Towards Inference Assembly: Next steps for deep learning, simulation-based inference and astrophysical data

ERC CoG UnDark, Proj. No. 864035 Christoph Weniger Dark Side of the Universe ICTP Kigali, 12 July 2023

AI4Science Lab

UNIVERSITY OF AMSTERDAM

The limits of likelihood-based inference

Inference-limited science

Test (Experiment)

Measure

Traditional statistical inference

$$P(B \mid D = 6) = \frac{15}{15 + 6} \approx 71\%$$

Traditional statistical inference

$A \Rightarrow D = (3,4,5,5,7,7)$

- • •
- • •
- • •
- • •

$B \rightarrow D = (3, 4, 5, 5, 7, 7)$

- • • • •
- • •
- •

1.296.000

1.296.000 $P(B \mid D = (3,4,5,5,7,7)) =$ $\simeq 93\%$ 1.296.000 + 67500

Example: Strong gravitational lensing

Dark matter halo

What is the dark matter content of the foreground galaxy?

foreground galaxy

lensed image seen of background galaxy

background galaxy

Looking further into the past

Credit: ALMA (ESO/NRAO/NAOJ), L. Calçada (ESO), Y. Hezaveh et al.

Example: Overlapping GW signals Inference is a challenging task

"Parameter estimation methods for analyzing overlapping gravitational wave **signals** in the third-generation detector era"

...One of the major issues with the methods suggested here is the computational time required, as the data analysis takes up to a few months for overlapping binary black hole mergers..."

Janquart+ 2211.01304

... in practice, that is not easy

- In many cases, the likelihood function $p(\mathbf{x} \mid \mathbf{z})$ cannot be evaluated exactly, we just have the simulator.
- Even if we know the likelihood function, we must "count the paths" (MCMC, HMC, nested sampling, Gibbs sampling, analytic integration, ...). This is in general costly.
- Increased model realism typically means more uncertainties and parameters.
- In practice, shortcuts are taken (iterative schemes, simplifying assumptions, surrogate models, perturbative approaches, ...). The consequences can be difficult to quantify.

(indicative, scaling is problem specific)

Deep learning and simulationbased inference

Deep neural networks

 28×28 pixels

784

Input

Al-assisted statistical inference

Finding Waldo: MCMC vs deep learning

 $q_{\phi}(\mathbf{z}_{\text{Waldo}} \mid \mathbf{x}_{o}) = \left[d\mathbf{z}_{\text{Lucia}} d\mathbf{z}_{\text{Oleg}} d\mathbf{z}_{\text{Sibilla}} d\mathbf{z}_{\text{Dion}} \cdots d\mathbf{z}_{\text{Noemi}} \right] \frac{q_{\phi}(\mathbf{z}_{\text{Waldo}}, \mathbf{z}_{\text{Lucia}}, \mathbf{z}_{\text{Oleg}}, \mathbf{z}_{\text{Sibilla}}, \mathbf{z}_{\text{Dion}}, \cdots, \mathbf{z}_{\text{Noemi}} \mid \mathbf{x}_{o})$

Simulation-based inference

Train a neural network to find Waldo's marginal posterior.

Joined inference

Run MCMC to explore ultra-high-dimensional model for every single aspect in the image. Then marginalise.

"Inference Assembly"

Traditional approach

Solve simpler but approximate problem, and hope for the best

 $q_{\text{approx}}(\mathbf{z}_1 \mid \mathbf{x})$

Going back to Bayes theorem What can we approximate?

Data likelihood → Neural likelihood estimation (NLE)

Posterior density function

→ Neural posteriors estimation (NPE)

Likelihood-to-evidence ratio → Neural ratio estimation (NRE) $p(\mathbf{X} \mid \mathbf{Z})$ $r(\mathbf{x}; \mathbf{z}) \equiv$ $p(\mathbf{x})$

z : Parameters

NRE = binary classification

Strategy: We estimate posteriors-to-prior ratio by training a binary classifier to discriminate between matching and scrambled (data, parameter) pairs.

$$r(\mathbf{x}; \mathbf{z}) \equiv \frac{p(\mathbf{x} \mid \mathbf{z})}{p(\mathbf{x})} = \frac{p(\mathbf{z} \mid \mathbf{x})}{p(\mathbf{z})} = \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})}$$

Hermans+ 1903.04057

Data: **x** Parameter: **z**

Neural ratio estimation Architecture

Typical network architecture

Miller+ 2011.13951, 2107.01214 - swyft & TMNRE

TMNRE

• Embedding network for data **x** (e.g. a CNN), yielding data summaries $\mathbf{s} = S_{\phi}(\mathbf{x})$. • Correlated (usually MLP) combining data summaries **s** and parameters $\mathbf{z}, f = \ln r = M_{\phi}(\mathbf{x}, \mathbf{s})$.

Data summary maximises distance between $p(\mathbf{z} | \mathbf{s}(\mathbf{x}))$ and $p(\mathbf{z})$ in terms of JS divergence.

Neural ratio estimation Visualised

Embedding network $\mathbf{s} = S_{\phi}(\mathbf{x})$ is trained such that **s** is a (hopefully) sufficient statistic,

 $p(z \mid \mathbf{s}) \simeq p(z \mid \mathbf{x})$

MLP is trained to estimate ratio of interest,

$$\ln r(\mathbf{x}, z) \equiv \mathcal{M}_{\phi}(\mathbf{s}, \mathbf{z}) \simeq \ln \frac{p(\mathbf{x}, \mathbf{z})}{p(\mathbf{x})p(\mathbf{z})}$$

Toy model:
$$\mathbf{x} = \mathbf{v} \cdot z^2 + \boldsymbol{\epsilon}$$
 $\mathbf{S}(\mathbf{x}) =$

Miller+ 2011.13951, 2107.01214 - swyft & TMNRE

TMNRE

Neural ratio estimation (NRE)

Train a neural network to discriminate

- Real sims: $z, \mathbf{x} \sim p(\mathbf{x} | z)p(z)$
- Scrambled sims: $z, \mathbf{x} \sim p(\mathbf{x})p(z)$

= Linear $(D,1)(\mathbf{x})$

 $M_{\phi}(s, z)$: ResNet

Sequential inference Gaining precision through targeted simulations

Samples from full prior: $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x} \mid \mathbf{z})p(\mathbf{z})$

Image credit: Noemi Anau Montel

TMNRE

6 0 4 ZE 18

Samples from some constrained prior: $\mathbf{x}, \mathbf{z} \sim p(\mathbf{x} \mid \mathbf{z}) \tilde{p}_{\mathbf{x}_o}(\mathbf{z})$

NRE training

Durkan+ 2002.03712 for a discussion

Sequential inference Learning precise posteriors in multiple rounds

Round 1

Round 2

aining data

Image credit: Noemi Anau Montel

TMNRE

Round 6

Marginal sequential inference TMNRE Key idea: Use a truncated version of the prior as proposal function.

$$\tilde{p}^{(R)}(\mathbf{z}) = \frac{1}{Z} \mathbb{I}(\mathbf{z} \in \Gamma^{(R-1)}) p(\mathbf{z})$$
Miller L2011 2051

We use a hard likelihood constrained prior truncation scheme, excluding low likelihood regions estimated in previous rounds.

$$\Gamma^{(R)} = \{ \mathbf{z} \in \mathbb{R}^N : \tilde{r}^{(R)}(\mathbf{x}; \mathbf{z}) > \epsilon \} \qquad \tilde{r}^{(R)}(\mathbf{x}; \mathbf{z}) \simeq \frac{p(\mathbf{x})}{p(\mathbf{x}; \mathbf{z})}$$

Doing this leaves the learned ratio unaffected, and marginal estimation becomes possible

$$q_{\phi}^{(R)}\left(z_{1} \mid \mathbf{x}\right) \simeq \int dz_{2} \dots dz_{N} \ p(\mathbf{x} \mid \mathbf{z}) \frac{1}{Z} \mathbb{I}(\mathbf{z} \in \Gamma^{(R-1)})$$

See also Greenberg + 1905.07488, Durkan + 2002.03712 for sequential methods Applied to NPE in Deistler + 2210.04815

Miller+ 2011.13951, 2107.01214 - swyft & TMNRE

 $^{-1)}p(z_2,\ldots,z_N) = \begin{bmatrix} dz_2 \dots dz_N \ p(\mathbf{x} \mid \mathbf{z})p(z_2,\ldots,z_N) + \mathcal{O}(\epsilon) \end{bmatrix}$

Applications

Overview

- 1) Gravitational waves (time series)
- 2) Strong lensing (image analysis)
- 3) Source population analysis (object detection, hierarchical models)
- 4) Image analysis (denoising)

1) Gravitational wave parameter inference Marginal inference of 15 waveform parameters

Bhardwaj+ 2304.02035

Related work: Dax+ 2106.12594

1) Gravitational wave parameter inference Parameter correlations can be recovered at the end

The initial parameter scan is done using 15 1-dim marginals

We need 10-100x less simulations than MCMC methods or fully amortised methods.

We can recover parameter correlations by estimating (N - 1)N/2 2-dim posteriors in the final round.

Bhardwaj+ 2304.02035

1) Gravitational wave parameter inference **Overlapping GW signals!**

- IMRPhenomXPHM
- 36 hours (instead of >20 days)
- Faster than MCMC
- Much more precise than previous SBI attempts
- Precision only mildly degraded w.r.t. fits in absence of a second signal

<u>Vegetti et al. (2012)</u> - subhalo detection claim <u>Sengül et al. (2021)</u> - detection reanalysed

Anau Montel+ 23 d d.yyyyy

2) Strong lensing image analysis **Truncation including correlations**

Untruncated

Box truncation (Based on 14 1-dim posteriors)

Correlated truncation (14 dimensional joined posterior, explored with **slice sampling**)

Accounting for parameter correlations in main lens massively reduces training data variance. Likelihoods are automatically marginalised over other parameters correctly.

PRELIMINARY

 $\mathbf{Z}_{sub} = (x, y, M)$

2) Strong lensing image analysis Sensitivity to very faint signals

Training an inference network (here U-Net) on highly targeted training data enables faint signal detection with recognition networks*!

*the gravitational lensing effect of a small dark matter subhalo that distorts the image at the few percent level

Anau Montel+ 23 🕹 🕹 .yyyyy

PRELIMINARY

2) Strong lensing image analysis Corner plot

Anau Montel+ 23 d d.yyyyy

3) Source population analysis General method

Target data is an image of point sources

Simulation code

- Sample population parameters
- Sample number of point sources (Poisson distribution)
- Sample properties of point sources (position, luminosity)
- Put all sources on the sky

$$p(\mathbf{x} \mid z) = \sum_{N=1}^{\infty} p(\mathbf{x} \mid z_{psc}^{(1)}, \dots, z_{psc}^{(N)}) \prod_{i=1}^{N} p(z_{psc}^{(i)} \mid z_{pop}) p(N)$$

Anau Montel & CW 2211.04291

3) Source population analysis **Truncation in practice**

Target observation \boldsymbol{x}_o

Round 1

Round 2

Full model

Truncated model

3) Source population analysis **Consistent population parameter infer**

Constraints on population parameters...

... based on **detected sources**

...based on **sub**threshold sources

- First method (AFAIK) to perform self-consistent determination of population parameters based on detected and undetected objects.
- The trick is to make observational biases potentially related to point source detection part of the model itself.

4) Image analysis

Towards image analysis with SBI: Sequential inference is also possible for high-dimensional image analysis problems

Toy model: Exponentiated Gaussian random field

$$x_i = e^{z_i} + \epsilon , \quad \mathbf{Z} \sim \mathcal{GP}$$

Ζ

To this end, we train the \bullet joined likelihood

$$\frac{p(\mathbf{x} \,|\, \mathbf{z})}{p(\mathbf{x})}$$

(Gaussian approx)

Round 1 Round 2 Round 3

PRELIMINARY!

=> Posterior draws Ongoing work: CW, Anau Montel, List

4) Image analysis

Maybe Proximal nested sampling? Cai+ 2106.03646

Example component separation

We learn the two high-dimensional likelihoods of each component, marginalised over the other components

$$\frac{p(\mathbf{x} \mid \mathbf{z}_1)}{p(\mathbf{x})} \qquad \frac{p(\mathbf{x} \mid \mathbf{z}_2)}{p(\mathbf{x})}$$

Input fields (Exponentiated)

Mock data (color image)

Reconstructed fields

Ongoing work: CW, Anau Montel, List

Pretty niche, but growing exponentially

Rate of papers using TMNRE is growing exponentially

2021

1. "Fast and Credible Likelihood-Free **Cosmology** with Truncated Marginal Neural Ratio Estimation" Cole+ 2111.08030

2022

- 2. "Estimating the warm dark matter mass from **strong lensing** images with truncated marginal neural ratio estimation" Anau Montel+, 2205.09126
- 3. "SICRET: **Supernova Ia Cosmology** with truncated marginal neural Ratio EsTimation" Karchev+2209.06733
- 4. "One never walks alone: the effect of the perturber population on subhalo measurements in **strong gravitational lenses**" Coogan+ 2209.09918
- 5. "Detection is truncation: studying **source populations** with truncated marginal neural ratio estimation" Anau Montel+ 2211.04291

2023

- 6. "Debiasing **Standard Siren Inference** of the Hubble Constant with Marginal Neural Ratio Estimation" Gagnon-Hartman+ 2301.05241
- 7. "Constraining the X-ray heating and reionization using **21-cm power spectra** with Marginal Neural Ratio Estimation" Saxena+ 2303.07339
- 8. "Peregrine: Sequential simulation-based inference for **gravitational wave signals**", Bhardwaj+ 2304.02035
- 9. "Albatross: A scalable simulation-based inference pipeline for analysing **stellar streams** in the Milky Way", Alvey+ 2304.02032
- 395^{I} 10....
 - 11....
 - 12....
 - **35** 13....

Outlook & Conclusions

Swyft software package

Initial plan: "Hey, writing a python module for TMNRE would be cool and impactful, should take 2-3 weeks"

Methods that we worked with in our group

Variational inference **Gaussian processes** PyKeOps **Probabilistic programming Normalising flows Differentiable simulators** TMNRE HMC

Hierarchical TMNRE

Scalable TMNRE

Image analysis TMNRE

Density TMNRE

Open questions

- Gradients: How to exploit gradient information for TMNRE? Is there a way? Is it worth it?
- Hard likelihood constraint prior samples: How to most efficiently sample from constrained likelihood regions in very high dimensions (Langevin sampling, proximal optimisation methods?)
- Automatisation: Can the determination of truncation schemes and optimal network architectures be automatised? Can ChatGPT help?
- **Goodness-of-fit:** How to perform goodness-of-fit tests etc in the context of SBI? How to detect that the model is wrong?
- Data volume: How to handle situations with high volume data? Storing all simulation data seems infeasible in this case.
- Fundamental limitations: Are there inference tasks that *only* can be done with the joined posterior, and would not be accessible by TMNRE?

Conclusions

- Finding new physics in complex data is becoming increasingly challenging.
- Traditional data analysis techniques cannot recover the full statistical inference picture in many cases.
- SBI can provide accurate and precise *projections* of the full inference problem.
- Swyft/TMNRE is our attempt to make marginal inference possible.
- Lots of promising results, much more to come, stay tuned!

Thanks!