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HOW TO LOOK BEYOND SM?

e State-of-the-art DM experiments: multi ton liquid noble gas detectors (Xe, Ar)

e Signature: Incident particles produce prompt scintillation light in scattering (S1);
secondary signal from electroluminescence in gaseous layer (S2)
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PROBLEM: NEUTRINO BACKGROUND

Incident energetic neutrinos can fake the DM signal, as they leave a similar signature

Most importantly, irreducible solar neutrino
background looks like typical WIMP signal!

Typically ~ O(few) keV energy threshold
for DM search
(LUX has achieved 1.1 keV with NR/ER discrimination)

These are typical solar neutrino (mostly 8B)
scattering energies!
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TESTING NEW NEUTRINO
PHYSICS AT DIRECT DETECTION




NON-STANDARD INTERACTIONS

 Neutral current low-energy effective theory called non-standard interactions (NSI)

Vo Vs

Lnst = —2V2Gr Z 55; ZaypPryg] |[fAPPf] S
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f f

e Ordinary matter is composed of f = {e,u,d}. Only these are relevant for matter
effects and scattering. Propagation only sensitive to vector component.

f _ _fL , _fR
€aB = €ap T €ap

e Assuming neutrino flavour structure of NSl to be independent of charged fermion, NSI
coupling can be factorised in neutrino and fermionic part




NON-STANDARD INTERACTIONS

e Fordirect detection electron scattering is crucial! We extend this parameterisation by
electron direction

n
Caﬁ

f
ehp = €€

e Parametrising the direction in terms of {e, p,n}

The angles 1, @ run in the interval [—z/2,7/2] and the radial component 82;) can be

positive and negative!

o pisthe angleinthe {&7, "} plane, @ in the {&P, ¢} plane
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[Amaral, Cerdeno, PF, Reid; 2006.11225]
Solar neutrinos produced in various processes, but initially always in electron
flavour.

Matter oscillation in solar medium dominates flavour composition reaching earth.
= at ~10 MeV significant v_ (and v,) admixture (°B flux)!

Total rate in scattering experiment is written as

[ S vl
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RATE — FIRST PRINCIPLES

Neutrinos are produced in the core of the Sun as pure v, . Propagate through the
solar matter to the surface of the Sun and undergo matter oscillations; free stream in

vacuum to earth

Scatter with detector into any neutrino final state. Have to sum over asymptotic final
states
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RATE — FIRST PRINCIPLES

e Neutrinos are produced in the core of the Sun as pure v, . Propagate through the
solar matter to the surface of the Sun and undergo matter oscillations; free stream in

vacuum to earth

e Scatter with detector into any neutrino final state. Have to sum over asymptotic final

states
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RATE — FIRST PRINCIPLES

e Neutrinos are produced in the core of the Sun as pure v, . Propagate through the
solar matter to the surface of the Sun and undergo matter oscillations; free stream in

vacuum to earth

e Scatter with detector into any neutrino final state. Have to sum over asymptotic final

states
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* Retains full
phase correlation
e Captures all

interferences
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SOLAR NEUTRINO PROPAGATION

e Need to find the density matrix p@ = Sz©®S" of solar neutrinos reaching
earth!

 To obtain propagation S-matrix need to solve Schroedinger equation

d Ve 1 0 0 0 ‘/cc 0 0 Ve

i\ v = |57 U |0 Am2, 0 |U +| 0 0 0 v

U B 0 0 Am%l 0 0 0/ ] \vr
where Am?j = my — m? Vee = V2GrF Ne(z)

e \We define the PMNS matrix as

1 0 0 C13 0 S13 C12 S192 Gi ocp 0
U=10 C23 S93 0 1 0 — 8192 en LSk C12 0
0 —S5923 C23 —S513 0 C13 0 0 1

\ = 7 \\ 7\ 4
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SOLAR NEUTRINO PROPAGATION

» After orthogonal rotation of neutrino basis O = R,3 R;5, can describe full three-flavour
propagation in terms of an effective two-state mixing.

e Assuming adiabaticity (| AED | > 2| 9’{‘2 ) within the Sun, get full propagation S-matrix

where defining AE,; = Am3,/(2E,) we find the matter eigenvalues and mixing angle

! 1
= 2 {Vcc ¢y = ABy /PP + QQJ , Byt = 5 {Vcc cls + AFa1 /p? + CIZ}
sin 2075, = : cos 207 =
- \/P2 + q° 12 \/]?2 1 2
p=sin26i3+2&ey” Vee g = cos 2012 + (2£ %% — c2.) Vee

with € = £° 4+ €P + Y, (2)&"



SOLAR NEUTRINO SCATTERING
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1. The generalised coherent elastic neutrino nucleus scattering (CEvNS) cross section is
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SOLAR NEUTRINO SCATTERING
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1. The generalised coherent elastic neutrino nucleus scattering (CEvNS) cross section is
dCuN ~ Gi My - My ER
dER ) .5 7 2F?2

with Quy =N — (1 —4sin?6y)Z and Gggl = (EPZ+E"N) ey

1 F?(ER)
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2. The generalised elastic neutrino-electron scattering (ELES) cross section:
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with gl = T —sin® 6, Q7" and (vector NSI only):
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SOLAR NEUTRINOS @ DD
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NUCLEAR SCATTERING

. . . LZ XENONNT DARWIN
Consider one NSI coupling at a time and CUNR M ONR (2022) 1 NR 1 NR

compare sensitivity to global fit limits from
[Coloma et al., JHEP 02 (2020) 023 |

In the future DD can improve over
existing constraints

Target material dependent blind spot
where neutron and proton NSI cancel

[Amaral, Cheek, Cerdeno, PF; 2302.128406]
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NUCLEAR SCATTERIN

Consider one NSI coupling at a time and
compare sensitivity to global fit limits from
[Coloma et al., JHEP 02 (2020) 023 ]

In the future DD can improve one
existing constraints

Target material dependent blind spot
where neutron and proton NSI cancel

A
= tan ™! <_N COS go>

Blind spot due to SM-NSI interference
terms in CEvNS cross section

Diagonal:  2m¢ — Qv
(8781 pr _I_ §nN

[Amaral, Cheek, Cerdeno, PF; 2302.12846]
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NUCLEAR SCATTERING

. . . XENONNT DARWIN
Consider one NSI coupling at a time and CUNR O ONR (2022) i NR I NR

compare sensitivity to global fit limits from
[Coloma et al., JHEP 02 (2020) 023 ]

In the future DD can improve one
existing constraints

Target material dependent blind spot
where cross section vanishes

A
= tan ™! <_N COS go>

Blind spot due to SM-NSI interference
terms in CEvNS cross section

Diagonal: 1% — Qv
16 %6 ng + gnN

Off-diagonal:

d¢l/ mNER
S ———— [ PZ 4+ " N)(pao
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ADDING ELECTRON SCATTERING

LZ
ER [ NR (2022)

We show the sensitivities in the {&P, £¢)
plane

The current limits on the NSI for pure
electron couplings is illustrated by the
green baratg = + /2

ER sensitivities drop off towards ¢ = 0
(pure proton), whereas NR sensitivities
become maximal

Direct detection experiments have
excellent sensitivity to ER!

Future DARWIN can potentially improve
by an order of magnitude over current
electron NSI bounds

Direct detection experiments become an
important player for neutrino physics!

[Amaral, Cheek, Cerdeno, PF; 2302.12846]
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SNuDD

“Solar Neutrinos for Direct Detection”

 Implemented the full chain of propagation, scattering plus detector effects for NSI
in solar v in open-source Python package: https://github.com/SNuDD/SNuDD.git
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https://github.com/SNuDD/SNuDD.git

CONCLUSIONS

In the next years direct detection experiments
will see large numbers of solar neutrinos

= \We get neutrino experiments for free!

Direct detection sensitive to full NSI parameter
space spanned by {¢¢, €, "}, both in
propagation and scattering

SNuDD (https://github.com/SNuDD/SNuDD.git) = Ovigalng
is the first tool on the market to make > article
consistent rate prediction of solar neutrinos at DD Incoming

Particle

In particular, future sensitivity to electronic
recoils will provide complementary information
to spallation source and oscillation experiments!

Direct detection experiments will become an important player for
neutrino physics!

GOAL: Work towards global fit for NSls including DD experiments!


https://github.com/SNuDD/SNuDD.git

BACKUP




21

NEUTRINO PROPAGATION

In solar neutrino physics it is convenient to switch basis to # = O v with O = Ry3 R,;

The evolution of 7 is then governed by the Hamiltonian

If Am3, > Amj, ~ A, the third eigenvalue AmZ, will dominate the matrix and the third
neutrino state decouples from the lighter ones = reduces to two-state problem

Solar best fit values:

Am3, = (2.5157)058) % 10 %eV?

Am3, = (7.427030) x 107 °eV?
Ace ~10%eV? Q E, ~ 10 MeV

[Esteban et al., JHEP 09 (2020) 178
& NUFIT 5.1 [http://www.nu-fit.org] ]

[Bahcall et al.,
Astrophys. J. Suppl. 165 (2006) 400]



CENNS-10 RESULTS

[Amaral, Cheek, Cerdeno, PF; 2302.128406]

10 _I U I U U I U U U I U I_ ]_O _I U I U U U I U U U I U U

We repeat the analysis done for pure up-
quark NSls (7 = tan='(1/2), ¢ = 0)

Two minima, since CENNS-10 LAr has
observed slight excess w.r.t. SM

Compare the results for pure proton (¢ = 0)

to pure electron (¢ = 7/2) in the charged
fermion direction

Constraints weaken in electron direction as
the contribution to proton is minimal, also

the location of the minima shift to higher ¢,
[Miranda et al., JHEP 05 (2020) 130 ]
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CENNS-10 RESULTS

e We repeat the analysis done for pure up-
quark NSls (n = tan™'(1/2), ¢ = 0)

e Two minima, since CENNS-10 LAr has
observed slight excess w.r.t. SM

e Compare the results for pure proton (¢ = 0)

to pure electron (p = 7/2) in the charged
fermion direction

e Constraints weaken in electron direction as
the contribution to proton is minimal, also

the location of the minima shift to higher ¢,

e Since CEVNS is only sensitive to &7 in

charged direction, the limits are expected to

scale like 1/cos ¢ due to parameterisation
(forn = 0)

£P = /5 cosm cos ¢

ﬁ
23 [Amaral, Cheek, Cerdeno, PF; 2302.128406]
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BOREXINO

Repeat simplistic Borexino-only analysis,
only allowing for theoretical uncertainties:

eV €[-0.12,0.08]
—

[Khan et al., Phys. Rev. D 101, 055047 (2020)]
[Coloma et al., JHEP 07 (2022) 138]

At @ = 0 (pure proton) NSI only impact
the neutrino propagation; cross section
unaltered = NSI |least constrained

At ¢ = n/2 (pure electron) maximal effect
both in propagation and cross section
= most stringent bounds

Off-diagonal more tightly constrained
due to appearance of NSI elements twice in
dR [ d¢ ]

I )
dEn  |P dER

iEeE

[Amaral, Cheek, Cerdeno, PF; 2302.12846]
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BOREXINO

For all off-diagonal NSl elements (¢"7, a # f), trace contains term proportional to p,

af ’
dR

2
= o A(ER) pec +B(BR) cs pail+ C(Er) (€15 (pua + pss)
dE R

Without trace, this interference term
would be entirely missed! BRI B

Cross section symmetric under
1. _elh® _
€@t > 1€, — ¢}

BUT:
oscillation effects break symmetry

]

via presence of full density matrix!

|
e
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GLOBAL FITS - CURRENT

e Most robust limits are determined from global fits
including both oscillation and coherent type experiments

e For complexity these have been only derived in {&7, £"}
plane characterised by angle

e CELUNS cross section has a blind direction for
n =tan"'(—Z/N)

e First COHERENT run with Csl target with average
Z/N = 1.407 = degradation @y ~ — 35.4°

[Coloma et al., JHEP 02 (2020) 023 |

Total Rate Data Release t +E Our Fit t+E Chicago Our Fit t+E Duke

et | [-0.012,+0.621] | [+0.043, +0.384] | [-0.032, +0.533] [—0.004, +0.496]

enu | [F0.115,+0.405] | [-0.050,+0.062] | [-0.094,+0.071] & [+0.302, +0.429] | [-0.045, +0.108] & [+0.290, +0.399]

n= tan_1(1/2) e¥o | [=0.016, +0.406] | [=0.050, +0.065] | [—0.005, +0.125] & [+0.302, +0.428] | [—0.045, +0.141] & [+0.290, +0.399]
cvu | [=0.059,+0.033] | [-0.055,40.027] | [-0.060, +0.036] [—=0.060, +0.034]
evs | [<0.250, 40.110]) | [<0.141,40.090] | [<0.243, +0.118] [~0.222, 40.113]
he | [=0.012,+0.008] | [~0.006. 40.006] | [~0.013, +0.009] [<0.012, +0.009)|
£ | [=0.015, +0.566] | [+0.036.4+0.354] | [=0.030, +0.468] [=0.006, +0.434]

iy | <0104, 40363 | [<0.046,40.057] | [<0.083, +0.077] & [+0.278, +0.384] | [<0.037, +0.009] & [+0.267, +0.356]

_ iy ed | [<0.104, +0.363] | [~0.046, 4+0.059] | [~0.083, +0.083] @ [+0.279, +0.383] | [~0.038, +0.104] & [+0.268, +0.354]
i ( ) ed, | [-0.058,40.032] | [-0.052,40.024] | [~0.059, +0.034] [~0.058, +0.034]
ed | [-0.198,+0.103] | [<0.106, +0.082] | [-0.196, +0.107) [~0.181, +0.101]
5;’,, (—0.008, +0.008] | [-0.005, 40,005 | [-0.008, +0.008] [=0.007, +0.008]
ete | [=0.035, +2.056) | [+0.142, 4+1.239] | [~0.095, +1.812] [~0.024, +1.723]

ehu | [-0.379, +1.402] | [-0.166, +0.204] | [-0.312, +0.138] @& [+1.036, +1.456] | [~0.166, +0.337] & [+0.952, +1.374]

n=0 e | [-0.379,+1.409] | [-0.168, +0.257] | [<0.313, +0.478] & [+1.038, +1.453] | [-0.167, +0.582] & [+0.950, +1.382]
by | [-0.179,+0.112] | [-0.174,40.086] | [-0.179, +0.120] [-0.187, +0.131]
cbr | [0.877,+0.340] | [-0.503,40.295] | [-0.841, +0.355) [—0.817, +0.386]
26 che | [=0.040,4+0.025] | [-0.020,40.019] | [—0.044, +0.026] [—0.048, +0.030]
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[Esteban et al., JHEP 08 (2018) 180]



