Gravitational-wave astronomy: Today & tomorrow

Ajith Parameswaran

International Centre for Theoretical Sciences, TIFR, Bangalore

Dark Side of the Universe | Kigali | 14 Jul 2023

GW observations have established a new branch of astronomy

90 CBC detections from the first three observing runs (LVC analysis) Additional events from independent analyses of the data.

Gravitational-wave astronomy: Observations

- First detections of merging binary BHs and NS-BH binaries.
- First observations of stellar-mass black holes with mass $\approx 30 M_{\odot}$.
- Potential evidence of IMBHs (GW190521)
- Multi-messenger observation of a BNS merger (GW170817).
- Additional BNS /NSBH binaries (no EM counterpart).
- Either the heaviest NS or lightest BH ever observed (GW190814).
- Binaries with large mass ratios. Evidence of higher multipoles (GW190814, GW190412).

- First tests of GR in the regime of extreme gravity & velocities.
 - Waveform based tests Signal consistency, GW generation & propagation, nature of GW polarizations, BH quasi-normal modes, ...
 - Multi-messenger tests Speed of GWs, Test of the equivalence principle, Lorentz violation, non-compact extra dimensions, ...

Strain (10⁻²¹) 6 0 0 5 5

Aelocity (c)
Velocity (c)
0.4
0.3

4

- First tests of GR in the regime of extreme gravity & velocities.
- New avenues for cosmography.

0.04 *p*(*H*₀ | GW170817) (km⁻¹ s Mpc) 0.03 0.01

0.00

Hubble constant estimate from the BNS merger GW170817 and its EM counterparts

$$H_0 = 70.0^{+12.0}_{-8.0} \text{ km s}^{-1} \text{ Mpc}^{-1}$$

COS/

- First tests of GR in the regime of extreme gravity & velocities.
- New avenues for cosmography.
- Constraints on the EoS of dense nuclear matter.

- First tests of GR in the regime of extreme gravity & velocities.
- New avenues for cosmography.
- Constraints on the EoS of dense nuclear matter.
- Binary population inference: merger rates, mass & redshift distribution of CBCs.

- First tests of GR in the regime of extreme gravity & velocities.
- New avenues for cosmography.
- Constraints on the EoS of dense nuclear matter.
- Binary population inference: merger rates, mass & redshift distribution of CBCs.
- Constraints on primordial BHs.

observation of subsolar mass binaries

observation of GW microlensing

- First tests of GR in the regime of extreme gravity & velocities.
- New avenues for cosmography.
- Constraints on the EoS of dense nuclear matter.
- Binary population inference: merger rates, mass & redshift distribution of CBCs.
- Constraints on primordial BHs.
- Hints on the origin of heavy elements (from EM counterparts of GW170817).

Gravitational astronomy has only begun

- LIGO & Virgo will continue to improve their sensitivities. KAGRA and LIGO-India expected to join in the next few years. 1000s of GW detections anticipated.
- Plans & proposals to host upgraded detectors in the existing facilities (A#, Voyager, ...). **New phenomena** Detection of SGWB, spinning neutron stars and galactic SNe, **lensing of GWs**. 10

Note: Timelines have slipped

Gravitational lensing of gravitational waves

Small fraction (~0.1-0.5%) of detectable BBH mergers could be strongly lensed by intervening galaxies/clusters \implies multiple images, separated by hours to months.

sec « GW localization

A lensed quasar

Wave optics effects in the lensing of GWs

• When the gravitational radius of the lens \sim GW wavelength \implies wave optics (microlensing).

No evidence of lensing so far

Lensed vs Unlensed Bayes factor from the most significant event pairs.

Distribution of microlensing Bayes factors from all events

Constraints from the non-observation of lensing

High-redshift merger rate

Primordial BHs as dark matter

What can we learn from GW lensing?

- First detection of strong lensing expected soon.
- Precise localization of mergers from lensed images from the observed time delay and magnification ratio. [Hannuksela et al 2020]
- Early warning of EM precursors: Predict the arrival of the next image. [Magare et al, 2023]
- Better ability to constrain the polarization modes. Are they consistent with GR? [Goyal et al, 2021)]

Going deeper: Next generation ground-based detectors

100 10 Redshift 0.1

Artists conception of the Einstein Telescope (top) and Cosmic Explorer (bottom)

Expected horizon distance

[The Next Generation Global Gravitational Wave Observatory:The Science Book arXiv:2111.06990] **1**6

GW lensing cosmography

- 3G detectors are expected to detect ~10⁶ mergers. ~10⁴ would be strongly lensed.
- Detected number of lensed signals & their time delay distribution contain imprints of cosmological parameters — a new probe of cosmology.

 H_0

90

70

50

30

 H_0

Expected constraints from 10 yr observations observation of 3G detectors (conservative assumptions on merger rates)

GW lensing cosmography

- 3G detectors are expected to detect ~10⁶ mergers. ~10⁴ would be strongly lensed.
- Detected number of lensed signals & their time <u>delay distribution</u>
 contain imprints of cosmological parameters — a new probe of cosmology.

Expected constraints on cosmological parameters using ~100 GW-EM detections

18

Probing the nature of dark matter using GW lensing

 Warm dark matter would affect the abundance of lowmass halos ⇒ imprint on the distribution of time delays and lensing fraction.

Expected constraints from 10 yr observations observation of 3G detectors (conservative assumptions on merger rates)

[Simona Vegetti's talk on Tuesday]

Probing the nature of dark matter using GW lensing

- Warm dark matter would affect the abundance of low-mass halos ⇒ imprint on the distribution of time delays and lensing fraction.
 - Also: Probe sub-structure of DM halos from individual, well resolved lensed events
 ⇒ potential probes of self-interacting / ultralight / fuzzy DM [Tambalo et al, 2022,]

Expected constraints from 10 yr observations observation of 3G detectors (conservative assumptions on merger rates)

Future: Going deeper and wider

Frequency10^{-16} HzWavelength10^{21} kmDetectionCMB Polarization

10⁻⁹ – 10⁻⁶ Hz 10¹⁴ – 10¹¹ km Pulsar timing 10⁻⁵ – 10⁻¹ H 10¹⁰ – 10⁶ km eLISA/NGC

10 ⁻¹ –1 Hz	I −10 ⁴ Hz
10 ⁶ –10 ⁵ km	10 ⁵ –10 km
BBO/DECIGO	LIGO/Virgo/KAGR/
	I0 ^{−1} −I Hz I0 ⁶ −I0 ⁵ km BBO/DECIGO

/ET