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The limits of likelihood-based 
inference
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Inference-limited science
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Traditional statistical inference
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15

A B

P(B ∣ D = 6) =
15

15 + 6
≃ 71 %

A ➡ D=6 B ➡ D=6

Bayesian statistics 
(T. Bayes, 1763)


“Galton Board”



Traditional statistical inference
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67500 1.296.000

A B

P(B ∣ D = (3,4,5,5,7,7)) =
1.296.000

1.296.000 + 67500
≃ 93 %

A ➡ D = (3,4,5,5,7,7)

D = (3,4,5,5,7,7)

…
…
…
…

B ➡ D = (3,4,5,5,7,7)
(▶▶◀▶▶▶, ▶▶◀▶▶▶, ▶▶◀▶▶▶, 
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…
…
…
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6 balls!



Example: Strong gravitational lensing
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Dark matter halo

Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

What is the dark matter content of the foreground galaxy?



Example: Overlapping GW signals
Inference is a challenging task
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Janquart+ 2211.01304

“Parameter estimation methods for analyzing overlapping gravitational wave 
signals in the third-generation detector era” 

“…One of the major issues with the methods suggested here is the computational 
time required, as the data analysis takes up to a few months for overlapping 

binary black hole mergers…”

Nested sampling 
(Bilby & Dynesty) 

 
30-dim parameter space



…in practice, that is not easy

• In many cases, the likelihood function  cannot 
be evaluated exactly, we just have the simulator. 

• Even if we know the likelihood function, we must 
“count the paths” (MCMC, HMC, nested sampling, 
Gibbs sampling, analytic integration, …). This is in 
general costly. 

• Increased model realism typically means more 
uncertainties and parameters. 

• In practice, shortcuts are taken (iterative schemes, 
simplifying assumptions, surrogate models, 
perturbative approaches, …). The consequences can 
be difficult to quantify.

p(x ∣ z)
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p(zA ∣ x, zfid
B )

p(zA ∣ x) = ∫ dzB p(zA ∣ x, zB)p(zB ∣ x)

≠

Feroz+ 0809.3437 (MultiNest) 
Handley+ 1502.01856 (PolyChord)

(indicative, scaling is problem specific)

We can afford:

We want:



Deep learning and simulation-
based inference
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Deep neural networks

10 Image credit: 3blue1brown10
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Training 
(evaluating examples & adjusting connections)

Input Output

σ(w1a1+w2a2 + …wNaN + b)



AI-assisted statistical inference
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Image credit: 3blue1brown



Finding Waldo: MCMC vs deep learning

12

qϕ(zWaldo ∣ xo) = ∫ dzLuciadzOlegdzSibilladzDion⋯dzNoemi qϕ(zWaldo, zLucia, zOleg, zSibilla, zDion, ⋯, zNoemi ∣ xo)

Simulation-based inference 
Train a neural network to find Waldo’s 
marginal posterior.

Joined inference 
Run MCMC to explore ultra-high-dimensional model for 
every single aspect in the image. Then marginalise.

Where is Waldo?



“Inference Assembly”
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Intractable full “joined” 
posterior 

 q(z ∣ x)
Simulation-based approach

q(z1, z9 ∣ x) q(z1 ∣ x)

q(z8 ∣ x)

Traditional approach

Solve simpler but 
approximate 

problem, and hope 
for the best

qapprox(z1 ∣ x)

Solve arbitrary aspects 
of the full problem.



Going back to Bayes theorem
What can we approximate?
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p(z |x)

p(x |z)

r(x; z) ≡
p(x |z)
p(x)

=
p(z |x)

p(z)
=

p(x, z)
p(x)p(z)

p(z |x) =
p(x |z)
p(x)

p(z)

Data likelihood 
↳ Neural likelihood estimation (NLE)

Posterior density function 
↳ Neural posteriors estimation (NPE)

Likelihood-to-evidence ratio 
↳ Neural ratio estimation (NRE)

x : Data
z : Parameters



NRE = binary classification
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r(x; z) ≡
p(x |z)
p(x)

=
p(z |x)

p(z)
=

p(x, z)
p(x)p(z)

Class 1: Matching (data, parameter) pairs

Class 0: Scrambled (data, parameter) pairs

(🐕, dog)
(😽, cat)

(🦍, monkey)

(🏠, house)

(🐕, cat)(😽, dog)

(🦍, house)
(🏠, monkey)

(⭐, star)

(⭐, star)
Data:  
Parameter: 

x
z

x, z ∼ p(x, z)

x, z ∼ p(x)p(z)

Strategy: We estimate posteriors-to-prior ratio by training a 
binary classifier to discriminate between matching and 
scrambled (data, parameter) pairs. 

Hermans+ 1903.04057



Neural ratio estimation
Architecture
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Typical network architecture 
• Embedding network for data  (e.g. a CNN), yielding data summaries . 
• Correlated (usually MLP) combining data summaries  and parameters , .

x s = Sϕ(x)
s z f = ln r = Mϕ(x, s)

Automatically learned data summaries
Data summary maximises distance between 

 and  in terms of JS divergence.p(z |s(x)) p(z)

Cole+ 2111.08030

TMNRE

f(x, z) = ln r(x; z) = ln
p(x, z)

p(x)p(z)

Miller+ 2011.13951, 2107.01214 - swyft & TMNRE



Neural ratio estimation (NRE) 
Train a neural network to discriminate 
• Real sims: 
• Scrambled sims:

Neural ratio estimation
Visualised

Embedding network  is trained such 
that  is a (hopefully) sufficient statistic,

s = Sϕ(x)
s

MLP is trained to estimate ratio of interest,

ln r(x, z) ≡ Mϕ(s, z) ≃ ln
p(x, z)

p(x)p(z)

z, x ∼ p(x)p(z)
z, x ∼ p(x |z)p(z)

p(z |s) ≃ p(z |x)
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Toy model: x = v ⋅ z2 + ϵ S(x) = Linear(D,1)(x) Mϕ(s, z) :  ResNet

TMNRE

Miller+ 2011.13951, 2107.01214 - swyft & TMNRE



Sequential inference
Gaining precision through targeted simulations
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Samples from some constrained prior: 
x, z ∼ p(x |z)p̃xo

(z)
Samples from full prior: 

x, z ∼ p(x |z)p(z)

r(x; zE) r(x; zE)
NRE training NRE training

Target observation xo

TMNRE

Durkan+ 2002.03712 for a discussion
Image credit: Noemi Anau Montel



Sequential inference
Learning precise posteriors in multiple rounds
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Round 1 Round 2 Round 6
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TMNRE

Image credit: Noemi Anau Montel



Marginal sequential inference
Key idea: Use a truncated version of the prior as proposal function.
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p̃(R)(z) =
1
Z

𝕀(z ∈ Γ(R−1))p(z)
Miller+ 2011.13951, 2107.01214 - swyft & TMNRE

Γ(R) = {z ∈ ℝN : r̃(R)(x; z) > ϵ}

We use a hard likelihood constrained prior truncation scheme, 
excluding low likelihood regions estimated in previous rounds.

r̃(R)(x; z) ≃
p(x |z)
p(x)

q(R)
ϕ (z1 ∣ x) ≃ ∫ dz2…dzN p(x ∣ z)

1
Z

𝕀(z ∈ Γ(R−1))p(z2, …, zN) = ∫ dz2…dzN p(x ∣ z)p(z2, …, zN) + 𝒪(ϵ)

TMNRE

Doing this leaves the learned ratio unaffected, and marginal 
estimation becomes possible

Applied to NPE in Deistler+ 2210.04815
See also Greenberg+ 1905.07488, Durkan+ 2002.03712 for sequential methods



Applications
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Overview

• 1) Gravitational waves (time series) 

• 2) Strong lensing (image analysis) 

• 3) Source population analysis (object detection, hierarchical models) 

• 4) Image analysis (denoising)

22



1) Gravitational wave parameter inference
Marginal inference of 15 waveform parameters

23
Bhardwaj+ 2304.02035 Related work: Dax+ 2106.12594

Full model with parameter vector z

Analysis 
for z1

NN1

Analysis 
for z2

NN2

Analysis 
for z15

NN15

Gravitational wave data
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…

{qϕ(zi ∣ x)}i=1,…,15



1) Gravitational wave parameter inference
Parameter correlations can be recovered at the end
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We need 10-100x less simulations than MCMC methods or fully amortised methods.
Bhardwaj+ 2304.02035

The initial parameter scan is done using 15 1-dim marginals We can recover parameter correlations by 
estimating  2-dim posteriors in the 

final round. 
(N − 1)N/2



1) Gravitational wave parameter inference
Overlapping GW signals!
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PRELIMINARY

Alvey+ 23xx.yyyyy

• IMRPhenomXPHM 
• 36 hours (instead of >20 days) 
• Faster than MCMC 
• Much more precise than previous SBI 

attempts 
• Precision only mildly degraded w.r.t. fits in 

absence of a second signal



2) Strong lensing image analysis
General method
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Vegetti et al. (2012) - subhalo detection claim
Şengül et al. (2021) - detection reanalysed

Target image: JVAS B1938+666

Model parameters 
 and zmarco ∈ ℝ15 zsub ∈ ℝ3

Analysis 
for zmacro

Consistently marginalised  15-dim and 
3-dim posteriors for all  

parameters.
15 + 3

NN1

Analysis 
for zsub

NN2

Strong lensing data

+

Se
q.

 in
fe

re
nc

e 
/ t
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nc

at
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n

Anau Montel+ 23🤞 🤞 .yyyyy

{qϕ(zi ∣ x)}i=macro,sub

https://www.nature.com/articles/nature10669#MOESM262
https://arxiv.org/pdf/2112.00749.pdf


2) Strong lensing image analysis
Truncation including correlations
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Untruncated

Box truncation 
(Based on 14 1-dim posteriors)

Correlated truncation 
(14 dimensional joined posterior, 
explored with slice sampling)

zsub = (x, y, M)

Accounting for parameter correlations in main lens massively reduces training data variance. 
Likelihoods are automatically marginalised over other parameters correctly.

Anau Montel+ 23🤞 🤞 .yyyyy

PRELIMINARY



2) Strong lensing image analysis
Sensitivity to very faint signals
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PRELIMINARY

Training an inference network (here U-Net) on highly targeted training data enables 
faint signal detection with recognition networks*!

Anau Montel+ 23🤞 🤞 .yyyyy

*the gravitational lensing effect of a small dark matter 
subhalo that distorts the image at the few percent level



2) Strong lensing image analysis
Corner plot

29Anau Montel+ 23🤞 🤞 .yyyyy
PRELIMINARY



3) Source population analysis
General method
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Model parameters 
 and zpop ∈ ℝ3 zpsc ∈ ℝ?

Source 
detection 
z(det)

psc

Consistently marginalised 
-dim and 3-dim posteriors for all 

many of the parameters.

Ndet × 3

NN1

Source 
detection 
efficiency

NN2

Image

+
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Detected 
sources for 
zpop

NN3

Faint 
sources for 
zpop

NN4

Target data is an image of point sources

p(x |z) =
∞

∑
N=1

p(x |z(1)
psc, …, z(N)

psc )
N

∏
i=1

p(z(i)
psc |zpop)p(N |zpop)p(zpop)

Simulation code 
• Sample popualtion parameters 
• Sample number of point 

sources (Poisson distribution) 
• Sample properties of point 

sources (position, luminosity) 
• Put all sources on the sky

Anau Montel & CW 2211.04291

{qϕ(zi ∣ x)}i=psc,psc2,…,pscN,pop



3) Source population analysis
Truncation in practice
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Round 1

Round 2

Anau Montel & CW 2211.04291



3) Source population analysis
Consistent population parameter inference

32Anau Montel & CW 2211.04291

• First method (AFAIK) to perform self-consistent determination of 
population parameters based on detected and  undetected objects. 

• The trick is to make observational biases potentially related to point 
source detection part of the model itself.

Constraints on population 
parameters…

…based on detected sources

…based on sub-
threshold sources



4) Image analysis
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xi = ezi + ϵ , z ∼ 𝒢𝒫

p(x |z)
p(x)

Towards image analysis with SBI: Sequential inference is also possible for high-dimensional 
image analysis problems

• Toy model: Exponentiated Gaussian random 
field 

• To this end, we train the 
joined likelihood

Round 1

Round 2

Round 3

=> Posterior draws

z

Ongoing work: CW, Anau Montel, List(Gaussian approx)
PRELIMINARY!



4) Image analysis
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Example component separation 
We learn the two high-dimensional likelihoods of each 
component, marginalised over the other components

p(x |z1)
p(x)

Input fields 
(Exponentiated)

Reconstructed 
fields

p(x |z2)
p(x)

Mock data 
(color image)

z1

z2Truncation 
scheme

Ongoing work: CW, Anau Montel, List

Maybe Proximal nested sampling? Cai+ 2106.03646
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Statistical data analysis

Deep-learning SBI

“Marginal SBI”

Sequential SBI

VI

Our method

Pretty niche, but growing exponentially
Rate of papers using TMNRE is growing exponentially 

2021 
1. “Fast and Credible Likelihood-Free Cosmology with Truncated Marginal 

Neural Ratio Estimation“ Cole+ 2111.08030 

2022 
2. “Estimating the warm dark matter mass from strong lensing images with 

truncated marginal neural ratio estimation” Anau Montel+, 2205.09126 
3. “SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio 

EsTimation” Karchev+2209.06733 
4. “One never walks alone: the effect of the perturber population on subhalo 

measurements in strong gravitational lenses” Coogan+ 2209.09918 
5. “Detection is truncation: studying source populations with truncated marginal 

neural ratio estimation” Anau Montel+ 2211.04291 

2023 
6. “Debiasing Standard Siren Inference of the Hubble Constant with Marginal 

Neural Ratio Estimation” Gagnon-Hartman+ 2301.05241 
7. “Constraining the X-ray heating and reionization using 21-cm power spectra 

with Marginal Neural Ratio Estimation” Saxena+ 2303.07339 
8. “Peregrine: Sequential simulation-based inference for gravitational wave 

signals”, Bhardwaj+ 2304.02035 
9. “Albatross: A scalable simulation-based inference pipeline for analysing stellar 

streams in the Milky Way”, Alvey+ 2304.02032 
10. … 
11. … 
12. … 
13. …

Miller+ 2011.13951



Outlook & Conclusions
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Swyft software package
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Miller+ 2107.01214 Miller+ 2011.13951 Miller+ JOSS 2022

New API using 
PyTorch lightning 

as backend

MultiNest-like 
interface 

(ditched for good)

Focus on 
simulation reuse 
(ditched for now)

Consolidation & 
JOSS paper 
(tests, docs)

Everybody being frustrated that code is changing all the time 
“Are you using the latest Swyft version?”

~Stability

Initial plan: 
“Hey, writing a 

python module for 
TMNRE would be 

cool and impactful, 
should take 2-3 

weeks”

3 years later…

Methods that we worked with in our group

Variational inference

Differentiable simulators

Gaussian processes

TMNRE

Scalable TMNRE Image analysis TMNRE

Hierarchical TMNRE

Probabilistic programming

Normalising flows
Density TMNRE

HMC



Open questions

• Gradients: How to exploit gradient information for TMNRE? Is there a way? Is it worth it? 

• Hard likelihood constraint prior samples: How to most efficiently sample from constrained 
likelihood regions in very high dimensions (Langevin sampling, proximal optimisation methods?) 

• Automatisation: Can the determination of truncation schemes and optimal network architectures 
be automatised? Can ChatGPT help? 

• Goodness-of-fit: How to perform goodness-of-fit tests etc in the context of SBI? How to detect 
that the model is wrong? 

• Data volume: How to handle situations with high volume data? Storing all simulation data seems 
infeasible in this case. 

• Fundamental limitations: Are there inference tasks that only can be done with the joined 
posterior, and would not be accessible by TMNRE?
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Conclusions

• Finding new physics in complex data is becoming increasingly challenging. 

• Traditional data analysis techniques cannot recover the full statistical inference 
picture in many cases. 

• SBI can provide accurate and precise projections of the full inference problem. 

• Swyft/TMNRE is our attempt to make marginal inference possible. 

• Lots of promising results, much more to come, stay tuned!

39

Thanks!


