
University of Rwanda, College of Science and Technology

Matter Power Spectrum in
Scalar-Tensor Theory of Gravity

Joseph Ntahompagaze

Co-authors: Amare Abebe and Manasse R. Mbonye

DSU2023 (smr 3863)

Friday, 14th July, 2023
Kigali, Rwanda

Joseph Ntahompagaze Matter power spectrum in Scalar-tensor theory of gravity



Publication Info

Joseph Ntahompagaze Matter power spectrum in Scalar-tensor theory of gravity



INTRODUCTION [GR Based Cosmology Model]

The standard big-bang cosmological model, is a model with

Success

Formation and
distribution of large
scale structures

BB nucleo synthesis

Predicts Hubble law to
hold for the entire
Universe

Predicts existence of
CMB

Challenges

Early universe Problems

The horizon problem

The symmetry problem

The flatness problem

The inhomogeneity and
anisotropy on small scales

Late universe problems

The current cosmic
acceleration

The rotational curves of
galaxies.
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INTRODUCTION [Isotropic and homogeneous Universe]

From Hilbert-Einstein action

IHE =
1

2κ

∫
d4x
√
−g (R + Lm) , (1)

where κ = 8πG
c4 = 1, G being the gravitational constant and c is speed of light in vacuum.

We make variation w.r.t metric gµν and get the field equations as

Gµν = Rµν −
1

2
gµνR = κTµν , (2)

where Gµν is the Einstein tensor and Tµν is the energy momentum tensor, Rµν is the Ricci tensor and R
is the Ricci scalar.

The line element (general metric) is defined as

ds2 = gµνdxµdxν , (3)

where gµν is spacetime metric.

FLRW model is described by

ds2 = −dt2 + a2(t)

[
dr2

1− Kr2
+ r2(dθ2 + sin2

θdϕ2)

]
, (4)

where a(t) is the scale factor, (t, r, θ, ϕ) are the spacetime coordinates of the Universe and K is the
curvature constant which can be −1, 0, 1 for open, flat and closed spacetimes respectively.
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INTRODUCTION
[Some quantities from the FLRW spacetime]

Applying symmetry property of FLRW spacetime, one has

The Ricci scalar R is given as

R = 6

(
ä

a
+

ȧ2

a2
+

K

a2

)
. (5)

Friedmann’s equation

ȧ2

a2
=
µ

3
− K

a2
. (6)

Raychadhuri’s equation

ä

a
= −1

6
(µ+ p) . (7)
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ALTERNATIVES TO GR
[Why modified gravity?]

From the astrophysical and cosmological point of view:

To explain phenomena such as dark energy and dark matter
from a geometric point of view, or extra matter fields.

To explore the possibility that gravitational interaction
depends on scales (cosmological scale or astrophysical scale).

Using the extra degree of freedom manifested in those
theories.

Changing geometry >>>>>> f (R) theory.

Adding new form of matter >>>>>>>>> scalar-tensor theory.
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Actions for f (R) gravity and Scalar-Tensor Theory

The action that represents f (R) gravity is

If (R) =
1

2κ

∫
d4x
√
−g [f (R) + Lm]. (8)

The action in scalar-tensor (Brans-Dicke) theory

IBD =

∫
d4x
√
−g
[
φR − ω

φ
∇µφ∇µφ+ Lm

]
, (9)

the coupling parameter can be ω = 0.
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SCALAR-TENSOR THEORY [f (R) as ST theory]]

If (φ) =
1

2κ

∫
d4√−g

[
f (φ)+Lm

]
,

(10)
where f (φ) is the function
of φ(R) and we consider the
scalar field φ to be Frolov
(2008)

φ = f ′ − 1. (11)

However φ is dimensionless.
φ = 0 for GR.
φ is an extra degree of
freedom.

Other versions of definition of
φ by Thomas P Sotiriou at al.
(2010):

φ = f ′ . (12)

There is yet another defi-
nition by Baojiu Li at al.
(2007):

φ = ln f ′ , (13)

for GR, we have φ = 0.
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MOTIVATION TO THE STUDY
[Equivalence between f (R) and ST theory]

The equivalence of the two theories is covered in (Barrow et
al. (1988), Baojiu Li et al. (2007), Frolov (2008), Thomas P
Sotiriou et al. (2010)).

For example in the work done by Thomas P Sotiriou et al.
(2006), this equivalence was studied at action level.

The work done by Castaneda et al. (2018) covered this
equivalence at perturbation level using metric approach and
φ = f ′ is used.

We need to study this equivalence of f (R) with
scalar-tensor theory using eq. (11), for which one has
φ = f ′ − 1.
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1+3 Covariant description

The 1+3 covariant approach is based on the decomposition of
space-time in:

Foliated hyper-surfaces of constant curvature (or constant
scalar field).

And the perpendicular worldline.

This is the decomposition of the metric tensor into the
projector tensor and a 4-velocity field ua:

ua =
dxa

dτ
, (14)

where τ is the proper time, and

hab = gab + uaub, (15)

where hab is the projection tensor.
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Gradient variables

Fluctuations in Vector Scalar Harmonic

Energy density Dm
a = a∇̃aµm

µm
∆m = a∇̃aDm

a ∆k
m

Expansion Za = a∇̃aΘ Z = a∇̃aZa Z k

Scalar field Φa = a∇̃aφ Φ = a∇̃aΦa Φk

Momentum of

scalar field Ψa = a∇̃aφ̇ Ψ = a∇̃aΨa Ψk

For the covariant Laplace-Beltrami operator, we have

∇̃2Q = −k2

a2
Q , (16)

and the order of harmonic (wavenumber) k is

k =
2πa

λ
. (17)
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DYNAMICAL SYSTEMS
[Dimensionless variables]

Friedmann equation (Sante Carloni et al., 2005):

1− R

6H2
+

f

6f ′H2
+

Ṙf ′′

f ′H
− µr

3f ′H2
− µd

3f ′H2
= 0 . (18)

Dimensionless parameters:

x =
Ṙf ′′

f ′H
=
φ̇(n − 1)

6nφ′H2
, (19)

y =
f

6f ′H2
− R

6H2
=

(1− n)
(
φ+1
nβ

)1/(n−1)

6nH2
, (20)

Ωr =
µr

3f ′H2
=

µr
3H2(φ+ 1)

, (21)

and
Ωd =

µd
3f ′H2

=
µd

3H2(φ+ 1)
. (22)

So that we have 1 + y + x − Ωd − Ωr = 0 .
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DYNAMICAL SYSTEMS
[Evolution of dimensionless variables]

The evolution of the dimensionless variables are as follows (Amare
et al. 2023)

−(1 + z)
dx

dz
= −x − x2 +

(4− 2n + nx)y

n − 1
+ Ωd , (23)

−(1 + z)
dy

dz
= 4y +

(x + 2ny)y

n − 1
, (24)

−(1 + z)
dΩd

dz
=
(

1− x +
2ny

n − 1

)
Ωd , (25)

−(1 + z)
dΩr

dz
=
(
− x +

2ny

n − 1

)
Ωr , (26)

(1 + z)
dh

dz
=

h(2 + ny)

(n − 1)
. (27)
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DYNAMICAL SYSTEMS [Perturbation equations]

In the following equations, the prime indicates derivative with
respect to z

∆
′′k
d +

[ (2 + ny)

(1 + z)(n − 1)
+

x−1

(1 + z)

]
∆
′k
d −

3Ωd

(1 + z)2
∆k

d −
3(1− n)n−1

(1 + z)βn(6nh2y)n−1
Φ
′k

+
1

(1 + z)2

[ (1− n)n−2

2h2βn(n − 1)(6nh2y)n−2
+

3(1− n)n−1

βn(6nh2y)n−1

(
Ωd − x −

y

n − 1

)]
Φk = 0 ,

(28)

Φ
′′k +

[ (2 + ny)

(1 + z)(n − 1)
−

2

(1 + z)
−

x(n − 2)

(n − 1)((1 + z))

]
Φ
′k −

(n − 2)

(1 + z)2

[
−

Ωd

n − 1
+

4(1− q)

3n(n − 1)

+
(n2 − 3n − 4)x2

(n − 1)2
+

3x

(n − 1)
− (n − 2)x2 −

k̂2

(n − 2)

]
Φk −

Ωdβn(6nh2y)n−1

(1 + z)2(1− n)n−1
∆k

d

−
βxn(6nh2y)n−1

(1 + z)(1− n)n−1
∆
′k
d = 0 .

(29)

In GR limit, we have (Amare et al., 2013)

∆′′kd −
1

1 + z
∆′kd −

3Ωd

(1 + z)2
∆k

d = 0 . (30)

Joseph Ntahompagaze Matter power spectrum in Scalar-tensor theory of gravity



DYNAMICAL SYSTEMS
[Transfer function T (k)]

Transfer function T (k)

T (k) =
∣∣∣∆k

m

∣∣∣2 . (31)

One can write power spectrum P(k) given as

P(k) =
P
f (φ)
k

PΛCDM
k

∣∣∣
eq

= T (k) =
∣∣∣∆k

d

∣∣∣2 . (32)
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DYNAMICAL SYSTEMS
[Multifluid system, dust-dominated epoch]

Figure 1: Power spectrum for
n = 1, n = 1.1, n = 1.2,
n = 1.3, n = 1.4, n = 1.5,
n = 1.6, n = 1.7.

For n = 1, we have
the one for GR.

For n = 1.1, the
spectrum is above
the invariant line
before it turns
down.

For n = 1.4, the
spectrum is the
lowest. We need to
investigate what is
happening here.
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DYNAMICAL SYSTEMS
[Multifluid system: dust-dominated epoch, around n = 1.4]

Figure 2: Power spectrum for
n = 1.41, n = 1.4, n = 1.385,
n = 1.398.

Values of n near
n = 1.4 are
oscillating in the
similar manner and
saturate at close
amplitude.

But n = 1.4, after
oscillation it keeps
going down.

This result is the
same as the one
obtained by
Kishore et al.
(2008) and Amare
et al. (2013).
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CONCLUSIONS

New gradient variables are used to develop perturbation equations

Dynamical systems approach is used to analyze power spectrum

Dust dominated epoch is considered.

We paid the attention to n = 1.4 since it is clear from the
power spectrum that the values close to n = 1.4 are behaving
similarly.

It is shown that the power spectrum of n = 1.4 is lower than
others for large values of k in all sets of initial conditions.

From the power spectrum behavior, the equivalence between f (R)
theory and scalar-tensor theory also applies to perturbation level ,
Since the other studies about f (R) also produce similar power
spectrum.

Joseph Ntahompagaze Matter power spectrum in Scalar-tensor theory of gravity



ACKNOWLEDGEMENTS

Thanks to International Science Program, Uppsala
University, Sweden for financial support through
Rwanda Astrophysics, Space Science and Climate
Science Research Group, University of Rwanda.

Joseph Ntahompagaze Matter power spectrum in Scalar-tensor theory of gravity



THANK YOU
FOR

YOUR ATTENTION

Joseph Ntahompagaze Matter power spectrum in Scalar-tensor theory of gravity


