Rescuing leptogenesis parameter space of Inverse seesaw neutrino mass model

Ananya Mukherjee Saha Institute of Nuclear Physics, India

Presented at DSU 2023 at ICTP-EAIFR, University of Rwanda, Kigali

10-14th July 2023

11.07.2023

ANANYA MUKHERJEE

RESCUING LEPTOGENESIS PARAMETER SPACE OF INVI

BARYON ASYMMETRY OF THE UNIVERSE

• $\eta_B^{\text{CMB}} = \frac{n_B - \bar{n_B}}{n_v} = (6 - 6.18) \times 10^{-10} \text{ (PLANCK 2018)}$

Observation : CMB and BBN measurement

- **Theoretical understanding** : Baryogenesis
 - LEPTOGENESIS, and
 - there exists other several ways to realize baryogenesis.

Baryogenesis can explain the baryon asymmetry problem through leptogenesis in connection to neutrino mass : BSM issues

M. Fukugita and T. Yanagida, Phys.Lett.B174:45-47(1986)

Neutrino mass can be explained by seesaw mechanisms by inclusion of right-handed-neutrinos. (Several seesaw models actually !)

 Produce lepton asymmetry from the decay of right-handed-neutrinos => leads to Baryogenesis. M. Fukugita and T. Yanagida, Phys.Lett.B174:45-47(1986)

Seesaw models $(Y_v^{\ell j} \overline{L_\ell} \widetilde{H} N_{R_i}) \Longrightarrow (N \to LH \text{ and the conjugate process})$

Are these models appealing in view of testability?

Testability issue for high scale seesaw models as $M_N \sim \mathcal{O}(10^9)$ GeV!! TeV scale models may be interesting !

< ロ > < 同 > < 回 > < 回 >

11.07.2023

AIM OF THE WORK : WHY ISS LEPTOGENESIS IS POTENTIALLY NOT ACHIEVABLE ?

Inverse seesaw : low scale seesaw ($\mathcal{O}(M_R) \sim a \text{ few TeV}$)

 In addition with the 3 RHNs, three copies of light (keV) sterile neutrinos are included.

The above (m_V ~ 0.1 eV) demands: m_D ~ 100GeV, M_R ~ 10TeV, µ ~ 1keV.

$$-\mathscr{L} \supset Y_{v}^{\ell i} \overline{L_{\ell}} \widetilde{H} N_{R_{i}} + M_{R} \overline{(N_{R_{i}})^{c}} S^{c} + \frac{1}{2} \mu \overline{S}(S)^{c} + h.c.$$
(1)
$$m_{v} = m_{D} (M_{R}^{T})^{-1} \mu M_{R}^{-1} m_{D}^{T}$$

$$Y_{v}^{\text{ISS}} = \frac{1}{v} U m_{n}^{1/2} R \mu^{-1/2} M_{R}^{T}$$
, R can be real/complex
lepton asymmetry $\varepsilon \propto \text{Im}[Y_{v}^{\dagger}Y_{v}]^{2}$
baryon asymmetry $\eta_{B} \propto \frac{\varepsilon}{K}$

Case A: Huge washout (K).

 Results into huge-washout => erases produced asymmetry. The reason is interaction rate is larger than the Hubble expansion rate during leptogenesis.

Case B: Not enough lepton asymmetry (ε quantitatively the order) to survive for the final baryon asymmetry.

Partial cancellation of the lepton asymmetries associated with each heavy pseudo-Dirac neutrino states.

- Remedy was given by R. Volkas et al., JCAP06(2018)012 and K. Agashe et al. JHEP04(2019)029, including linear seesaw in addition with ISS (controll the washout)
- However, the above scheme doesn't yield a testable parameter space in low energy experiments.
- Potential solution to these problems
 - Case A: Minimizing the amount of washout considering an alternate Hubble expansion rate, ensuring $\Gamma < H$.
 - Solution Case B: Considering non-degeneracy among the generations of heavy RHNs of ISS, bringing a resonant enhancement to ε .
- Both the above propositions work for the testability issue through the light-heavy mixing describing lepton flavor violation.
- A region of the viable parameter space can be tested in the future muon collider experiment.

Abdallah, Khalil 2012

ロ ト く 同 ト く ヨ ト く ヨ ト

LEPTON ASYMMETRY, DECAY WIDTH, HUBBLE RATE, WASHOUT..

- ▶ The generated lepton asymmetry ε_i^{ℓ} is converted into baryon asymmetry.
- ► The washout factor $K_i = \Gamma_i/H$, determined mainly by the dominant inverse decay, where, decay width : $\Gamma_i = \frac{M_i}{8\pi} (Y_V Y_V^{\dagger})_{ii}$
- The Hubble rate of expansion at temperature T ∼ M_i (1 TeV here → smaller expansion rate !)

Case A: Minimizing Washout ($K = \Gamma_i/H$) \longrightarrow Non-Standard Cosmology

The modified Hubble expansion rate..

D'Eramo et al. JCAP 1705 (2017) 012, D. Mahanta, et al. JCAP04(2020)032, Konar, Ananya, Abhijit, Sudipto, JHEP (2021), 44 (2021)

$$\rho_{\eta}(T) = \rho_{\eta}(T_R) \left(\frac{g_{*s}(T)}{g_{*s}(T_R)}\right)^{(4+n)/3} \left(\frac{T}{T_R}\right)^{(4+n)}$$

$$\rho(T) = \rho_{rad}(T) + \rho_{\eta}(T)$$
(2)
= $\rho_{rad}(T) \left[1 + \frac{g_{*}(T_{R})}{g_{*}(T)} \left(\frac{g_{*s}(T)}{g_{*s}(T_{R})} \right)^{(4+n)/3} \left(\frac{T}{T_{R}} \right)^{n} \right]$ (3)

$$\mathcal{H}(T) \approx \frac{\pi \bar{g}_*^{1/2}}{3\sqrt{10}} \frac{T^2}{M_{\text{Pl}}} \left(\frac{T}{T_R}\right)^{n/2}, \quad \text{(with } T \gg T_R\text{)}, \qquad (4)$$
$$= \mathcal{H}_R(T) \left(\frac{T}{T_R}\right)^{n/2},$$

TeV scale leptogenesis relies on the resonant enhancement of lepton asymmetry, also called **Pilaftsis-Underwood resonance**. $M_i - M_k \approx \Gamma_i/2$

ANANYA MUKHERJEE

RESCUING LEPTOGENESIS PARAMETER SPACE OF INVI

6/13

BOLTZMANN'S EQUATION IN BRIEF

$$\frac{d\eta_{N_i}}{dz} = \frac{z}{H(z=1)} \left[\left(1 - \frac{\eta_{N_i}}{\eta_{N_i}^{eq}} \right) \sum_{\substack{k=e,\mu,\tau}} \Gamma^{D(ik)} - \frac{2}{3} \sum_{\substack{k=e,\mu,\tau}} \eta_\ell^k \varepsilon_i^k \\
\times \widehat{\Gamma}^{D(ik)} \right],$$

$$\frac{d\eta_\ell}{dz} = \frac{z}{H(z=1)} \left[\sum_{i=1}^2 \varepsilon_i^\ell \left(\frac{\eta_{N_i}}{\eta_{N_i}^{eq}} - 1 \right) \sum_{\substack{\beta=e,\mu,\tau}} \Gamma^{D(ik)} \\
- \frac{2}{3} \eta_\ell, \sum_{i=1}^2 B_\ell^\ell \widetilde{\Gamma}^{D(i\ell)} \right],$$

Pilaftsis, Underwood Phys.Rev. D72 (2005) 113001

RESCUING LEPTOGENESIS PARAMETER SPACE OF INVI

2

MINIMIZING WASHOUT ($K = \Gamma_i/H$) and final baryon asymmetry : non-standard

COSMOLOGY

Input ranges :
$$5 \times 10^{-7} \,\text{GeV} \le \mu \le 10^{-2} \,\text{GeV},$$

 $10^{-5} \,\text{eV} \le m_l \le 10^{-2} \,\text{eV}, -4\pi \le x, y, z \le 4\pi$

BP	μ (GeV)	<i>m_L</i> (eV)	X	У	Ζ	n	T _r (MeV)	$K_1 \ (z = 20)$	η_B
Ι	$2.65 imes 10^{-3}$	5.94×10^{-4}	0.63	3.02	3.05	2	5	𝖉(10 ^{−5})	$6.02 imes 10^{-10}$
Ш	4×10^{-6}	3×10^{-4}	0.33	1.44	1.19	3	5	𝔗(10 ^{−5})	$6.10 imes 10^{-10}$

ANANYA MUKHERJEE

RESCUING LEPTOGENESIS PARAMETER SPACE OF INVI

Testing leptogenesis parameter space through $|V_{\mu i}|^2$

$$\mathsf{BR}(\mu \to e\gamma) = \frac{\alpha_w^3 s_w^2}{256\pi^2} \frac{m_\mu^5}{M_W^4} \frac{1}{\Gamma_\mu} \left| \sum_i^9 V_{\mu i}^* V_{ei} G(y_i) \right|^2, \ V_{\mu i} \propto (Y^\nu v) M_R^{-1}, \ \text{ Abada, et al. 2011}$$

Future sensitivity from MEG II: BR($\mu \rightarrow e\gamma$) < 5 × 10⁻¹⁴ [MEG II collab. 2017].

For n=2 and complex R the corresponding parameter space does not respect non-Unitarity of lepton mixing.

ANANYA MUKHERJEE

RESCUING LEPTOGENESIS PARAMETER SPACE OF INVI

11.07.2023

ъ

$$Y_{\nu} = 10^{-3} \begin{pmatrix} 0.07 - 0.12i & -0.45 - 0.58i & -0.089 - 0.86i \\ -0.12 - 0.074i & -0.58 + 0.45i & -0.86 + 0.089i \\ -1.96 + 2.96i & 26.81 + 0.97i & 26.9 + 22.72i \\ -2.9 - 1.96i & -0.97 + 26.8i & -22.7 + 26.9i \\ 5.92 + 3.92i & 1.96 - 53.5i & 45.4 - 53.8i \\ 3.92 - 5.92i & -53.5 - 1.96i & -53.8 - 45.4i \end{pmatrix}, \text{ with M1 = 1TeV, M2= 1001 GeV, M3= 3TeV}$$

Effective neutrino mass prediction, $m_{\beta\beta} = \sum_i |U_{ei}^2 m_i|$

- Case A: n=2 choice is not favourable, doesn't satisfy η_B and non-Unitarity of lepton mixing simultaneously. Real *R*, n=3 case is favorable and also nEXO can probe the parameter space with $m_{\text{lightest}} = 10^{-4} 0.04 \text{ eV}$.
- Case B: in case of complex R, $m_{\text{lightest}} = 10^{-4} 0.02 \text{ eV}$. nEXO can probe for both the choices of R.

11/13

- A pure ISS scenario can offer successful leptogenesis for a higher μ range with both standard and non-standard cosmology. However, the range of μ is different for each choice of *R* in the CI extraction.
- The success is independent of the choice of any PMNS phases (Dirac or Majorana) !
- We found $Br(\mu \rightarrow e\gamma) \sim 10^{-13, -14}$, matches the present and future sensitivity.)
- Associated light-heavy mixing, $|V_{\mu N_{1,2}}|^2 = 10^{-7} 10^{-4}$ (satisfying all the constraints, NU, MEG, MEGII) Restriction on the lightest neutrino mass; nEXO can shed light on m_{lightest} through $m_{\beta\beta}$.
- Another probe of the ISS-leptogenesis parameter space would be, to look for the RHN mixing $(|V_{\mu N_{1,2}}|^2)$ at Future Muon collider at 3TeV and 10TeV (under preparation with Tanumoy Mandal, Abhijit. K. Saha)

Thank You for your attention!

11.07.2023