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Gravitational-wave astronomy

Masses in the Stellar Graveyard

LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars

* The past few years have witnessed a revolution in
astronomy: direct detection of gravitational waves.

e Unique opportunity to test general relativity in the
strong-field regime, shed light on the fundamental

aspects of gravity and black holes, probe the _

fundamental nature of astrophysical compact | | —— L& 7

Compact binary inspiral and merger

objects.

e Extraordinary scientific potential of upgraded
detectors and future facilities.

[Nature Reviews Physics, 3, 344-366 (2021)]

e \We are witnessing the dawn of the era of precision physics with gravitational waves.

[Berti et al. ’15], [Barack et al. 18], [Cardoso and Pani’19], [Baibhav et al. “19], [Barausse et al. '20], [Perkins, Yunes and Berti '20], [Bailes et al.
'21], [Berti et al. '22]...
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Symmetries of black holes

e Symmetries can help us shed light on the fundamental aspects of black holes and gravity,
and constrain broad classes of theories beyond general relativity in a model-
independent way.
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Symmetries of black holes

e Black hole perturbation theory has a long history starting from the work of Regge and
Wheeler, Zerilli, Teukolsky, Chandrasekhar...

e |nterestingly, recent investigations suggest the subject has depths yet to be plumbed.
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Outline

| will mostly focus on the static response and Love numbers of black holes.
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Symmetries of black holes

"The black holes of nature are the most perfect macroscopic objects there are in the
universe: the only elements in their construction are our concepts of space and
time.”

(S. Chandrasekhar, “The mathematical theory of black holes")

Black holes are among the simplest and most robust objects in nature: uniquely
determined by their mass and spin (and charge).

This simplicity is inherited by the perturbations.

Some aspects of this simplicity are well understood in terms of (hidden) symmetries of
general relativity.
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Symmetries of black holes

e |n general relativity, the two d.o.f. in the gravitational wave emitted by a perturbed black
hole have the same characteristic frequencies, i.e. are isospectral.

e |sospectrality has been known to follow from a duality of the linearized equations of
motion (a.k.a. Chandrasekhar relation) since the 1970s. [Chandrasekhar '75]

e True for massless (spin-0, 1, 2) fields on Schwarzschild/Kerr(-de Sitter) spacetime, as well
as for partially-massless spin-2 fields. [Brito, Cardoso and Pani '13], [Rosen and LS 20]

e Symmetry behind the vanishing of the Love numbers unclear until very recently.
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Static response and tidal deformability

e The Love numbers are the coefficients encoding the (static) tidal deformability of a
compact object (analogous to the electric and magnetic susceptibilities in EM).

—

Figure 4.7 Dielectric sphere in a uniform field E,, showing the polarization on the left
and the polarization charge with its associated, opposing, electric field on the right.

e In EM we solve V2@ = 0:
_ ¢ ~£-1 L ¢
Doyt = ZAf [r + k,r ] P,(cos0), Dt = Z B,r"P,(cos0).
7 ¢

e The boundary condition at r = + oo fixes A,, while k, and B, are determined by regularity
conditions across the surface (continuity of f” and l_)l).

eleg — 1

eleg+ 2

r; (€yand € are the vacuum and

o Forinstance, it Ey=A,Z onefindsk,_; = —

dielectric permittivities).

e k,are the coefficients of the induced response.
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Tidal Love numbers . -

Inspiral Merger Ring-
down

Tidal deformability affects the dynamics during the
inspiral.

An alteration in the phase of the gravitational-wave
signal can be used to constrain the tidal deformability 10},
of the objects.

— Numerical relativity M
I Reconstructed (template)
I I

Love numbers not only provide valuable insights into the properties of known objects,

but also potentially indicate the existence of BSM exotic compact objects.

(See [Chia, Edwards, Wadekar, Zimmerman, Olsen, Roulet, Venumadhav, Zackay and Zaldarriaga ‘23] for the first matched-filtering
search in the O1-0O3 LIGO/Virgo data.)

An explicit calculation in general relativity shows that k, = 0 for black holes in D=4, as

opposed to other types of compact objects and black holes in generic D.

[Fang and Lovelace '05]

[Binnington and Poisson ‘09]

[Damour and Nagar '09]

[Kol and Smolkin 11]

[Hui, Joyce, Penco, LS and Solomon '21]
[Charalambous, Dubovsky and lvanov '21]
[Rodriguez, LS, Solomon and Temoche '23]
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Love numbers for rotating black holes in higher dimensions

To understand why the vanishing of black hole Love numbers in general relativity is
special and not generic, consider a higher-dimensional rotating black hole.

Scalar field on Myers—Perry spacetime (single plane of rotation) in 5 dimensions:

>
ds? = —dr* + Xdr2 + 2d6? + (r* + a®)sin® O dp? + %(dt — asin®0de)* + r? cos’ 0 dy?

A=r’4+a’>—u, > =r’+a’cos’6.

Given the symmetries of the metric, we shall decompose:
O(t, 1,0, p,w) = e PV p(r)Y(0) .

Radial equation in the static limit:

2.2 2.2

1 d d¢ m,,a m,,a
—— | rA— | + — - +2)¢$p=0.
r dr dr A r2

i
Luca Santoni N @
\ | 4%



Love numbers for rotating black holes in higher dimensions

e The equation can be solved analytically.

e« Expanding the solution that is regular at the horizon r = 1/ u — a* at large radii,

¢Nl”f+/1ﬂ”_f_2:

y 2I'(a)I'(b) 1y
/1{:(_1) log{ — ).
T+ 2)N(a—-2¢—-DI'(b—-7¢ —1) r
where
. f ia(mq, — mw) . é ia(mq) + mw) B
a—1+2+zﬂ_a2, B—1+2+2ﬂ_a2, c=¢+2.

e The Love numbers are non-vanishing and have log running.

[Rodriguez, LS, Solomon and Temoche "23]
[Charalambous and Ivanov '23]
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Vanishing Love Numbers

A conceptually clean way to define the (conservative) Love numbers is in terms of the
worldline effective action [Goldberger and Rothstein 04, '05, ...], [Kol and Smolkin 11], [Porto “16].

At distances large compared to the characteristic size of an object, there is an effective
description where the object is modeled as a point particle. Corrections due to the
object’s finite size and its internal structure are encoded in higher-derivative operators in
the effective theory.

Let's consider e.g. a scalar field around a black hole:
=~ L [dx gy dr + [ de| ) e 2
§=—|d'x@p7 - M|dr+ f_—g¢+;)2—ﬂ(a(al...a%¢> .

A, are the LN coefficients.

One generically expects: 1, ~ O(1)r?*~! and to find (classical) RG running.
After matching with the UV result: 4, = 0 in D=4 and no running.

Generically non-zero in D>4. Static response

[Kol and Smolkin "11], [Hui, Joyce, Penco, LS and Solomon "21], .=
[Charalambous and Ivanov 23], [Rodriguez, LS, Solomon and Temoche "23] - g
© g
£ E
S ©
5 o Background
< S

(external tidal field)
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Vanishing Love Numbers

e Following 't Hooft's naturalness principle, the vanishing of the Love numbers is a
naturalness puzzle from an EFT perspective. [Rothstein "14], [Porto '16]

R ) SIS ’
S = _EJd x (0¢) _MJdT+JdT[_g¢+;)2_ﬂ <a(a1.”aaf)T¢> ]

e | ooks like something that can very likely follow from a symmetry in the theory.
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Symmetries of vanishing Love Numbers

In 2105.01069] we showed that the vanishing of the Love numbers is the consequence of
linearly realized symmetries governing static perturbations around black holes.

Let's start from the Teukolsky equation with @ = 0 (static limit):

a’m? + is(2r — r,)am s)
0. (Aa,,g/);@) 52— )0, + - — =) +s+1) | gD =0

We can set s = 0 by virtue of ladder operators in s (which generalize the Teukolsky-

Starobinsky identities).
In fact we can also set £ = 0 — ladder operators allow to extend the argument to any 7.
'll set for simplicity a = 0 — the generalization to Kerr is straightforward.
The equation is simply:
0, (Ad,¢y) =0, A=r(r—r),
which is []J¢ = 0 on Schwarzschild withw =0 = 7.
Py = A0,¢, is the conserved charge associated with a symmetry of the (static) scalar

action.

It is useful because it allows to connect asymptotics:
po~1" as r—+ o — Py=0 — ¢y ~ const. as r —r,
qborvr_l as r— + oo — Py#0 — Py~ log(r—r) as r—r,

i
el
Luca Santoni V. @



Symmetries of vanishing Love Numbers

[Hui, Joyce, Penco, LS and Solomon '21]

Generalization to all £s through ladder operators: ¢, D?qbf

— £+ 1 - 4
D} = — Ad,+——(r; — 21), D; = Ad+5(ry— 2r)
gy~1" as r—+o — P,=0 — ¢, ~const. as r—r,
gbel"_(f_H) as r—> + o — PK#O — gbbﬂrvl()g(r—rs) as r—r,

The vanishing of the Love numbers follows from two facts: (1) the purely decaying
solution ( ~ 1/r*! at large r) is divergent at the horizon, and (2) the solution that is

regular at the horizon is a finite polynomial goingas ~ 147+ ... + r°.

The growing branch respects the symmetry, while the decaying branch spontaneously

breaks the symmetry.
(See also [Achour, Livine, Mukohyama, Uzan "22])

Fact (1) is consistent with the no-hair theorem (a black hole cannot sustain static, scalar
profile that decays at infinity [Bekenstein '72]).
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From Schwarzschild to AdS, with Love

[Hui, Joyce, Penco, LS and Solomon '21]
* The symmetry has a geometric origin: it arises from the (E)AdS isometries of a

dimensionally reduced black hole spacetime.

Let's consider a static scalar ¢ in a Schwarzschild background,

1
S = EJd9d¢dr\/§ d¢, ds® = dr* + A (d6” + sin® 0 dg?).
After a Weyl rescaling, the metric becomes EAdS; with

8ii = ngija qg = Q_%qb, where Q=L%/A,

1 Y~ r 414 r.r
§s=—|4g° ( b 2), 42 = d 2+—sinh2< *S) 462 + sin? 9 do?
2J Ay P TITT TRk ”’)

where dr, = (L?/A)dr. The space has 6 Killing vectors: 3 rotations and 3 translations (or
"boosts”). The translation that mixes r, and @ acts on the original ¢ as

O = —2Acos00.¢ + (r, — 2r)0y(sin 0 @)

or, equivalently,

6, = Co 1Dy 1@pyq — CKD;_lﬁbf—l :
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Symmetries of vanishing Love Numbers

[Hui, Joyce, Penco, LS and Solomon '21]

* Atlarger, 8¢ reducesto a SCT, 8¢ = ¢;(x' — X*0"+ 2x'x"- W)gb

e \We claim that this is the sought-afterinfrared symmetry that forbids Love number (and
hair) couplings in the point-particle effective action.
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Ladder in Kerr: static limit

[Hui, Joyce, Penco, LS and Solomon '21]

The previous algebraic ladder structure has a direct analog in a Kerr background:
2arr sin* @ 2 >+ a*? — a*Asin? 0

d2 = s didg +2-dr? + p2de? + L F )~ 4

p* p* A p?

where p? = r* + a*cos’*0 and A = r* — rr, + a*.

p’—rr

ds? = — sin® @dg?

The static Klein-Gordon equation, has both ladder and horizontal symmetries,

1420+ 1
D> =¥ Ao+ +4

(ry—2r) Fiam.
The ladder symmetries D> descend from a CKV of the 3D-static metric:
p*—rr, A?sin* 6

dr’ + Ad@? + dg?
p2 — Il

2 _
dsK—

The conserved charges P, associated with the horizontal symmetries, evaluated for the
“growing branch”, are non-zero (and imaginary), unlike in the Schwarzschild case:

4 am
PfOClQH(k2+4q2) o q ’
k=1
which reproduces the dissipative response [Le Tiec and Casals '20].
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Ladder in Spin: From Scalar to Vector and Tensor

[Hui, Joyce, Penco, LS and Solomon '21, '22]

e Ladder operators in the spin, E, raise and lower s in the Teukolsky equation
(EfpY = ¢*D)

a’m? + is(2r — ry)am
A

a,,(Aa,,gb;‘)) 52— )0, + ( (=)l +s5+ 1))¢;S> - 0.

They allow to extend the previous results from scalar to vector and tensor fields.

e ET are related to what are known as Teukolsky-Starobinsky identities.
In Chandrasekhar’s notation,

A AQSS’ZSA#D, PV =2y, ¢ = A@g@g@g@gﬂqﬁ@, ¢ = DyDD D",
where 9, =0, + i[lam — o(r* + a?)]/A.

The new twist we are adding is that, in the static limit, we can truncate these operations,
enabling us to increment s by unity, E;—Lq’);s) = gb;il).
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Conclusions



Conclusions and open directions

The direct detection of GWs is a unique opportunity to test GR in the strong gravity
regime.

Love numbers are an important observable to characterize and constrain the nature and
internal structure of compact objects.

Symmetries are key tools to shed light on the fundamental aspects of gravity and
compact objects, and constrain broad classes of theories beyond GR.

Isospectrality and the vanishing of the Love numbers in GR are examples of properties
that follow from hidden symmetries in the theory.
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Conclusions and open directions

e Do the symmetries extend beyond linear order, or are they an “accident’ of the linearized
dynamics?
e \What can we learn from (hidden) symmetries of gravity about the regime beyond linear

perturbation theory?
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Backup slides



Symmetries of vanishing Love Numbers

[Hui, Joyce, Penco, LS and Solomon '22]

To understand the origin of the ladder symmetries, let's solve a slightly more general
problem: scalar field at finite (low) frequency.

The scalar action is

1 r
S = 5 Jdtdrdﬂsz K(atﬁb)z — A(ar¢)2 + ¢ V52252¢

Define the near-zone approximation by replacing (r*/A)d?¢p with (r#/A)o%¢p.

This has the virtue of preserving the correct singularity as r — r,, while still accurately
capturing the dynamics at larger r, as long as wr < 1.
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Symmetries of vanishing Love Numbers

[Hui, Joyce, Penco, LS and Solomon '22]

* |n this limit, the scalar action is the same as that of a massless scalar minimally coupled to
an effective near-zone metric:

A re .
dsécar-zone = — —2dt2 + Kdr2 + 77 (d92 + sin? Hd(pz) .

Fs

e This metric is a conformally-flat AdS, X §? spacetime (= 6 KVs + 9 CKVs).
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Symmetries of vanishing Love Numbers

e The 6 KVs and 9 CKVs are:

T=2ro0,
L, = e*(2r,0A/Ad, /A0,
J23 —_ a¢

J1p =cos@dy—cotdsingd,
J13 =s8in@ dy+ cotbcos@d,

_2A
101 —

Jogp = —Ccos @ IZA

+1/2r,

K, =e~

. 2A
Jo3 = — Sing [ "

[Hui, Joyce, Penco, LS and Solomon '22]

0,A

sin @0,
0,A [ tang
Ty sin

a;A <C0w0 + cos 969)]

S

() — COS8 9%)]

7‘3
\{fZ cos 6 (Xsdt ¥ 0,Ad, F 2tan 009>

2o \/Ad.Asind 2¢/A 2\/A tang
M, = e*"?scos ¢ |——sin00,F 0 +—— cos 00,F —0
= \/K r r r rg sinf ?
2o A0,Assin 6 2¢/A 24/A cotg
N, = e**ssin g sin 60, F 0,+—— cos 00+ —-0
+ \/Z r r r rg sinf @

Different perspective on the vanishing of the LNs proposed by [Charalambous, Dubovsky and Ivanov '21].

This unifies the different sets of symmetries.

Only T, J;; and Jy,; remain good symmetries in the static limit (o = 0).

Jy; recovers precisely the ladders: 6¢p = {0, ¢+l

6y = oDy 1piq —

D} ¢, D} =—Ad+

V,§¥¢ , or equivalently
s *(r,— 2r) and D; = Ad,+2(r, — 21).
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