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g − 2 in LRIS

The LRIS Model

Fields SU(3)C × SU(2)L × SU(2)R × UB−L Z2

QL =

(
uL
dL

)
(3,2,1, 1

3) +1

QR =

(
uR
dR

)
(3,1,2, 1

3) +1

LL =

(
νL
eL

)
(1,2,1,−1) +1

LR =

(
νR
eR

)
(1,1,2,−1) +1

S1 (1,1,1,−2) −1
S2 (1,1,1, 2) +1

φ =

(
φ0

1 φ+
1

φ−2 φ0
2

)
(1,2,2, 0) +1

χR =

(
χ+
R

χ0
R

)
(1,1,2, 1) +1

Table 1: The LRIS particle Content quantum numbers.
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g − 2 in LRIS

The LRIS Model

The Higgs potential is [6]

V (φ, χR) = µ1Tr(φ†φ) + µ2[Tr(φ̃φ†) + Tr(φ̃†φ)] + λ1(Tr(φ†φ))2

+ λ2[(Tr(φ̃φ†))2 + (Tr(φ̃†φ))2] + λ3Tr(φ̃φ†)Tr(φ̃†φ)

+ λ4Tr(φφ†)(Tr(φ̃φ†) + Tr(φ̃†φ)) + µ3(χ†RχR) + ρ1(χ†RχR)2

+ α1Tr(φ†φ)(χ†RχR) + α2(χ†Rφ
†φχR) + α3(χ†Rφ̃

†φ̃χR)

+ α4(χ†Rφ
†φ̃χR + h.c.). (1)

The Yukawa Lagrangian

LY =

3∑
i,j=1

L̄L,i
(
φyLij + φ̃ỹLij

)
LR,j + Q̄L,i

(
φyQij + φ̃ỹQij

)
QR,j

+L̄R,iχ̃Ry
s
ijS

c
2,j +H.c. . (2)
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g − 2 in LRIS

The LRIS Model

Spntaneous symmetry breaking (SSB) occurs via the vevs

〈φ〉 =

(
k1 0
0 k2

)
∼ O(GeV), 〈χ〉 =

(
0
vR

)
∼ O(TeV). (3)

and tβ = tanβ = k1/k2, v =
√
k2

1 + k2
2 = 246 GeV.

After SSB, the IS neutrino masses Lagrangian is [16, 17, 12, 18]

Lνm = MDν̄LνR +MRν̄
c
RS2 + µsS̄c2S2 + h.c., (4)

where MD = v(yLsβ + ỹLcβ)/
√

2 is the neutrino Dirac mass matrix
and MR = ysvR/

√
2.
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g − 2 in LRIS

The LRIS Model

In the basis (νcL, νR, S2), the neutrino mass matrix is

Mν =

 0 MD 0
MT
D 0 MR

0 MT
R µs

 . (5)

The physical light and heavy neutrino states ν`i , νhj , have masses

mν`i
= MDM

−1
R µs(M

T
R )−1MT

D, i = 1 . . . 3, (6)

m2
νhj

= M2
R +M2

D, j = 1 . . . 6. (7)

The inverse relation of Eq. (6) is

MD = UPMNS
√
mν`R

√
(µs)−1MR, (8)

R is an orthogonal matrix and UPMNS is the 3× 3 light neutrino
mixing [7, 1, 9].
Choices of µs ∼ O(10−7) GeV, and vR ∼ O(103) GeV So for
ys ∼ O(10−3) we need M ∼ O(10) TeV gives the experimental light
neutrino masses.
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g − 2 in LRIS

The LRIS Model

The symmetric mass matrix of the charged Higgs bosons
(φ±1 , φ

±
2 , χ

±
R) is

M2
H± =

α32

2


v2
Rs

2
β

c2β

v2
Rs2β
2c2β

−vvRsβ
.

v2
Rc

2
β

c2β
−vvRcβ

. . v2c2β

 , (9)

Only one physical charged Higgs boson with mass are

m2
H± =

α32

2

(
v2
R

c2β
+ v2c2β

)
, (10)

where α32 = α3 − α2.

For vR >∼ O(TeV), the physical charged Higgs boson is [10]

H± ≈ −(sβφ
±
1 + cβφ

±
2 ). (11)
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g − 2 in LRIS

The LRIS Model

The relevant H±-fermions couplings are

ΓH
±

ūidj
= CijPL +DijPR, ΓH

±
ν̄k`

= ξk`PL + ζk`PR. (12)

and the couplings

Cij '
√

2

vc2β

3∑
a=1

V ∗ja
(
VMdV

† − s2βMu

)∗
ai
, (13)

Dij '
√

2

vc2β

3∑
a=1

Vja
(
s2βVMdV

† −Mu

)
ia
, (14)

ξk` '
√

2

vc2β

3∑
i=1

U∗k,i+3

(
s2βMlp −MD

)
`i
, k = 4, . . . , 9, (15)

ζk` '
√

2

vc2β

3∑
i=1

Uki
(
Mlp − s2βMD

)
i`
, k = 1, 2, 3, (16)

V and U are the quark CKM and IS neutrino mixing matrices.

10 / 26 Mustafa Ashry g − 2 in LRIS



g − 2 in LRIS
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g − 2 in LRIS

aµ in LRIS

Recent experimental results indicate a possible 4.2σ difference
between the measured value of the anomalous magnetic moments of
muons aµ and the SM expectations [11, 14, 13, 2], namely

δaµ = aexp
µ − aSM

µ = (2.51± 0.59)× 10−9. (17)

Figure 1: LRIS one-loop Feynman diagrams contributions to lepton g` − 2 via
massive neutrinos, V ± = W,W ′, V 0 = Z,Z ′, S0 = h,A and the charged Higgs
boson H±.
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g − 2 in LRIS

aµ in LRIS

The charged Higgs H± contribution to aµ is given by

aH
±

` = G`F ΓH
±

γ

9∑
k=1

(
|ζ ′k`|2 F2(xνkH±) + 2Re[ζ ′k`ξ

′∗
k`] F1(xνkH±)

)
, (18)

where the couplings ζ ′k` = v
mνk

ζk` and ξ′k` = v
m`
ξk`.

The charged Higgs boson interaction coupling with photons is

ΓH
±

γ ' 1

6e

(
gLU

0
21 + gRU

0
31

)
, (19)

U0 is the neutral gauge bosons mixing [10].

The loop functions Fk (k = 1, 2) in Eq. (18) are given by

Fk(y) =
yPk(y)

(y − 1)k+1
− 6yk+1 log(y)

(y − 1)k+2
, k = 1, 2, (20)

P1(y) = 3y + 3, (21)

P2(y) = 2y2 + 5y − 1. (22)
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g − 2 in LRIS

aµ in LRIS

The charged Higgs boson contribution to the aµ anomaly Eq. (18)
can be approximated to

aH
±

` ' 2G`F ΓH
±

γ

9∑
k=4

Re[ζ ′k`ξ
′∗
k`] F1(xνkH±) <∼

3ΓH
±

γ

8π2
m`

9∑
k=4

ζk`ξk`
mνk

. (23)
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Figure 2: (Left/right) δaµ,e with xν5H± = m2
ν5/m

2
H± . The 1σ and 2σ standard

errors of measurements of aµ are included in green and red borders. BP is
encircled.

14 / 26 Mustafa Ashry g − 2 in LRIS
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aµ in LRIS

α32 tβ vR ZH
±

31 ZH
±

32 ZH
±

33 mH±

0.0058 0.1 10000 −0.099 −0.994 0.024 545

Table 2: BP and H± mixing and mass for
ys = diag(1.53× 10−2, 9.76× 10−1, 2.05× 10−1) and
µs = diag(1.01× 10−5, 3.82× 10−9, 5.49× 10−6). Finally, the nonvanishing
elements of the orthogonal matrix R are R13 = R21 = R32 = 1.

mν1 mν2 mν3 mν4 mν5 mν6 mν7 mν8 mν9

1.0× 10−13 8.5× 10−12 5.0× 10−11 108 695 1449 108 695 1449

Table 3: BP neutrino mass spectrum in GeVs.

δaµ −δae BR(µ→ eγ)

2.5× 10−9 8.1× 10−17 3.4× 10−13

Table 4: BP Observalbles gµ(e) − 2, BR(µ→ eγ) of the BP given in Tab. 3.
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LFV Constraints
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LFV Constraints

Experimentally, BR(µ→ eγ) <∼ 4.2× 10−13 (90%CL) [5]. LRIS H±

BR(µ→ eγ)LRIS '
α3
ws

2
w

256π2

mµ

Γµ
(xµW )2

9∑
k=4

∣∣∣(ζ ′k,eξ′∗k,µ + ξ′k,eζ
′∗
k,µ

)
F1(xνkH±)

∣∣∣2
<∼

9αem

256π4

m5
µ

Γµ

9∑
k=4

1

m2
νk

(ζk,eξk,µ
mµ

+
ξk,eζk,µ
me

)2
. (24)

Finally, we check experimental limits on H± contributions to the
µ-e conversion on a nucleus (A). Experiments make the upper
bounds RTi

µ→e 6 10−18, RAl
µ→e 6 10−16, RAu

µ→e 6 7× 10−13 [15].
The H± contribution to the µ-e conversion is [3, 8]

RAµ→e =
32G2

Fm
5
µ

ΓAcapt

[∣∣∣C̃ppV,RV (p)
A +C̃nnV,RV

(n)
A +

1

4
CD,LDA

∣∣∣2+{L↔ R}
]
. (25)

ΓAcapt ∼ O(1− 10)× 106 s−1 is the rate for the muon to transform to
a neutrino by capture on the nucleus (A). The nuclear “overlap

integrals” V
(p)
A , V

(n)
A , DA ∼ O(10−2 − 10−1) for A = Al, Ti, Au [15].
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LFV Constraints

In LRIS, the nucleon-dependent Wilson coefficients are given by

CD,L =
8GFαem

πs2
w

√
2

9∑
k=1

3∑
j=1

∑
q,q′=u,d,q 6=q′

(
U∗k,eUk,µ|Vq′,qj |

2) B2(x
νk
W , x

qj
W ), (26)

C̃ppV,R =
1

8π2m2
H±

9∑
k=1

3∑
j=1

∑
q,q′=u,d,q 6=q′

(
ζk,eξk,µ + ζk,µξk,e

)
×
(
C2
q′,qj +D2

q′,qj

)
B2(x

νk
H±

, x
qj

H±
), (27)

C̃nnV,R =
1

4π2m2
H±

9∑
k=1

3∑
j=1

∑
q,q′=u,d,q 6=q′

(
ζk,eζk,µ + ξk,eξk,µ

)
×
(
Cq′,qjDq′,qj

)
B1(x

νk
H±

, x
qj

H±
)
√
x
νk
H±

x
qj

H±
, (28)

The loop functions are

Jk(x) =
1

1− x
+
xk log(x)

(1− x)2
, (29)

Bk(x, y) =
Jk(x)− Jk(y)

x− y
, k = 1, 2. (30)

18 / 26 Mustafa Ashry g − 2 in LRIS



g − 2 in LRIS

LFV Constraints

BR(µ→ eγ) RAl
µ→e RTi

µ→e RAu
µ→e

2.10× 10−13 4.10× 10−51 3.80× 10−50 4.10× 10−49

Table 5: LFV observables BP given in Table 3 in LRIS.
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Figure 3: BR(µ→ eγ) versus δaµ in LRIS. BP is encircled.

All BPs are tested and found to satisfy the µ-e conversion
experimental limits as in Table 5.
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Conclusion

We have analyzed aµ in a minimal left-right symmetric model with an
inverse seesaw mechanism.

We found that a large region of the parameter space of the model is
consistent with the observed aµ anomaly.

BP satisfy the δae limits and the BR(µ→ eγ) and the
µ→ e-conversion rates limits.
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