Muon $g-2$ anomaly in a minimal left-right model with an inverse seesaw mechanism

Mustafa Ashry
mustafa@sci.cu.edu.eg

Department of Mathematics, Faculty of Science, Cairo University

Based on PhysRevD.107. 055044 and PhysRevD.104.015016 [4, 10] (In collaboration with K. Ezzat and S. Khalil)
The Dark Side of the Universe (DSU2023), Rwanda, 10-14 July 2023

Outline

1 The LRIS Model

$2 a_{\mu}$ in LRIS

3 LFV Constraints

4 Conclusion

Outline

1 The LRIS Model

$2 a_{\mu}$ in LRIS

3 LFV Constraints

4 Conclusion

Outline

1 The LRIS Model

$2 a_{\mu}$ in LRIS

3 LFV Constraints

4 Conclusion

Outline

1 The LRIS Model

$2 a_{\mu}$ in LRIS

3 LFV Constraints

4 Conclusion

Outline

1 The LRIS Model

$2 a_{\mu}$ in LRIS

3 LFV Constraints

4 Conclusion

Fields $\quad S U(3)_{C} \times S U(2)_{L} \times S U(2)_{R} \times U_{B-L} \quad \mathbb{Z}_{2}$

$Q_{L}=\binom{u_{L}}{d_{L}}$	$\left(\mathbf{3}, \mathbf{2}, \mathbf{1}, \frac{1}{3}\right)$	+1
$Q_{R}=\binom{u_{R}}{d_{R}}$	$\left(\mathbf{3}, \mathbf{1}, \mathbf{2}, \frac{1}{3}\right)$	+1
$L_{L}=\binom{\nu_{L}}{e_{L}}$	$(\mathbf{1}, \mathbf{2}, \mathbf{1},-1)$	+1
$L_{R}=\binom{\nu_{R}}{e_{R}}$	$(\mathbf{1}, \mathbf{1}, \mathbf{2},-1)$	+1
S_{1}	$(\mathbf{1}, \mathbf{1}, \mathbf{1},-2)$	-1
S_{2}	$(\mathbf{1}, \mathbf{1}, \mathbf{1}, 2)$	+1
$\phi=\left(\begin{array}{cc}\phi_{1}^{0} & \phi_{1}^{+} \\ \phi_{2}^{-} & \phi_{2}^{0}\end{array}\right)$	$(\mathbf{1}, \mathbf{2}, \mathbf{2}, 0)$	+1
$\chi_{R}=\binom{\chi_{R}^{+}}{\chi_{R}^{0}}$	$(\mathbf{1}, \mathbf{1}, \mathbf{2}, 1)$	+1

Table 1: The LRIS particle Content quantum numbers.

- The Higgs potential is [6]

$$
\begin{align*}
V\left(\phi, \chi_{R}\right) & =\mu_{1} \operatorname{Tr}\left(\phi^{\dagger} \phi\right)+\mu_{2}\left[\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right]+\lambda_{1}\left(\operatorname{Tr}\left(\phi^{\dagger} \phi\right)\right)^{2} \\
& +\lambda_{2}\left[\left(\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)\right)^{2}+\left(\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right)^{2}\right]+\lambda_{3} \operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right) \operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right) \\
& +\lambda_{4} \operatorname{Tr}\left(\phi \phi^{\dagger}\right)\left(\operatorname{Tr}\left(\tilde{\phi} \phi^{\dagger}\right)+\operatorname{Tr}\left(\tilde{\phi}^{\dagger} \phi\right)\right)+\mu_{3}\left(\chi_{R}^{\dagger} \chi_{R}\right)+\rho_{1}\left(\chi_{R}^{\dagger} \chi_{R}\right)^{2} \\
& +\alpha_{1} \operatorname{Tr}\left(\phi^{\dagger} \phi\right)\left(\chi_{R}^{\dagger} \chi_{R}\right)+\alpha_{2}\left(\chi_{R}^{\dagger} \phi^{\dagger} \phi \chi_{R}\right)+\alpha_{3}\left(\chi_{R}^{\dagger} \tilde{\phi}^{\dagger} \tilde{\phi} \chi_{R}\right) \\
& +\alpha_{4}\left(\chi_{R}^{\dagger} \phi^{\dagger} \tilde{\phi} \chi_{R}+\text { h.c. }\right) \tag{1}
\end{align*}
$$

- The Yukawa Lagrangian

$$
\begin{align*}
\mathcal{L}_{Y}=\sum_{i, j=1}^{3} & \bar{L}_{L, i}\left(\phi y_{i j}^{L}+\tilde{\phi} \tilde{y}_{i j}^{L}\right) L_{R, j}+\bar{Q}_{L, i}\left(\phi y_{i j}^{Q}+\tilde{\phi} \tilde{y}_{i j}^{Q}\right) Q_{R, j} \\
& +\bar{L}_{R, i} \tilde{\chi}_{R} y_{i j}^{s} S_{2, j}^{c}+\text { H.c. } \tag{2}
\end{align*}
$$

■ Spntaneous symmetry breaking (SSB) occurs via the vevs

$$
\langle\phi\rangle=\left(\begin{array}{cc}
k_{1} & 0 \tag{3}\\
0 & k_{2}
\end{array}\right) \sim \mathcal{O}(\mathrm{GeV}), \quad\langle\chi\rangle=\binom{0}{v_{R}} \sim \mathcal{O}(\mathrm{TeV})
$$

and $t_{\beta}=\tan \beta=k_{1} / k_{2}, v=\sqrt{k_{1}^{2}+k_{2}^{2}}=246 \mathrm{GeV}$.
■ After SSB, the IS neutrino masses Lagrangian is [16, 17, 12, 18]

$$
\begin{equation*}
\mathcal{L}_{m}^{\nu}=M_{D} \bar{\nu}_{L} \nu_{R}+M_{R} \bar{\nu}_{R}^{c} S_{2}+\mu_{s} \bar{S}_{2}^{c} S_{2}+h . c . \tag{4}
\end{equation*}
$$

where $M_{D}=v\left(y^{L} s_{\beta}+\tilde{y}^{L} c_{\beta}\right) / \sqrt{2}$ is the neutrino Dirac mass matrix and $M_{R}=y^{s} v_{R} / \sqrt{2}$.

■ In the basis $\left(\nu_{L}^{c}, \nu_{R}, S_{2}\right)$, the neutrino mass matrix is

$$
\mathcal{M}_{\nu}=\left(\begin{array}{ccc}
0 & M_{D} & 0 \tag{5}\\
M_{D}^{T} & 0 & M_{R} \\
0 & M_{R}^{T} & \mu_{s}
\end{array}\right)
$$

■ The physical light and heavy neutrino states $\nu_{\ell_{i}}, \nu_{h_{j}}$, have masses

$$
\begin{align*}
m_{\nu_{\ell_{i}}} & =M_{D} M_{R}^{-1} \mu_{s}\left(M_{R}^{T}\right)^{-1} M_{D}^{T}, \quad i=1 \ldots 3 \tag{6}\\
m_{\nu_{h_{j}}}^{2} & =M_{R}^{2}+M_{D}^{2}, \quad j=1 \ldots 6 \tag{7}
\end{align*}
$$

- The inverse relation of Eq. (6) is

$$
\begin{equation*}
M_{D}=U_{\mathrm{PMNS}} \sqrt{m_{\nu_{\ell}}} \mathcal{R} \sqrt{\left(\mu^{s}\right)^{-1}} M_{R} \tag{8}
\end{equation*}
$$

\mathcal{R} is an orthogonal matrix and U_{PMNS} is the 3×3 light neutrino mixing [7, 1, 9].
■ Choices of $\mu_{s} \sim \mathcal{O}\left(10^{-7}\right) \mathrm{GeV}$, and $v_{R} \sim \mathcal{O}\left(10^{3}\right) \mathrm{GeV}$ So for $y^{s} \sim \mathcal{O}\left(10^{-3}\right)$ we need $M \sim \mathcal{O}(10) \mathrm{TeV}$ gives the experimental light neutrino masses.

■ The symmetric mass matrix of the charged Higgs bosons $\left(\phi_{1}^{ \pm}, \phi_{2}^{ \pm}, \chi_{R}^{ \pm}\right)$is

$$
M_{H^{ \pm}}^{2}=\frac{\alpha_{32}}{2}\left(\begin{array}{ccc}
\frac{v_{R}^{2} s_{\beta}^{2}}{c_{2 \beta}} & \frac{v_{R}^{2} s_{2 \beta}}{2 c_{2 \beta}} & -v v_{R} s_{\beta} \tag{9}\\
\cdot & \frac{v_{R}^{2} c_{\beta}^{2}}{c_{2 \beta}} & -v v_{R} c_{\beta} \\
\cdot & \cdot & v^{2} c_{2 \beta}
\end{array}\right)
$$

- Only one physical charged Higgs boson with mass are

$$
\begin{equation*}
m_{H^{ \pm}}^{2}=\frac{\alpha_{32}}{2}\left(\frac{v_{R}^{2}}{c_{2 \beta}}+v^{2} c_{2 \beta}\right) \tag{10}
\end{equation*}
$$

where $\alpha_{32}=\alpha_{3}-\alpha_{2}$.
■ For $v_{R} \gtrsim \mathcal{O}(\mathrm{TeV})$, the physical charged Higgs boson is [10]

$$
\begin{equation*}
H^{ \pm} \approx-\left(s_{\beta} \phi_{1}^{ \pm}+c_{\beta} \phi_{2}^{ \pm}\right) \tag{11}
\end{equation*}
$$

■ The relevant $H^{ \pm}$-fermions couplings are

$$
\begin{equation*}
\Gamma_{\bar{u}_{i} d_{j}}^{H^{ \pm}}=C_{i j} P_{L}+D_{i j} P_{R}, \quad \Gamma_{\bar{\nu}_{k} \ell}^{H^{ \pm}}=\xi_{k \ell} P_{L}+\zeta_{k \ell} P_{R} . \tag{12}
\end{equation*}
$$

and the couplings

$$
\begin{align*}
C_{i j} & \simeq \frac{\sqrt{2}}{v c_{2 \beta}} \sum_{a=1}^{3} V_{j a}^{*}\left(V M_{d} V^{\dagger}-s_{2 \beta} M_{u}\right)_{a i}^{*}, \tag{13}\\
D_{i j} & \simeq \frac{\sqrt{2}}{v c_{2 \beta}} \sum_{a=1}^{3} V_{j a}\left(s_{2 \beta} V M_{d} V^{\dagger}-M_{u}\right)_{i a} \tag{14}\\
\xi_{k \ell} & \simeq \frac{\sqrt{2}}{v c_{2 \beta}} \sum_{i=1}^{3} U_{k, i+3}^{*}\left(s_{2 \beta} M_{\mathrm{lp}}-M_{D}\right)_{\ell i}, \quad k=4, \ldots, 9 \tag{15}\\
\zeta_{k \ell} & \simeq \frac{\sqrt{2}}{v c_{2 \beta}} \sum_{i=1}^{3} U_{k i}\left(M_{\mathrm{lp}}-s_{2 \beta} M_{D}\right)_{i \ell}, \quad k=1,2,3 \tag{16}
\end{align*}
$$

V and U are the quark CKM and IS neutrino mixing matrices.
a_{μ} in LRIS

Outline

1 The LRIS Model

$2 a_{\mu}$ in LRIS

3 LFV Constraints

4 Conclusion

- Recent experimental results indicate a possible 4.2σ difference between the measured value of the anomalous magnetic moments of muons a_{μ} and the SM expectations [11, 14, 13, 2], namely

$$
\begin{equation*}
\delta a_{\mu}=a_{\mu}^{\mathrm{exp}}-a_{\mu}^{\mathrm{SM}}=(2.51 \pm 0.59) \times 10^{-9} \tag{17}
\end{equation*}
$$

Figure 1: LRIS one-loop Feynman diagrams contributions to lepton $g_{\ell}-2$ via massive neutrinos, $V^{ \pm}=W, W^{\prime}, V^{0}=Z, Z^{\prime}, S^{0}=h, A$ and the charged Higgs boson $H^{ \pm}$.

■ The charged Higgs $H^{ \pm}$contribution to a_{μ} is given by

$$
\begin{equation*}
a_{\ell}^{H^{ \pm}}=G_{\mathrm{F}}^{\ell} \Gamma_{\gamma}^{H^{ \pm}} \sum_{k=1}^{9}\left(\left|\zeta^{\prime}{ }_{k \ell}\right|^{2} \mathcal{F}_{2}\left(x_{H^{ \pm}}^{\nu_{k}}\right)+2 \operatorname{Re}\left[\zeta^{\prime}{ }_{k \ell} \xi^{\prime *}{ }_{k \ell}\right] \mathcal{F}_{1}\left(x_{H^{ \pm}}^{\nu_{k}}\right)\right), \tag{18}
\end{equation*}
$$

where the couplings $\zeta_{k \ell}^{\prime}=\frac{v}{m_{\nu_{k}}} \zeta_{k \ell}$ and $\xi^{\prime}{ }_{k \ell}=\frac{v}{m_{\ell}} \xi_{k \ell}$.

- The charged Higgs boson interaction coupling with photons is

$$
\begin{equation*}
\Gamma_{\gamma}^{H^{ \pm}} \simeq \frac{1}{6 e}\left(g_{L} U_{21}^{0}+g_{R} U_{31}^{0}\right) \tag{19}
\end{equation*}
$$

U^{0} is the neutral gauge bosons mixing [10].
■ The loop functions $\mathcal{F}_{k}(k=1,2)$ in Eq. (18) are given by

$$
\begin{align*}
& \mathcal{F}_{k}(y)=\frac{y \mathcal{P}_{k}(y)}{(y-1)^{k+1}}-\frac{6 y^{k+1} \log (y)}{(y-1)^{k+2}}, \quad k=1,2 \tag{20}\\
& \mathcal{P}_{1}(y)=3 y+3 \tag{21}\\
& \mathcal{P}_{2}(y)=2 y^{2}+5 y-1 \tag{22}
\end{align*}
$$

- The charged Higgs boson contribution to the a_{μ} anomaly Eq. (18) can be approximated to

$$
\begin{equation*}
a_{\ell}^{H^{ \pm}} \simeq 2 G_{\mathrm{F}}^{\ell} \Gamma_{\gamma}^{H^{ \pm}} \sum_{k=4}^{9} \operatorname{Re}\left[\zeta_{k \ell}^{\prime}{\xi^{\prime}}_{k \ell}^{*}\right] \mathcal{F}_{1}\left(x_{H^{ \pm}}^{\nu_{k}}\right) \lesssim \frac{3 \Gamma_{\gamma}^{H^{ \pm}}}{8 \pi^{2}} m_{\ell} \sum_{k=4}^{9} \frac{\zeta_{k \ell} \xi_{k \ell}}{m_{\nu_{k}}} \tag{23}
\end{equation*}
$$

Figure 2: (Left/right) $\delta a_{\mu, e}$ with $x_{H^{ \pm}}^{\nu_{5}}=m_{\nu_{5}}^{2} / m_{H^{ \pm}}^{2}$. The 1σ and 2σ standard errors of measurements of a_{μ} are included in green and red borders. BP is encircled.

α_{32}	t_{β}	v_{R}	$Z_{31}^{H^{ \pm}}$	$Z_{32}^{H^{ \pm}}$	$Z_{33}^{H^{ \pm}}$	$m_{H^{ \pm}}$
0.0058	0.1	10000	-0.099	-0.994	0.024	545

Table 2: BP and $H^{ \pm}$mixing and mass for
$y^{s}=\operatorname{diag}\left(1.53 \times 10^{-2}, 9.76 \times 10^{-1}, 2.05 \times 10^{-1}\right)$ and
$\mu^{s}=\operatorname{diag}\left(1.01 \times 10^{-5}, 3.82 \times 10^{-9}, 5.49 \times 10^{-6}\right)$. Finally, the nonvanishing elements of the orthogonal matrix \mathcal{R} are $\mathcal{R}_{13}=\mathcal{R}_{21}=\mathcal{R}_{32}=1$.

$m_{\nu_{1}}$	$m_{\nu_{2}}$	$m_{\nu_{3}}$	$m_{\nu_{4}}$	$m_{\nu_{5}}$	$m_{\nu_{6}}$	$m_{\nu_{7}}$	$m_{\nu_{8}}$	$m_{\nu_{9}}$
1.0×10^{-13}	8.5×10^{-12}	5.0×10^{-11}	108	695	1449	108	695	1449

Table 3: BP neutrino mass spectrum in GeV s.

δa_{μ}	$-\delta a_{e}$	$\mathrm{BR}(\mu \rightarrow e \gamma)$
2.5×10^{-9}	8.1×10^{-17}	3.4×10^{-13}

Table 4: BP Observalbles $g_{\mu(e)}-2, \mathrm{BR}(\mu \rightarrow e \gamma)$ of the BP given in Tab. 3.

Outline

1 The LRIS Model

$2 a_{\mu}$ in LRIS

3 LFV Constraints

4 Conclusion

■ Experimentally, $\operatorname{BR}(\mu \rightarrow e \gamma) \lesssim 4.2 \times 10^{-13}(90 \% \mathrm{CL})$ [5]. LRIS $H^{ \pm}$

$$
\begin{align*}
\mathrm{BR}(\mu \rightarrow e \gamma) \mathrm{LRIS} & \simeq \frac{\alpha_{w}^{3} s_{w}^{2}}{256 \pi^{2}} \frac{m_{\mu}}{\Gamma_{\mu}}\left(x_{W}^{\mu}\right)^{2} \sum_{k=4}^{9}\left|\left(\zeta_{k, e}^{\prime} \xi_{k, \mu}^{\prime *}+\xi_{k, e}^{\prime} \zeta_{k, \mu}^{\prime *}\right) \mathcal{F}_{1}\left(x_{H^{ \pm}}^{\nu_{k}}\right)\right|^{2} \\
& \lesssim \frac{9 \alpha_{\mathrm{em}}}{256 \pi^{4}} \frac{m_{\mu}^{5}}{\Gamma_{\mu}} \sum_{k=4}^{9} \frac{1}{m_{\nu_{k}}^{2}}\left(\frac{\zeta_{k, e} \xi_{k, \mu}}{m_{\mu}}+\frac{\xi_{k, e} \zeta_{k, \mu}}{m_{e}}\right)^{2} \tag{24}
\end{align*}
$$

■ Finally, we check experimental limits on $H^{ \pm}$contributions to the μ-e conversion on a nucleus (A). Experiments make the upper bounds $R_{\mu \rightarrow e}^{\mathrm{Ti}} \leqslant 10^{-18}, R_{\mu \rightarrow e}^{\mathrm{Al}} \leqslant 10^{-16}, R_{\mu \rightarrow e}^{\mathrm{Au}} \leqslant 7 \times 10^{-13}$ [15].

- The $H^{ \pm}$contribution to the μ-e conversion is $[3,8]$

$$
\begin{equation*}
R_{\mu \rightarrow e}^{A}=\frac{32 G_{\mathrm{F}}^{2} m_{\mu}^{5}}{\Gamma_{\text {capt }}^{A}}\left[\left|\widetilde{C}_{V, R}^{p p} V_{A}^{(p)}+\widetilde{C}_{V, R}^{n n} V_{A}^{(n)}+\frac{1}{4} C_{D, L} D_{A}\right|^{2}+\{L \leftrightarrow R\}\right] \tag{25}
\end{equation*}
$$

$\Gamma_{\text {capt }}^{A} \sim \mathcal{O}(1-10) \times 10^{6} s^{-1}$ is the rate for the muon to transform to a neutrino by capture on the nucleus (A). The nuclear "overlap integrals" $V_{A}^{(p)}, V_{A}^{(n)}, D_{A} \sim \mathcal{O}\left(10^{-2}-10^{-1}\right)$ for $A=\mathrm{Al}, \mathrm{Ti}, \mathrm{Au}$ [15].

■ In LRIS, the nucleon-dependent Wilson coefficients are given by

$$
\begin{align*}
C_{D, L} & =\frac{8 G_{\mathrm{F}} \alpha_{\mathrm{em}}}{\pi s_{w}^{2} \sqrt{2}} \sum_{k=1}^{9} \sum_{j=1}^{3} \sum_{q, q^{\prime}=u, d, q \neq q^{\prime}}\left(U_{k, e}^{*} U_{k, \mu}\left|V_{q^{\prime}, q_{j}}\right|^{2}\right) B_{2}\left(x_{W}^{\nu_{k}}, x_{W}^{q_{j}}\right), \tag{26}\\
\widetilde{C}_{V, R}^{p p} & =\frac{1}{8 \pi^{2} m_{H^{ \pm}}^{2}} \sum_{k=1}^{9} \sum_{j=1}^{3} \sum_{q, q^{\prime}=u, d, q \neq q^{\prime}}\left(\zeta_{k, e} \xi_{k, \mu}+\zeta_{k, \mu} \xi_{k, e}\right) \\
& \times\left(C_{q^{\prime}, q_{j}}^{2}+D_{q^{\prime}, q_{j}}^{2}\right) B_{2}\left(x_{H^{ \pm}}^{\nu_{k}}, x_{H^{ \pm}}^{q_{j}}\right), \tag{27}\\
\widetilde{C}_{V, R}^{n n} & =\frac{1}{4 \pi^{2} m_{H^{ \pm}}^{2}} \sum_{k=1}^{9} \sum_{j=1}^{3} \sum_{q, q^{\prime}=u, d, q \neq q^{\prime}}\left(\zeta_{k, e} \zeta_{k, \mu}+\xi_{k, e} \xi_{k, \mu}\right) \\
& \times\left(C_{q^{\prime}, q_{j}} D_{q^{\prime}, q_{j}}\right) B_{1}\left(x_{H \pm}^{\nu_{k}}, x_{H^{ \pm}}^{q_{j}}\right) \sqrt{x_{H^{ \pm}}^{\nu_{k}} x_{H^{ \pm}}^{q_{j}}} \tag{28}
\end{align*}
$$

- The loop functions are

$$
\begin{align*}
J_{k}(x) & =\frac{1}{1-x}+\frac{x^{k} \log (x)}{(1-x)^{2}} \tag{29}\\
B_{k}(x, y) & =\frac{J_{k}(x)-J_{k}(y)}{x-y}, \quad k=1,2 . \tag{30}
\end{align*}
$$

$\mathrm{BR}(\mu \rightarrow e \gamma)$	$R_{\mu \rightarrow e}^{\mathrm{Al}}$	$R_{\mu \rightarrow e}^{\mathrm{Ti}}$	$R_{\mu \rightarrow e}^{\mathrm{Au}}$
2.10×10^{-13}	4.10×10^{-51}	3.80×10^{-50}	4.10×10^{-49}

Table 5: LFV observables BP given in Table 3 in LRIS.

Figure 3: $\mathrm{BR}(\mu \rightarrow e \gamma)$ versus δa_{μ} in LRIS. BP is encircled.
■ All BPs are tested and found to satisfy the μ-e conversion experimental limits as in Table 5.

Outline

1 The LRIS Model

$2 a_{\mu}$ in LRIS

3 LFV Constraints

4 Conclusion

- We have analyzed a_{μ} in a minimal left-right symmetric model with an inverse seesaw mechanism.
$■$ We found that a large region of the parameter space of the model is consistent with the observed a_{μ} anomaly.
- BP satisfy the δa_{e} limits and the $\mathrm{BR}(\mu \rightarrow e \gamma)$ and the $\mu \rightarrow e$-conversion rates limits.

References

References I

[1] W. Abdallah, A. Awad, S. Khalil, and H. Okada.
Muon Anomalous Magnetic Moment and mu ->e gamma in B-L Model with Inverse Seesaw.
Eur. Phys. J. C, 72:2108, 2012.
[2] B. Abi et al.
Measurement of the Positive Muon Anomalous Magnetic Moment to 0.46 ppm .
Phys. Rev. Lett., 126(14):141801, 2021.
[3] R. Alonso, M. Dhen, M. B. Gavela, and T. Hambye.
Muon conversion to electron in nuclei in type-I seesaw models.
JHEP, 01:118, 2013.
[4] M. Ashry, K. Ezzat, and S. Khalil.
Muon g-2 anomaly in a left-right model with an inverse seesaw mechanism.
Phys. Rev. D, 107(5):055044, 2023.
[5] A. M. Baldini et al.
Search for the lepton flavour violating decay $\mu^{+} \rightarrow \mathrm{e}^{+} \gamma$ with the full dataset of the MEG experiment.
Eur. Phys. J. C, 76(8):434, 2016.
[6] Debasish Borah, Sudhanwa Patra, and Utpal Sarkar.
TeV scale Left Right Symmetry with spontaneous D-parity breaking.
Phys.Rev., D83:035007, 2011.
[7] J.A. Casas and A. Ibarra.
Oscillating neutrinos and $\mu \rightarrow e, \gamma$.
Nuclear Physics B, 618(1):171-204, 2001.

References

References II

[8] Sacha Davidson, Yoshitaka Kuno, and Masato Yamanaka.
Selecting $\mu \rightarrow e$ conversion targets to distinguish lepton flavour-changing operators.
Phys. Lett. B, 790:380-388, 2019.
[9] Ivan Esteban, M. C. Gonzalez-Garcia, Michele Maltoni, Thomas Schwetz, and Albert Zhou.
The fate of hints: updated global analysis of three-flavor neutrino oscillations.
JHEP, 09:178, 2020.
[10] K. Ezzat, M. Ashry, and S. Khalil.
Search for a heavy neutral Higgs boson in a left-right model with an inverse seesaw mechanism at the LHC.
Phys. Rev. D, 104(1):015016, 2021.
[11] F. J. M. Farley, K. Jungmann, J. P. Miller, W. M. Morse, Y. F. Orlov, B. L. Roberts, Y. K. Semertzidis, A. Silenko, and E. J. Stephenson.

A New method of measuring electric dipole moments in storage rings.
Phys. Rev. Lett., 93:052001, 2004.
[12] M.C. Gonzalez-Garcia and J.W.F. Valle.
Fast Decaying Neutrinos and Observable Flavor Violation in a New Class of Majoron Models.
Phys. Lett. B, 216:360-366, 1989.
[13] Alexander Keshavarzi, William J. Marciano, Massimo Passera, and Alberto Sirlin.
Muon $g-2$ and $\Delta \alpha$ connection.
Phys. Rev. D, 102(3):033002, 2020.
[14] On Kim et al.
Reduction of coherent betatron oscillations in a muon $g-2$ storage ring experiment using RF fields.
New J. Phys., 22(6):063002, 2020.
$\left\llcorner_{\text {References }}\right.$

References III

[15] Ryuichiro Kitano, Masafumi Koike, and Yasuhiro Okada.
Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei.
Phys. Rev. D, 66:096002, 2002.
[Erratum: Phys.Rev.D 76, 059902 (2007)].
[16] R.N. Mohapatra.
Mechanism for Understanding Small Neutrino Mass in Superstring Theories.
Phys. Rev. Lett., 56:561-563, 1986.
[17] R.N. Mohapatra and J.W.F. Valle.
Neutrino Mass and Baryon Number Nonconservation in Superstring Models.
Phys. Rev. D, 34:1642, 1986.
[18] C. Weiland.
Enhanced lepton flavour violation in the supersymmetric inverse seesaw.
J. Phys. Conf. Ser., 447:012037, 2013.

Thank you! Questions?

