF5Þ

For GCs that satisfy r ≪ rcr today, we can expand their
starting point:

r0ðr;ΔtÞ ¼ rcr þ
rcr
β

!
r
rcr

"
β
þ % % %

¼ rcr

!
1þ 1þ α

2β2
τðrÞ
Δt

þ % % %
"
: ðF6Þ

In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
Δt

þ % % % ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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α(r) =
d ln M(r)

d ln r

σr ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v̄2rðr ≪ rc; β ¼ 0Þ

q
≈

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πGρð0Þ

3

r
rc

≈ 30

"
ρð0Þ

108 M⊙
kpc3

#1
2 rc
1 kpc

km
s
: ðD4Þ

We can also note the ratio,

X ≡ Vcircffiffiffi
2

p
σr

≈
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GMðrÞ
2r

r $ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πGρð0Þr2c

3

r
¼ r

rc
; ðD5Þ

indicating that the low-velocity approximation of the
Chandrasekhar deceleration may apply inside a core; see
Eq. (5). This implies a “phase-space suppression” to DF, as
discussed in the main text (Sec. III).

APPENDIX E: ORBITS UNDER
DYNAMICAL FRICTION

In this Appendix we review the solution of an orbit under
the influence of DF. We write the equations of motion
(EoM) in circular coordinates,

̈r ¼ ð̈r − r _φ2Þr̂þ ð2_r _φþrφ̈Þφ̂ ðE1Þ

¼ −
GMðrÞ

r2
r̂−

%%%%
d_r
dt

%%%%
DF

_r
j_rj

: ðE2Þ

We express the deceleration jd_r=dtjDF as j_rj=τ, where τ
appears in Eq. (10).
Defining r ¼ R0x, t ¼ T0 t̄, T2

0 ¼ R3
0=GMðR0Þ, we find

x00 − xφ02 ¼ −
1

x2
MðR0xÞ
MðR0Þ

−
x0

τ=T0

; ðE3Þ

2x0φ0 þ xφ00 ¼ − xφ0

τ=T0

ðE4Þ

where 0 is differentiation with respect to t̄. Note, τ can
depend on r and j_rj. For a circular orbit, for example, the
initial conditions can be set as xð0Þ ¼ 1, x0ð0Þ ¼ 0, φð0Þ ¼
0 and φ0ð0Þ ¼ 1=xð0Þ ¼ 1, which has a revolution time
of Δt̃ ¼ 2π.
Solving the orbit of a decelerating test object generally

requires numerical integration. We can understand some
features of the solution analytically, however. Defining
vφ ≡ r _φ, the φ̂ part of the EoM has the solution

rvφ ¼ ðrvφÞ0 exp
"
−
Z

t

0

dt0

τ

#
: ðE5Þ

This solution expresses the decay of angular momentum of
the test object. Using the circular velocity v2circ ¼ GMðrÞ=r,
we can express the r̂ part of the EoM as

v2φ − v2circ ¼ r
"
̈rþ

_r
τ

#
: ðE6Þ

We can gain more analytical intuition by considering
nearly circular orbits, assuming that the inspiral rate is much
smaller than the circular velocity, r=τ ≪ vcirc. Assuming
that _r ∼ r=τ, ̈r ∼ r=τ2 and r=τ ≪ vcirc, Eq. (E6) implies
vφ ≈ vcirc. We can use this to write

−
rvφ
τ

¼ _rvφ þ r _vφ ≈ _rvcirc þ r _vcirc ðE7Þ

¼ 1

2
vcirc _r

"
1þ d lnM

d ln r

#
: ðE8Þ

Rearranging, we find

_r
r
≈ −

2

ð1þ d lnM
d ln r Þτ

: ðE9Þ

Using this,we can estimate the time it takes a test object to fall
from r0 down to r < r0:

tðr; r0Þ ¼
Z

r0

r

dr
2r

"
1þ d lnM

d ln r

#
τðr; vcircðrÞÞ: ðE10Þ

Given the mass profile of the halo, MðrÞ, and a DF model
encapsulated by τ, Eq. (E10) is a simple and quick estimate of
the inspiral time of a test object.
For eccentric orbits, the approximation above is less

justified. Defining eccentricity as e≡ ðrapo − rperiÞ=ðrapo þ
rperiÞ with apocenter radius rapo and pericenter radius rperi,
we numerically tested Eq. (E10) for e > 0. In these
calculations we defined r0 and r via ðrapo þ rperiÞ=2, where
rapo and rperi are obtained per cycle of the orbital phase.
With these definitions, in numerical experiments represen-
tative of Fornax GCs we find that Eq. (E10) holds to better
than 30% accuracy for e≲ 0.5.

APPENDIX F: THE RADIAL AND
PROJECTED CDF OF GCs

Consider a population of identical GCs (all with the same
mass), that start off their life at some initial time t ¼ 0 on
approximately circular orbits with a radial probability
distribution function (PDF) f0ðr0Þ with respect to an initial
radial coordinate r0. The CDF of initial GC positions is
F0ðr0Þ ¼

R r0
0 dyf0ðyÞ. We are interested in computing the

PDF and CDF of GC radial positions today, at t ¼ Δt; call
these fΔtðrÞ and FΔtðrÞ.
DF causes GC orbits to inspiral inwards, and by

integrating along the orbit we can compute the function
r ¼ rðr0;ΔtÞ and invert it to obtain r0 ¼ r0ðr;ΔtÞ.17
Neglecting tidal disruption, we have

17The monotonous decrease of r with time, that allowed this
inversion, is lost for noncircular orbits. We could accommodate
elliptical orbits approximately, by letting r represent the average
between the peri- and apocenter per cycle.
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Should we expect to see GCs inside the kill circle?

…Not many: GCs that are now inside
critical radius (but not in nuclear cluster)
come from a small sliver of space:

FΔtðrÞ ¼ F0ðr0ðr;ΔtÞÞ: ðF1Þ

Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),

Δt ¼
Z

r0

r

dr0

2r0
ð1þ αðr0ÞÞτðr0Þ; ðF2Þ

where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have

rcr ¼ r̄
!

2β
1þ α

Δt
τ̄

"
1=β

: ðF4Þ

In terms of rcr, the solution of Eq. (F2) evaluates to

r0ðr;ΔtÞ ¼ rcr

!
1þ

!
r
rcr

"
β
"

1=β
: ðF5Þ

For GCs that satisfy r ≪ rcr today, we can expand their
starting point:

r0ðr;ΔtÞ ¼ rcr þ
rcr
β

!
r
rcr

"
β
þ % % %

¼ rcr

!
1þ 1þ α

2β2
τðrÞ
Δt

þ % % %
"
: ðF6Þ

In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
Δt

þ % % % ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),
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ð1þ αðr0ÞÞτðr0Þ; ðF2Þ

where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have
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In terms of rcr, the solution of Eq. (F2) evaluates to
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For GCs that satisfy r ≪ rcr today, we can expand their
starting point:
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In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
Δt

þ % % % ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
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The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
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In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
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where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
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and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),

Δt ¼
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2r0
ð1þ αðr0ÞÞτðr0Þ; ðF2Þ

where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have

rcr ¼ r̄
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In terms of rcr, the solution of Eq. (F2) evaluates to
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For GCs that satisfy r ≪ rcr today, we can expand their
starting point:
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In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
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þ % % % ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),
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where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
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The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have
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In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
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where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to
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and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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Now we can use explicit results for r0ðr;ΔtÞ to connect
FΔtðrÞ with F0ðr0Þ in different halo models. To this end we
can use Eq. (E10),
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where αðrÞ≡ d lnM=d ln r. Let us consider the general
features of FΔt for different halo shapes.

1. CDF of GCs in a cuspy halo

We have seen in the main analysis that a cuspy halo (i.e.,
the inner region of an NFW halo, where α ≈ 2) exhibits an
approximately power-law form for the DF time τ. For an
approximately constant α and power law τ ¼ τ̄ðr=r̄Þβ, it is
useful to define the critical radius rcr via

τðrcrÞ ¼
2β

1þ α
Δt: ðF3Þ

The physical meaning of rcr is that GCs that start their life
at r0 ≤ rcr arrive at the origin within t ≤ Δt. Using our
power-law form for τ, we have

rcr ¼ r̄
!

2β
1þ α

Δt
τ̄

"
1=β

: ðF4Þ

In terms of rcr, the solution of Eq. (F2) evaluates to

r0ðr;ΔtÞ ¼ rcr

!
1þ

!
r
rcr

"
β
"

1=β
: ðF5Þ

For GCs that satisfy r ≪ rcr today, we can expand their
starting point:

r0ðr;ΔtÞ ¼ rcr þ
rcr
β

!
r
rcr

"
β
þ % % %

¼ rcr

!
1þ 1þ α

2β2
τðrÞ
Δt

þ % % %
"
: ðF6Þ

In other words, for cuspy CDMhalos, GCs that are currently
seen at r ≪ rcr must have originated near r0 ≈ rcr. This
means that forGCswith r ≪ rcr today, the radial distribution
today is not very sensitive to the (difficult to predict) initial
distribution. We can make this point manifest by expanding
Eq. (F1), using Eqs. (F4) and (F6):

FΔtðrÞ ≈ F0ðrcrÞ þ
ð1þ αÞ
2β2

f0ðrcrÞrcr
τðrÞ
Δt

þ % % % ; ðF7Þ

where the ... refer to higher powers of the small ratio τðrÞ=Δt.
Above, the r-independent constant F0ðrcrÞ counts GCs that
have already settled to the center of the halo. These GCs

at r ≈ 0 were likely tidally disrupted, suggesting that in
actually counting GCs in the system, we should eliminate
the term F0ðrcrÞ on the rhs of Eq. (F7). We thus have
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, where A ¼ ð1þαÞ

2β2 f0ðrcrÞrcr is an
order-unity constant (r-independent) coefficient.18

We can summarize this section with two important
conclusions. First, for a cuspy halo, all GCs that are born
at r < rcr have arrived at r ≈ 0 by today and are plausibly
tidally disrupted. This means that observations today are
not sensitive to initial conditions, characterized by different
f0ðr0Þ, that differ from each other only at r < rcr, unless
stellar age and metallicity measurements can identify the
remnants and approximately count tidally disrupted GCs,
on time scales of Gyrs after the disruption. Second, the
radial CDF of GCs at small radii r ≪ rcr should follow
FΔtðrÞ ≈ AðτðrÞ=ΔtÞ, with order-unity A, irrespective of
initial conditions.
Figure 16 illustrates both of these two points, by showing

two examples of f0 and the resulting FΔt. The DF time τðrÞ
and the critical radius rcr are measurable given a model of
the DM halo, fitted to stellar kinematics, and given GC age
measurements that define Δt. This makes the predicted
shape of FΔt measurable, in principle. In practice, however,
projection effects (explained below) complicate the inter-
pretation. In addition, the collection of GCs in Fornax
seems too sparse to draw robust conclusions.

2. CDF of GCs in a cored halo

Inside a core we expect α ≈ 3 and an approximately
constant τ. Equation (F2) is evaluated to

Δt ¼ 1þ α
2

τ ln
r0
r

ðF8Þ

and the radial CDF today is

FΔtðrÞ ≈ F0ðre
2Δt

ð1þαÞτÞ ≈ F0ðre
Δt
2τÞ: ðF9Þ

The distribution of GCs inside a core reflects a stretched
version of the initial conditions. Because of this sensitivity
to initial conditions, the degree of possible fine-tuning in
the current positions of GCs may be difficult to assess.

3. Accounting for distribution of GC masses

The masses of GCs in Fornax vary over about an order of
magnitude around 105 M⊙, and the instantaneous DF time
satisfies τ ∝ 1=m& up to logarithmic corrections that we
neglect here. It is therefore necessary to revise the

18For the inner region of an NFW profile, we have seen that
α ≈ 2 and β ≈ 2, so A ≈ 0.4Ncr, where Ncr ¼ f0ðrcrÞrcr counts
the number of GCs that were located in a region of order rcr
around rcr. Predicting the actual value of Ncr would require an
understanding of the initial cosmological formation of GCs,
which is still not under full theoretical control.
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Nuclear cluster?!
Fornax does not seem to have one…

Tremaine 1976,
Oh, Lin, Richer 2000,
Petts, Gualandris, Read 2015,
Hui et al 2017, Lancaster et al 2019,
Meadows et al 2020, Bar et al 2021, 
Shao et al 2021,…

Should we expect to see GCs inside the kill circle?

…Not many: GCs that are now inside
critical radius (but not in nuclear cluster)
come from a small sliver of space:

NΔt(r) ≈ N0(rcr) +
1 + α
2β2

N′ 0(rcr)rcr
τ(r)
Δt

+ . . .

Cumulative count of GCs (CDF):

3D

projected 2D



Examples how it could become very interesting — ultralight dark matter 

If the system is entirely inside the coherent region (the soliton), dynamical friction is suppressed 

Hui et al, 1610.08297;  
Bar-Or, Fouvry, Tremaine, 1809.07673; 2010.10212 
Lancaster et al, 1909.06381

Proposed for Fornax GC timing puzzle  
Hui et al 2016. 



Examples how it could (have) become very interesting — ultralight dark matter 

If the system is entirely inside the coherent region (the soliton), dynamical friction is suppressed 

Hui et al, 1610.08297;  
Bar-Or, Fouvry, Tremaine, 1809.07673; 2010.10212 
Lancaster et al, 1909.06381

Proposed for Fornax GC timing puzzle  
Hui et al 2016. 
But only works for  (Lancaster et al 2019), 
in tension w/ LSBGs, Ly-  which suggest 

m < 10−21 eV
α m > 10−21 eV



Dynamical heating

Examples how it could become very interesting — ultralight dark matter

Effective quasi-particles  
(Bar-Or, Fouvry, Tremaine 1809.07673)



Dynamical heating

Examples how it could become very interesting — ultralight dark matter

Effective quasi-particles  
(Bar-Or, Fouvry, Tremaine 1809.07673)

Dalal, Kravstov 2203.05750:  
would have dispersed star cluster in 
Segue-I? 

meff ≈ 430 M⊙ ( 10 km /s
σ )

3

( ρ
107 M⊙ / kpc3 ) ( 10−20 eV

m )
3

(Fritz et al 2018)



Examples how it could become very interesting — ultralight dark matter

Brandt 1605.03665Amusing fact:  
Dynamical heating constraints on ultralight  
dark matter come from the same mechanism that  
constrains ultra heavy MACHO or PBH dark matter 



Examples how it could become very interesting — ultralight dark matter

Brandt 1605.03665Amusing fact:  
Dynamical heating constraints on ultralight  
dark matter come from the same mechanism that  
constrains ultra heavy MACHO or PBH dark matter 

mX

10−21 eV 10−10 M⊙ ∼ 1056 eV

Hypothesis:  
If you go far enough in the extreme right, 
you end up in the extreme left.



Examples how it could become very interesting — light fermion dark matter 

Domcke, Urbano, 1409.3167  
Randall, Scholtz, Unwin, 1611.04590

It was suggested that Milky Way dwarf satellite galaxies may point to degenerate fermion 
dark matter with  m ∼ 200 eV

Fornax Ursa Minor

Leo II
Draco



Examples how it could become very interesting — light fermion dark matter 

The collision operator: 

Transfer function S: 

           ,       instead of the classical gas result:   CDF →
V3

v3
F

CDF →
2V3

3 πσ3

-

Reddy, Prakash, Lattimer, astro-ph/9710115 
Bertoni, Nelson, Reddy, 1309.1721 
Bar et al, 2102.11522



Examples how it could (have) become very interesting — light fermion dark matter 

DDM must be hot at high redshift due to unavoidable 
degeneracy pressure.  

The minimal possible velocity dispersion can be compared 
with “standard” hot dark matter. 

Ly-  limit  (Baur et al, 1512.01981) 
rules out dwarf galaxy cores as proposed in  
Domcke, Urbano, 1409.3167;  
Randall, Scholtz, Unwin, 1611.04590

α m > 2.96 eV

Bar et al, 2102.11522
Fornax Ursa Minor

Leo II
Draco



  

Saifollahi et al, 2201.11750: Coma cluster UDGs

Many more UDGs/dwarfs to investigate. 


