Towards Inference Assembly:

Next steps for deep learning, simulation-based inference and astrophysical data

Christoph Weniger Dark Side of the Universe ICTP Kigali, 12 July 2023

GRAPPA
GRavitation AstroParticle Physics Amsterdam

AI4Science Lab

The limits of likelihood-based inference

Inference-limited science

Traditional statistical inference

Bayesian statistics
(T. Bayes, 1763)

$$
P(B \mid D=6)=\frac{15}{15+6} \simeq 71 \%
$$

Traditional statistical inference

Example: Strong gravitational lensing

Example: Overlapping GW signals
 Inference is a challenging task

"Parameter estimation methods for analyzing overlapping gravitational wave signals in the third-generation detector era"

"... One of the major issues with the methods suggested here is the computational time required, as the data analysis takes up to a few months for overlapping binary black hole mergers..."

...in practice, that is not easy

- In many cases, the likelihood function $p(\mathbf{x} \mid \mathbf{z})$ cannot be evaluated exactly, we just have the simulator.
- Even if we know the likelihood function, we must "count the paths" (MCMC, HMC, nested sampling, Gibbs sampling, analytic integration, ...). This is in general costly.

- Increased model realism typically means more uncertainties and parameters.
- In practice, shortcuts are taken (iterative schemes, simplifying assumptions, surrogate models, perturbative approaches, ...). The consequences can be difficult to quantify.

We want: $\quad p\left(\mathbf{z}_{A} \mid \mathbf{x}\right)=\int d \mathbf{z}_{B} p\left(\mathbf{z}_{A} \mid \mathbf{x}, \mathbf{z}_{B}\right) p\left(\mathbf{z}_{B} \mid \mathbf{x}\right)$

Deep learning and simulationbased inference

Deep neural networks
Training
(evaluating examples \& adjusting connections)

Al-assisted statistical inference

Finding Waldo: MCMC vs deep learning

$\begin{aligned} & q_{\phi}\left(\mathbf{z}_{\text {Waldo }} \mid \mathbf{x}_{o}\right)\end{aligned}=\int d \mathbf{z}_{\text {Lucia }} d \mathbf{z}_{\text {Oleg }} d \mathbf{z}_{\text {Sibilla }} d \mathbf{z}_{\text {Dion }} \cdots d \mathbf{z}_{\text {Noemi }} \underline{q_{\phi}\left(\mathbf{z}_{\text {Waldo }}, \mathbf{z}_{\text {Lucia }}, \mathbf{z}_{\text {Oleg }}, \mathbf{z}_{\text {Sibilla }}, \mathbf{z}_{\text {Dion }}, \cdots, \mathbf{z}_{\text {Noemi }} \mid \mathbf{x}_{o}\right)}$

Train a neural network to find Waldo's marginal posterior.

Run MCMC to explore ultra-high-dimensional model for every single aspect in the image. Then marginalise.

"Inference Assembly"

Traditional approach

 $q(\mathbf{z} \mid \mathbf{x})$

Solve arbitrary aspects of the full problem.

Going back to Bayes theorem What can we approximate?

Data likelihood
\hookrightarrow Neural likelihood estimation (NLE)

$$
p(\mathbf{x} \mid \mathbf{z})
$$

Posterior density function
\hookrightarrow Neural posteriors estimation (NPE)

Likelihood-to-evidence ratio
\longrightarrow Neural ratio estimation (NRE)

$$
r(\mathbf{x} ; \mathbf{z}) \equiv \frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})}=\frac{p(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})}=\frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x}) p(\mathbf{z})}
$$

NRE = binary classification

Strategy: We estimate posteriors-to-prior ratio by training a binary classifier to discriminate between matching and scrambled (data, parameter) pairs.

Hermans+ 1903.04057
Class 1: Matching (data, parameter) pairs

Neural ratio estimation

Architecture

Typical network architecture

- Embedding network for data \mathbf{x} (e.g. a CNN), yielding data summaries $\mathbf{s}=\mathrm{S}_{\phi}(\mathbf{x})$.
- Correlated (usually MLP) combining data summaries \mathbf{s} and parameters $\mathbf{z}, f=\ln r=\mathrm{M}_{\phi}(\mathbf{x}, \mathbf{s})$.

$$
f(\mathbf{x}, \mathbf{z})=\ln r(\mathbf{x} ; \mathbf{z})=\ln \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x}) p(\mathbf{z})}
$$

Automatically learned data summaries

Data summary maximises distance between $p(\mathbf{z} \mid \mathbf{S}(\mathbf{x}))$ and $p(\mathbf{z})$ in terms of JS divergence.

Neural ratio estimation

Visualised

Neural ratio estimation (NRE)

Train a neural network to discriminate
Embedding network $\mathbf{s}=S_{\phi}(\mathbf{x})$ is trained such that \mathbf{s} is a (hopefully) sufficient statistic,

$$
p(z \mid \mathbf{s}) \simeq p(z \mid \mathbf{x})
$$

MLP is trained to estimate ratio of interest,

$$
\ln r(\mathbf{x}, z) \equiv \mathrm{M}_{\phi}(\mathbf{s}, \mathbf{z}) \simeq \ln \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x}) p(\mathbf{z})}
$$

[^0]$\mathbf{S}(\mathbf{x})=\operatorname{Linear}(D, 1)(\mathbf{x})$
$$
\mathrm{M}_{\phi}(s, z): \operatorname{ResNet}
$$

Sequential inference

Gaining precision through targeted simulations

Samples from full prior:

$$
\mathbf{x}, \mathbf{z} \sim p(\mathbf{x} \mid \mathbf{z}) p(\mathbf{z})
$$

Target observation \mathbf{x}_{o}

Samples from some constrained prior:

$$
\mathbf{x}, \mathbf{z} \sim p(\mathbf{x} \mid \mathbf{z}) \tilde{p}_{\mathbf{x}_{o}}(\mathbf{z})
$$

\downarrow NRE training

Sequential inference

Learning precise posteriors in multiple rounds

Round 1
Round 2

Marginal sequential inference

Key idea: Use a truncated version of the prior as proposal function.

$$
\tilde{p}^{(R)}(\mathbf{z})=\frac{1}{Z} \rrbracket\left(\mathbf{z} \in \Gamma^{(R-1)}\right) p(\mathbf{z})
$$

Miller + 20II.1395I, 2107.0I2I4-swyft \& TMNRE
We use a hard likelihood constrained prior truncation scheme, excluding low likelihood regions estimated in previous rounds.

$$
\Gamma^{(R)}=\left\{\mathbf{z} \in \mathbb{R}^{N}: \tilde{r}^{(R)}(\mathbf{x} ; \mathbf{z})>\epsilon\right\} \quad \tilde{r}^{(R)}(\mathbf{x} ; \mathbf{z}) \simeq \frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})}
$$

Doing this leaves the learned ratio unaffected, and marginal estimation becomes possible

$$
q_{\phi}^{(R)}\left(z_{1} \mid \mathbf{x}\right) \simeq \int d z_{2} \ldots d z_{N} p(\mathbf{x} \mid \mathbf{z}) \frac{1}{Z} \rrbracket\left(\mathbf{z} \in \Gamma^{(R-1)}\right) p\left(z_{2}, \ldots, z_{N}\right)=\int d z_{2} \ldots d z_{N} p(\mathbf{x} \mid \mathbf{z}) p\left(z_{2}, \ldots, z_{N}\right)+\mathcal{O}(\epsilon)
$$

Applications

Overview

- 1) Gravitational waves (time series)
- 2) Strong lensing (image analysis)
- 3) Source population analysis (object detection, hierarchical models)
- 4) Image analysis (denoising)

1) Gravitational wave parameter inference

Marginal inference of 15 waveform parameters

GW150914

All gravitational wave signals detected so far

GW170608

GW170814

GW170817

1) Gravitational wave parameter inference

Parameter correlations can be recovered at the end

The initial parameter scan is done using 15 1-dim marginals

We can recover parameter correlations by estimating $(N-1) N / 2$ 2-dim posteriors in the final round.

We need 10-100x less simulations than MCMC methods or fully amortised methods.

1) Gravitational wave parameter inference Overlapping GW signals!

- IMRPhenomXPHM
- 36 hours (instead of >20 days)
- Faster than MCMC
- Much more precise than previous SBI attempts
- Precision only mildly degraded w.r.t. fits in absence of a second signal

2) Strong lensing image analysis

 General methodTarget image: JVAS B1938+666

Vegetti et al. (2OI2) - subhalo detection claim
Şengül et al. (202I) - detection reanalysed

Strong lensing data

Model parameters
$\mathbf{z}_{\text {marco }} \in \mathbb{R}^{15}$ and $\mathbf{z}_{\text {sub }} \in \mathbb{R}^{3}$

Consistently marginalised $15-\mathrm{dim}$ and 3 -dim posteriors for all $15+3$ parameters.

2) Strong lensing image analysis

Untruncated

Box truncation

(Based on 14 1-dim posteriors)

Correlated truncation

(14 dimensional joined posterior, explored with slice sampling)

$$
\mathbf{z}_{s u b}=(x, y, M)
$$

Accounting for parameter correlations in main lens massively reduces training data variance.
Likelihoods are automatically marginalised over other parameters correctly.

2) Strong lensing image analysis

Sensitivity to very faint signals

Training an inference network (here U-Net) on highly targeted training data enables faint signal detection with recognition networks*!

*the gravitational lensing effect of a small dark matter subhalo that distorts the image at the few percent level

2) Strong lensing image analysis

Corner plot

3) Source population analysis

 General methodTarget data is an image of point sources

Simulation code

- Sample popualtion parameters
- Sample number of point sources (Poisson distribution)
- Sample properties of point sources (position, luminosity)
- Put all sources on the sky

$$
p(\mathbf{x} \mid z)=\sum_{N=1}^{\infty} p\left(\mathbf{x} \mid z_{p s c}^{(1)}, \ldots, z_{p s c}^{(N)}\right) \prod_{i=1}^{N} p\left(z_{p s c}^{(i)} \mid z_{p o p}\right) p\left(N \mid z_{p o p}\right) p\left(z_{p o p}\right)
$$

3) Source population analysis

Truncation in practice

Target observation \boldsymbol{x}_{o}

Round 1

Round 2

3) Source population analvsis

Consistent population parameter inferı

Point source population parameters inference

- from sub-threshold sources: $p\left(\boldsymbol{\vartheta} \mid \boldsymbol{x}_{o}, \mathbb{I}_{\boldsymbol{x}_{o}}\left(\overrightarrow{\boldsymbol{s}}_{\text {det }}\right)=1\right)$
—— from detected sources: $p\left(\boldsymbol{\vartheta} \mid \mathbb{I}_{x_{o}}\left(\vec{s}_{d e t}\right)=1\right)$
- from combined constraints: $p\left(\boldsymbol{\vartheta} \mid \boldsymbol{x}_{o}\right)$
- First method (AFAIK) to perform self-consistent determination of population parameters based on detected and undetected objects.
- The trick is to make observational biases potentially related to point source detection part of the model itself.
 true values

4) Image analysis

Towards image analysis with SBI: Sequential inference is also possible for high-dimensional

- Toy model: Exponentiated Gaussian random field

$$
x_{i}=e^{z_{i}}+\epsilon, \quad \mathbf{z} \sim \mathscr{G} \mathscr{P}
$$

- To this end, we train the joined likelihood

$$
\frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})}
$$

(Gaussian approx)

z

PRELIMINARY!

=> Posterior draws

4) Image analysis

Maybe Proximal nested sampling? Cai +2106.03646

Example component separation

We learn the two high-dimensional likelihoods of each component, marginalised over the other components

$$
\frac{p\left(\mathbf{x} \mid \mathbf{z}_{1}\right)}{p(\mathbf{x})} \quad \frac{p\left(\mathbf{x} \mid \mathbf{z}_{2}\right)}{p(\mathbf{x})}
$$

Input fields (Exponentiated)

Pretty niche, but growing exponentially

Rate of papers using TMNRE is growing exponentially

2021

1. "Fast and Credible Likelihood-Free Cosmology with Truncated Marginal Neural Ratio Estimation" Cole+ 2111.08030

2022

2. "Estimating the warm dark matter mass from strong lensing images with truncated marginal neural ratio estimation" Anau Montel+, 2205.09126
3. "SICRET: Supernova Ia Cosmology with truncated marginal neural Ratio EsTimation" Karchev+2209.06733
4. "One never walks alone: the effect of the perturber population on subhalo measurements in strong gravitational lenses" Coogan+ 2209.09918
5. "Detection is truncation: studying source populations with truncated marginal neural ratio estimation" Anau Montel+ 2211.04291

2023

6. "Debiasing Standard Siren Inference of the Hubble Constant with Marginal Neural Ratio Estimation" Gagnon-Hartman+ 2301.05241
7. "Constraining the X -ray heating and reionization using 21-cm power spectra with Marginal Neural Ratio Estimation" Saxena+ 2303.07339
8. "Peregrine: Sequential simulation-based inference for gravitational wave signals", Bhardwaj+ 2304.02035
9. "Albatross: A scalable simulation-based inference pipeline for analysing stellar streams in the Milky Way", Alvey+ 2304.02032
10.

11....
12...
13...

Outlook \& Conclusions

Swyft software package

Methods that we worked with in our group

Variational inference \qquad PyKeOps Normalising flows	Gaussian processes	Hierarchical TMNRE	
Probabilistic programming	Scalable TMNRE	Image analysis TMNRE	
HMC	TMNRE	Density TMNRE	

Open questions

- Gradients: How to exploit gradient information for TMNRE? Is there a way? Is it worth it?
- Hard likelihood constraint prior samples: How to most efficiently sample from constrained likelihood regions in very high dimensions (Langevin sampling, proximal optimisation methods?)
- Automatisation: Can the determination of truncation schemes and optimal network architectures be automatised? Can ChatGPT help?
- Goodness-of-fit: How to perform goodness-of-fit tests etc in the context of SBI? How to detect that the model is wrong?
- Data volume: How to handle situations with high volume data? Storing all simulation data seems infeasible in this case.
- Fundamental limitations: Are there inference tasks that only can be done with the joined posterior, and would not be accessible by TMNRE?

Conclusions

- Finding new physics in complex data is becoming increasingly challenging.
- Traditional data analysis techniques cannot recover the full statistical inference picture in many cases.
- SBI can provide accurate and precise projections of the full inference problem.
- Swyft/TMNRE is our attempt to make marginal inference possible.
- Lots of promising results, much more to come, stay tuned!

Thanks!

[^0]: Toy model: $\mathbf{x}=\mathbf{v} \cdot z^{2}+\boldsymbol{\epsilon}$

