Probing Primordial non-Gaussianity with the Multi-tracer Technique

Sim Dlamini 17th International Workshop on the Dark Side of the Universe (DSU), JULY 2023

The Abdus Salam International Centre for Theoretical Physics Supervisor: Prof Roy Maartens Co-Supervisor: Dr Sheean Jolicoeur

Eur. Phys. J. C (2023) 83:320 https://doi.org/10.1140/epjc/s10052-023-11482-2

Regular Article - Theoretical Physics

Constraining primordial non-Gaussianity by combining next-generation galaxy and 21 cm intensity mapping surveys

Sheean Jolicoeur^{1,a}, Roy Maartens^{1,2,3,b}, Simthembile Dlamini^{1,c}

¹ Physics and Astronomy, University of the Western Cape, Cape Town 7535, South Africa
 ² Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
 ³ National Institute for Theoretical and Computational Sciences (NITheCS), Cape Town 7535, South Africa

^a e-mail: jolicoeursheean@gmail.com (corresponding author)

^be-mail: roy.maartens@gmail.com

^c e-mail: simther4111@gmail.com

LARGE-SCALE STRUCTURE

- Tells us about the evolution of the universe and the physics of dark components.
- Help us to understand the physics that drive the growth of the cosmic structures.
- Observations on large scale structure can be use to search primordial non- gaussian signal.
- We use Galaxy Surveys to trace it.

STRUCTURE REFLECTS THE DENSITY PATTERNS OF THE EARLY UNIVERSE

Galaxies

INTENSITY MAPPING

Higher Intensity More HI present More matter present

Very large areas of the sky can be surveyed very efficiently.

Can use HI to map the 3D Large-Scale-Structures of the Universe.

It is not essential to resolve individual galaxies for cosmology.

Francisco Villaescusa-Navarro

MAPPING THE 3D MATTER DISTRIBUTION

SKAO Telescope

DESI Telescope

COSMOLOGY WITH THE FUTURE GALAXY SURVEYS

PROBING THE PRIMORDIAL UNIVERSE

Quantum fluctuations seed the growth of large-scale structure and PNG leaves a trace in the CMB and galaxy surveys

- On ultra-large scales the perturbations remain linear and the PNG signal is uncontaminated.
- The galaxy power spectrum carries a fossil signal on ultra-large scales from the primordial Universe.

The Current (**local PNG parameter**) fNL constraint from Planck:

➢ fNL = - 0.9 ± 5.1

PROBING THE PRIMORDIAL UNIVERSE

• PNG affects the galaxy power spectrum on ultra-large scales via the bias of galaxies.

$$\delta_A(z, \boldsymbol{k}) = b(z)\delta_m(z, \boldsymbol{k})$$

• The non-Gaussian galaxy bias,

$$\hat{b}(z,k) = b(z) + \Delta b(z,k)$$

where
$$\Delta b(z,k) \propto f_{
m NL} rac{{\cal H}^2}{k^2}$$

Need ultra-large volume surveys to constrain fNL.

- Consider two different surveys, DESI-like BGS, ELG and SKAO-like, band (1&2) HI intensity mapping.
- The total signal received from observed HI Power Spectrum and from observed galaxy Power Spectrum is given as,

NOISE MODELLING

FOURIER POWER SPECTRUM

- \rightarrow The single tracer power spectrum is affected by cosmic variance on ultra-large scales.
- → The multi-tracer method uses two different tracers of the dark matter distribution to beat down cosmic variance.

FISHER FORECAST

$$\boldsymbol{P} = \left(P_{\text{gg}}, P_{\text{gH}}, P_{HH}\right) \qquad \qquad \vartheta_{\alpha} = \left(\sigma_{8,0}, n_{s}, f_{\text{NL}}, b_{\text{g0}}, b_{H0}\right)$$
$$\text{Cov}(\boldsymbol{P}, \boldsymbol{P}) = \frac{k_{\text{f}}^{3}}{4\pi k^{2} \Delta k} \frac{2}{\Delta \mu} \begin{pmatrix} \tilde{P}_{\text{gg}}^{2} & \tilde{P}_{\text{gg}} \tilde{P}_{\text{gH}} & \tilde{P}_{\text{gH}}^{2} \\ \tilde{P}_{\text{gg}} \tilde{P}_{\text{gH}} & \frac{1}{2} [\tilde{P}_{\text{gg}} \tilde{P}_{HH} + \tilde{P}_{\text{gH}}^{2}] & \tilde{P}_{HH} \tilde{P}_{\text{gH}} \\ \tilde{P}_{\text{gH}}^{2} & \tilde{P}_{HH} \tilde{P}_{\text{gH}} & \tilde{P}_{HH}^{2} \end{pmatrix}$$

$$F_{\alpha\beta} = \sum_{\mu=-1}^{+1} \sum_{k=k_{\min}}^{k_{\max}} \partial_{\alpha} \boldsymbol{P} \cdot \operatorname{Cov}(\boldsymbol{P}, \boldsymbol{P})^{-1} \cdot \partial_{\beta} \boldsymbol{P}^{\mathrm{T}}$$

Jolicoeur, Maartens, Dlamini et al. 2023

SURVEY SPECIFICATIONS

Survey	Sample	$\Omega_{ m sky}$	$t_{ m tot}$	redshift
		$\left[10^3\mathrm{deg}^2 ight]$	$\left[10^3\mathrm{hr} ight]$	range
g (DESI-like)	BGS	14	-	0.00 - 0.50
	ELG	14	- 3	0.60 - 1.70
H (SKAO-like)	Band 2	20	10	0.10 - 0.58
	Band 1	20	10	0.35 - 3.05
$g \times H \ (\text{low } z)$	BGS \times Band 2	10	5	0.10 - 0.50
g imes H (high z)	ELG \times Band 1	10	5	0.60 - 1.70

RESULTS OBTAINED

> We use the fiducial values, $\sigma(8,0) = 0.8102$, n_s = 0.9665 and fNL = 0.0

 We use Planck 2018 best-fit values, to other cosmological parameters.

1- σ Contours of the Low-Redshift surveys

MORE RESULTS

1- σ Contours of the high-redshift surveys

RESULTS SUMMARY

Survey	$\sigma(f_{\rm NL})$
BGS	29.4
ELG	4.9
Band 2	95.7 (66.9)
Band 1	6.1 (1.9)
$BGS \otimes Band 2$	13.0(3.2)
ELG \otimes Band 1	4.4 (1.8)
$\mathrm{BGS} \otimes \mathrm{Band} \ 2 + \mathrm{ELG} \otimes \mathrm{Band} \ 1$	4.0(1.5)

- We see an improvement on fNL, for the multi-tracer power spectrum of the high redshift surveys.
- \succ The low-redshift surveys gives weak constraints on fNL.

