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Model Predictions of ENSO from Jul 2023
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Topics to be covered in this lecture

Types of predictability
What is needed to make a climate prediction

Performing predictions with Earth System Models and
estimating prediction skill

Seasonal prediction skill and tropical basin interactions
Some current challenges



1. Types of predictability

* There are two types of predictability, one related to the initial state
of the climate system, and one related to changes in external factors.

* There relevance depends on the timescales and mechanisms
involved.



Mechanisms for climate variability

Anthropogenic

(e.g., greenhouse gas emissions)
Externally forced

Natural

(e.g., solar forcing, volcanic eruptions)

— Stochastic climate models

Internally Uncoupled oscillations

(e.g., basin modes, MJO)

Coupled ocean-atmosphere
oscillations

generated




Climate prediction fills the gap between weather forecasts
and climate change projections
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Different sources of predictability from weather to
seasonal timescales

atmosphere
(weather)

Predictability

ocean

courtesy of Paul Dirmeyer (GMU/COLA)

~7 days ~30 days Time



2. What is needed to make a climate prediction

* Models and sufficient computing resources
* Observations

e Data assimilation



* Dynamical models
* Represent key dynamics

* Complex (Climate models, Earth

System Models)
* Simplified (ENSO models)

* Statistical models
* Analogs
* Regressions

e Statistical-dynamical

The Model

Schematic of climate model
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erical

exchange
between
layers

Vertical grid
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Physical processes in a model

Atmosphere

Horizontal
exchange
between
columns

Continent Mixed layer ocean

Advection

Edwards, “History of climate modeling.” Wiley
Interdisciplinary Reviews: Climate Change 2021



Global observing system

New technologies are providing an unprecedent amount
of observations

Sentinels Satellites, European Space Agency

ARGO profiling floats monitoring the ocean
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Data assimilation — combine model and observations

Courtesy of T. Miyoshi

Observations are often sparse in time and space,
and have errors

Models are complete but are inaccurate

Neither observations or models are truth, both are
uncertain

Data assimilation is the statistical technigque used to
optimally combine observations and models to
estimate the "true” state, for our purposes (the
initial condition)



Data assimilation is a recursive process

Schematic view showing how model is adjusted so as to
have the truth between it and the observations
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Some key points and questions

e Earth System Models driven with external forcing are used to make long-term
climate change projections (i.e., predictability of the 2nd kind)

* Q: Name two external factors that are important to consider for decadal
prediction

* A: Greenhouse gas concentrations (CO2) and aerosol loadings

* Adding data assimilation allows the prediction of shorter term variability (i.e.,
predictability of the 1st kind)

* Q: Which components of the climate system are important for predictability of
the 15t kind? What data should be assimilated?

* A: Ocean (temperature and salinity, sea surface height) — seasonal to decadal

* A: Sea ice and land-surface (soil moisture) conditions — subseasonal - seasonal



3. Performing predictions with Earth System
Models and estimating prediction skill

 State-of-the-art climate prediction system (e.g., Norwegian Climate Prediction
Model)

* Constraining the ocean state with limited observations and data assimilation
* Performing retrospective predictions (hindcasts) to estimate prediction skill

* Multi-model ensemble as a method to reduce errors and produce more reliable
predictions



A state-of-the-art prediction system
The Norwegian Climate Prediction Model (NorCPM)

Norwegian Earth System model

chemistry/aerosols

Ocean biochemistry

Data assimilation (EnKF)

correction

*

External forcing
(greenhouse gases, aerosols, etc.)

(Counillon et al. 2016)



Some data assimilation results,
only using observed sea surface temperature

Correlation with observations for the period 1950-2010

Temperature in the upper 200m
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Retrospective predictions for assessing skill

Norwegian Climate Prediction Model

Prediction of North Atlantic Sea Surface Temperature, starting in October 1993
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Retrospective predictions for assessing skill

Norwegian Climate Prediction Model

Prediction of North Atlantic Sea Surface Temperature, starting in October 1993
g
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Measuring skill using retrospective forecasting (hindcasting)
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[months]

e
1~

1982,
Jan

1982,
Feb

1982,
Mar

Forecast
,' //' //' /" //' "
HF .7 //’ e -7 ///
’/ 7 // // s
7 // /, // /’
// /’ // // /’
- - - - 4
e /// // // ///
” // /’ e
/’ /’ /’ ’/
// // ‘ //
// // // ’/
bd P // 4
/’ // /”
/// /’ //
-, // // >
1982 ....1983 .....1984 Time
Apr Jan Jan [months, years]

Skill can be estimated for example by the correlation or root mean square
error between forecast and observed time series for different lead times



4. Seasonal prediction skill and tropical basin
iInteractions
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ENSO events can be well predicted

Norwegian Climate Prediction Model

Nino3.4 SSTA at 06-month lead time
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ENSO events can be predicted up to 12 months ahead

Anomaly Correlation skill in predicting Nino 3.4 sea surface temperature

N. American Multi-Model Ensemble, period 1985-2010
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Skill depends in predicting ENSO depends on initial month

Anomaly Correlation skill in predicting sea surface temperature
N. American Multi-Model Ensemble, period 1985-2010
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Skill of seasonal predictions for sea surface temperature

Anomaly Correlation skill in predicting sea surface temperature at six months lead
N. American Multi-Model Ensemble (ave.), period 1985-2010

Anomaly Correlation




Seasonal climate prediction is skillful in the tropics

Indicates skill of 3-month forecasts of rainfall for at least one season of the year

Unknown Not well Somewhat well Well

Source: IRI-International Federation of Red Cross/Red Crescent seasonal forecasts in context



http://iridl.ldeo.columbia.edu/maproom/IFRC/FIC/seasonalforecastskill.html

Importance of tropical basin interactions for
seasonal prediction

N. Pacific '

‘ﬁ“".'.‘:l .n“.l gl
SRRSO . EEES0 ,,_ H 4, Atlantlchﬁo
| 4 R AL

Wang (2019, Clim. Dyn.)




Tropical basin interactions across seasons

Shading: observed lagged correlation of DJF Nifio index on to SST
= Internal dynamics == Pacific -> Other basins = Indian -> Pacific == Atlantic -> Pacific

B JJA(0) G SON(1)




First, lets consider the ENSO impacts on other
tropical basins



Skill of seasonal predictions for sea surface temperature

Anomaly Correlation skill in predicting sea surface temperature at six months lead
N. American Multi-Model Ensemble (ave.), period 1985-2010
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Second, lets consider the impacts of tropical
Atlantic and Indian Ocean on ENSO



Accounting for Indian Ocean variability can
enhance ENSO prediction

Skill of a statistical prediction using |IOD and WWYV 14 months prior (red) achieves
skill similar to forecasts initialised with Pacific only data 8 months prior (BLACK)
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Two pathways for tropical Atlantic to impact ENSO
Regression of tropical Atlantic SST (MAMJJA) onto global SST

A MAM(0), Observations
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B JJA(0), Observations (ms™'/°C)
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La Nina like conditions

Cai et al. 2019



Models reproduce tropical Atlantic impacts on ENSO

Regression of tropical Atlantic SST (MAMJJA) onto global SST

A MAM(0), Observations D MAM(0), Model forced with Atlantic SST  (ms™/°C)
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Observed Atlantic SST enhances ENSO prediction

Prediction experiments 1980-2005, nine member, MPl model
Anomaly correlation, Feb Start, Oct-Dec SST
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Prediction skill increases across boreal summer

ECHAMS5/MPIOM, 1980-2005, Feb start
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== Obs. Atlantic SST
= Standard
—.- Persistence

=2
w0

&=
N

=
on

=
&

-
o
2
o
3}
| -
| -
o
O
P
o
&
o
C
<

2

O UFM 2 MAM 4 WMJJ 6 JAS 8 SON 10
Lead month/season

Keenlyside et al. 2013



Last, lets consider three basin interactions



Interactions with Atlantic and Indian Ocean
enhance the ENSO delayed negative feedback

Cross-correlation Nino3 SST with thermocline depth and remote SST indices
Experiments with AGCM - slab/recharge oscillator model
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Last, lets consider three basin interactions

* Interactions modify the dynamics
* Could they contribute to super ENSO (Chunzai’s workshop talk)?

* Could they contribute to allow ENSO prediction to two years?



5. Some current challenges



Model biases in the South Eastern Tropical
Atlantic among the most severe

CMIP5 multi-model mean sea surface temperature error
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Reducing biases enhances Atlantic Nino prediction

Predictions of ATL3 SST anomalies at two months lead
4 starts per year (Feb. May, Aug. Nov.), 9 ensemble members

Anomaly coupled model ~ Correlation = 0.5

Observations - black
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Standard model

Correlation = 0.33

/‘A\f\/\/\ (\/\,\V/\A /’v\'\l"v

1990 1995 2000 2005 2010
Time, year

Counillon et al. 2021



Model challenged in reproducing the equatorial Atlantic-
Pacific connection

NorESM1 — cross-correlation — full field restoring in the Atlantic 10S-10N
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Model challenged in reproducing the equatorial Atlantic-Pacific connection

NorESM1

NorESM?2
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...but models appear to be capture relation during the “stronger” TBI period

NorESM1

NorESM?2
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BJERKNES CENTRE
for Climate Research

Predictions may suggested much larger impact of
the ocean on the atmosphere

NAO Skill vs Ensemble Size

Model predicting
real world
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A smarter ensemble approach - the supermodel

Standard modelling Supermodelling
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Atmosphere Atmosphere Atmosphere Model 1 : Atmosphere
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Atmosphere -~
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Ocean
Ocean Ocean Ocean model 1 Ocean
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Y Ocean
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A supermodel is an optimal dynamical combination of models that is
superior to its ndividual constituent models

Schevenhoven et al. 2023



Observation

Overall, rainfall patterns
in the tropics are
improved

Climatology mean for the period 1980-2005

Schevenhoven et al. 2023



The role of tropical basin-interactions in climate predictability

1. Mechanisms are becoming undersfood

2. Pofential fo enhance prediction skill on seasonal-fo-decadal
fimescales starting fo be realised

3. Transforming our view of fropical climate variability, but key
challenges exist — model biases

Keenlyside et al. Basin Inferactions and Predicfability, CUPS, 2020
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