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How long in advance do you think we can predict ENSO events?

How do tropical basin interactions influence seasonal prediction?



Topics to be covered in this lecture

1. Types of predictability
2. What is needed to make a climate prediction
3. Performing predictions with Earth System Models and 

estimating prediction skill
4. Seasonal prediction skill and tropical basin interactions
5. Some current challenges



1. Types of predictability

• There are two types of predictability, one related to the initial state 
of the climate system, and one related to changes in external factors.
• There relevance depends on the timescales and mechanisms 

involved.



Mechanisms for climate variability

Externally forced

Internally 
generated

Natural
(e.g., solar forcing, volcanic erup3ons)

Anthropogenic
(e.g., greenhouse gas emissions)

Stochastic climate models

Uncoupled oscillations
(e.g., basin modes, MJO)

Coupled ocean-atmosphere 
oscillations



Adapted from Meehl et al. 2009

CLIMATE 
PREDICTION

Climate prediction fills the gap between weather forecasts 
and climate change projections



Different sources of predictability from weather to 
seasonal 7mescales

7



2. What is needed to make a climate prediction

• Models and sufficient computing resources
• Observations
• Data assimilation



The Model

• Dynamical models
• Represent key dynamics
• Complex (Climate models, Earth 

System Models)
• Simplified (ENSO models)

• Statistical models
• Analogs
• Regressions

• Statistical-dynamical

Edwards, “History of climate modeling.” Wiley 
Interdisciplinary Reviews: Climate Change 2021

Schematic of climate model



Global observing system
New technologies are providing an unprecedent amount 
of observations

Sentinels Satellites, European Space Agency

ARGO profiling floats monitoring the ocean

Photo ESA

http://www.argo.ucsd.edu

https://www.pmel.noaa.gov/gtmba/pmel-theme/atlantic-ocean-pirata

Foltz et al. 2019

Moored arrays, drifters, ship tracks



Data assimilation – combine model and observations

• Observations are often sparse in time and space, 
and have errors

• Models are complete but are inaccurate

• Neither observations or models are truth, both are 
uncertain

• Data assimilation is the statistical technique used to 
optimally combine observations and models to 
estimate the ”true” state, for our purposes (the 
initial condition)Courtesy of T. Miyoshi



Data assimilation is a recursive process

Carrassi et al. WIRES, 2018

Schematic view showing how model is adjusted so as to 
have the truth between it and the observations 



Some key points and questions

• Earth System Models driven with external forcing are used to make long-term 
climate change projecFons (i.e., predictability of the 2nd kind)

• Q: Name two external factors that are important to consider for decadal 
predicFon

• A: Greenhouse gas concentraFons (CO2) and aerosol loadings
• Adding data assimilaFon allows the predicFon of shorter term variability (i.e., 

predictability of the 1st kind)
• Q: Which components of the climate system are important for predictability of 

the 1st kind? What data should be assimilated?
• A: Ocean (temperature and salinity, sea surface height) – seasonal to decadal
• A: Sea ice and land-surface (soil moisture) condiFons – subseasonal - seasonal



3. Performing predictions with Earth System 
Models and estimating prediction skill
• State-of-the-art climate prediction system (e.g., Norwegian Climate Prediction 

Model)
• Constraining the ocean state with limited observations and data assimilation
• Performing retrospective predictions (hindcasts) to estimate prediction skill
• Multi-model ensemble as a method to reduce errors and produce more reliable 

predictions



Norwegian Earth System model Data assimilation (EnKF)

Observations

Ensemble

Atmosphere

Ocean

Ice Land
ice land

river

chemistry/aerosols

Ocean biochemistry

(Counillon et al. 2016)

A state-of-the-art predic7on system
The Norwegian Climate Predic4on Model (NorCPM)

External forcing 
(greenhouse gases, aerosols, etc.)



Some data assimilation results, 
only using observed sea surface temperature

Correlation with observations for the period 1950-2010

Temperature in the upper 200m

Salinity in the upper 200m 

Counillon et al, 2016



Retrospective predictions for assessing skill

Norwegian Climate Prediction Model 

Courtesy Yiguo Wang

Prediction of North Atlantic Sea Surface Temperature, starting in October 1993 

Year

Prediction

Observations

Model adjusted to 
observations



Retrospective predictions for assessing skill

Norwegian Climate Prediction Model 

Courtesy Yiguo Wang

Prediction of North Atlantic Sea Surface Temperature, starting in October 1993 

Year

Prediction

Observations

Model adjusted to 
observations



Measuring skill using retrospective forecasting (hindcasting)

Time

Lead-Time
[months]

[months, years]

Forecast

1

2

3

1982, 
Jan

1982,
Feb

1982,
Mar

1982
Apr

Skill can be estimated for example by the correlation or root mean square
error between forecast and observed time series for different lead times

….1983
Jan

…..1984
Jan



4. Seasonal prediction skill and tropical basin 
interactions



ENSO events can be well predicted
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FIG. 5. Time series of Nino3.4 SSTA. The black lines represent observations (OISST) and the green lines

represent the NorCPM hindcasts (ensemble means) with the ensemble envelope (green shadows).
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Norwegian Climate PredicFon Model 

Wang et al. 2019



ENSO events can be predicted up to 12 months ahead

Figure 8: ACCs of Nino3.4 SST as a function of hindcast lead time. The ACCs are computed by di↵erent
season start hindcasts during 1985–2010 against OISST. The black solid curve is the NorCPM hindcast. The
coloured solid curves are the hindcasts of the NMME models. The black dashed line is the persistence forecast.

33

Anomaly Correlation skill in predicting Nino 3.4 sea surface temperature
N. American Multi-Model Ensemble, period 1985-2010

Different models (coloured), 

NorCPM forecast (Black solid)

Persistence forecast(dashed)

Forecasts started 1st May

Lead time (months)

Keenlyside et al., CUP, 2020



Skill depends in predic:ng ENSO depends on ini:al month

Figure 8: ACCs of Nino3.4 SST as a function of hindcast lead time. The ACCs are computed by di↵erent
season start hindcasts during 1985–2010 against OISST. The black solid curve is the NorCPM hindcast. The
coloured solid curves are the hindcasts of the NMME models. The black dashed line is the persistence forecast.
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Anomaly Correlation skill in predicting sea surface temperature
N. American Multi-Model Ensemble, period 1985-2010

Forecasts started 1st MayForecasts started 1st Feb

Different models (coloured), NorCPM forecast (Black solid), Persistence forecast(dashed)

Keenlyside et al., CUP, 2020



Skill of seasonal predictions for sea surface temperature

Keenlyside et al., CUP, 2020

Anomaly Correlation skill in predicting sea surface temperature at six months lead
N. American Multi-Model Ensemble (ave.), period 1985-2010

Anomaly Correlation



Seasonal climate prediction is skillful in the tropics
Indicates skill of 3-month forecasts of rainfall for at least one season of the year

Source: IRI-International Federation of Red Cross/Red Crescent seasonal forecasts in context

http://iridl.ldeo.columbia.edu/maproom/IFRC/FIC/seasonalforecastskill.html


Importance of tropical basin interactions for 
seasonal prediction

Wang (2019, Clim. Dyn.)



Tropical basin interactions across seasons

Cai et al. 2019

Shading: observed lagged correlation of DJF Niño index on to SST



First, lets consider the ENSO impacts on other 
tropical basins



Skill of seasonal predictions for sea surface temperature

Keenlyside et al., CUP, 2020

Anomaly Correlation skill in predicting sea surface temperature at six months lead
N. American Multi-Model Ensemble (ave.), period 1985-2010

Anomaly Correlation

What is going 
on here?

Skill in NTA boreal spring Skill in Indian Ocean (IOD, IOB)



Second, lets consider the impacts of tropical 
Atlantic and Indian Ocean on ENSO



Accounting for Indian Ocean variability can 
enhance ENSO prediction

Izumo et al. 2010

Skill of a statistical prediction using IOD and WWV 14 months prior (red) achieves 
skill similar to forecasts initialised with Pacific only data 8 months prior (BLACK)



Two pathways for tropical Atlantic to impact ENSO

Cai et al. 2019

Regression of tropical AtlanSc SST (MAMJJA) onto global SST 

Boreal Spring
North tropical Atlantic pathway

(Ham et al 2013a,b)

Boreal Summer
Equatorial Atlantic pathway

(Rodriguez-Fonseca et al. 2009)

Boreal winter
La Niña like conditions 



Models reproduce tropical Atlantic impacts on ENSO

Cai et al. 2019

Regression of tropical Atlantic SST (MAMJJA) onto global SST 
Observations Pace maker experiment (Ding et al. 2011)

MAM

JJA

DJF



Observed Atlantic SST enhances ENSO prediction

Anomaly correlation, Feb Start, Oct-Dec SST

Keenlyside et al. 2013  (See also, Jansen et al. 2009; Martin-Rey et al., 2015, Exarchou et al. 2021)

Prediction experiments 1980-2005, nine member, MPI model



Prediction skill increases across boreal summer
ECHAM5/MPIOM, 1980-2005, Feb start

Keenlyside et al. 2013 



Last, lets consider three basin interactions



Interactions with Atlantic and Indian Ocean 
enhance the ENSO delayed negative feedback

Dommenget &Yu, 2017

C

Cross-correlaSon Nino3 SST with thermocline depth and remote SST indices
Experiments with AGCM – slab/recharge oscillator model

Nino3 SST leadingNino3 SST lagging

Pacific Thermocline
(dashed)

Negative
Atlantic and Indian

Ocean SST (coloured)



Last, lets consider three basin interactions

• Interactions modify the dynamics
• Could they contribute to super ENSO (Chunzai’s workshop talk)?
• Could they contribute to allow ENSO prediction to two years?



5. Some current challenges



Focus Article wires.wiley.com/climatechange

Subtropical
NE Atlantic

Subtr.
SE
AtlanticSubtr.

SE
Pacific

Subtropical
NE Pacific

FIGURE 1 | (a) Observed annual mean sea-surface temperature (SST) from the optimally interpolated (OI) SST data set.1 (b) Annual mean bias of
the CMIP52 ensemble relative to OISST. See Table 1 for a list of models. The gray boxes denote the regions discussed in this article and their
longitudinal and latitudinal extents correspond to the ranges plotted in Figures 2 and 3, respectively. The text labels refer to the naming used in
Figure 2.

GCMs produce in vicinity to the eastern boundaries
(Figure 1(b); see Table 1 for a list of the models used
to generate the ensemble mean).14–16 This is usually
accompanied by an underrepresentation of the stra-
tocumulus decks that leads to excessive shortwave
radiation reaching the ocean surface (Figure 2(a) and
(b)).17–19 The poor GCM performance in reproducing
SST and cloud cover is troubling because it under-
mines the credibility of climate change projections for
the region. The response of stratocumulus clouds in
these projections varies widely among models, with
some models projecting increasing cloud cover (nega-
tive feedback) and others predicting decreasing cloud
cover (positive feedback).20–23 This disagreement adds

substantially to the uncertainty of global temperature
projections under greenhouse gas forcing.24–26 More-
over, eastern boundary regions are also subject to
pronounced year-to-year variability in upwelling
strength and SST. This variability can have severe
impacts on !sheries and also affect weather over
the adjacent continents.27–30 GCMs form the basis
of many seasonal prediction systems and thus east-
ern ocean biases may hamper skillful predictions of
climate anomalies around coastal upwelling regions.

Given the importance of tropical eastern bound-
aries to the climate system, it is crucial to alleviate
the persistent GCM biases in the region. The present
article aims to contribute to this goal by summarizing

© 2015 John Wiley & Sons, Ltd.

Richter, WIRES, 2015

°C

CMIP5 multi-model mean sea surface temperature error

Model biases in the South Eastern Tropical 
Atlantic among the most severe  



Reducing biases enhances Atlantic Niño prediction
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Predictions of ATL3 SST anomalies at two months lead
4 starts per year (Feb. May, Aug. Nov.), 9 ensemble members 

Counillon et al. 2021

Correlation = 0.5

Correlation = 0.33Standard model

Anomaly coupled model

Observations - black



Model challenged in reproducing the equatorial Atlantic-
Pacific connection

NorESM1 – cross-correlation – full field restoring in the Atlantic 10S-10N

Ping-Gin Chiu



Model challenged in reproducing the equatorial Atlantic-Pacific connection

anomalyfull field

NorESM1

NorESM2

Ping-Gin Chiu



…but models appear to be capture relation during the “stronger” TBI period

anomalyfull field

NorESM1

NorESM2

Ping-Gin Chiu



Predictions may suggested much larger impact of 
the ocean on the atmosphere

Scaife et al. 2014;
Scaife and Smith 2018

Cor. Model to obs ~0.6
Cor expected from ens. ~ 0.25 

fraction of the observed variance30:

r2mo ¼ σ2
So= σ2

So þ σ2
No

! "
; (3)

where σSo
2 and σNo

2 are the variances of the signal and noise
components of the observations, respectively.
In the limit of a large ensemble (n→∞), Eq. (2) implies that the

model noise vanishes and the ensemble mean consists of only the
modelled predictable signal Sm. The proportion of modelled
variance that is predictable may therefore be obtained as the
variance of Sm divided by the total variance of individual model
members. Eade et al.20 used these definitions of observed and
modelled predictability to define the ratio of predictable
components (RPC) between observations and model:

RPC2 ¼ σ2So= σ2So þ σ2No
! "

= σ2Sm= σ2Sm þ σ2Nm
! "! "

¼ r2mo= σ2Sm= σ2Sm þ σ2Nm
! "! "

;

(4)

In principle, the RPC should be 1, as the observations and model
should contain the same proportion of predictable variance and
the squared correlation should match the predictable proportion
of variance in the model.
If the RPC is less than one, then the correlation of the model

ensemble mean with observations (rmo) is smaller than would be
expected from the predictable fraction of variance in the model.
RPC values below 1 are commonly found in climate predictions,
especially in tropical seasonal predictions.20,31 This can be caused
by several factors, including too few ensemble members to
eliminate unpredictable noise, a lack of spread in the forecast
ensemble, systematic errors in predicted signals such as poorly
structured teleconnections or imperfect initialisation leading to
‘shocks’ in the forecasts.

If on the other hand, RPC is greater than one, then the
correlation is higher than would be expected from the proportion
of signal in the ensemble variance. RPC values above 1 were not
generally expected, but this second possibility has been
considered32 and examples have now been found in a number
of different ensemble seasonal predictions, particularly in winter
predictions of the NAO and Arctic Oscillation.21,23,25,28,29 For
example, in the seasonal forecasts of the NAO reported by Scaife
et al.,23 the predictable ensemble mean signal was around 2 hPa,
the total ensemble variability was around 8 hPa and the
correlation was around 0.6 so the RPC= 0.6/(2./8.) > 2. The high
correlation score is therefore inconsistent with the small
predictable signal in the model and it has been shown that the
discrepancy is highly statistically significant21, hence a ‘signal-to-
noise paradox’.26

An interesting consequence of the signal-to-noise paradox
comes from the alternate form of Eq. (4) based on correlations
alone:

RPC2 ¼ r2mo=r
2
mm: (5)

If RPC > 1, then Eq. (5) implies that the correlation between the
model ensemble mean and the observations (rmo) exceeds the
average correlation between the model ensemble mean and a
single ensemble member (rmm). In this case we arrive at the
counterintuitive result that the model is better at predicting the
real world than it is at predicting itself.20 Figure 1 illustrates this
explicitly for a set of seasonal predictions of the NAO. The
correlation of the modelled NAO (black line) climbs with ensemble
size due to the suppression of unpredictable noise (Eq. (2)),
asymptoting at the predictable limit where a very large ensemble
has suppressed all noise. If we replace the observations with a
single ensemble member (without replacement in the ensemble
mean so as to avoid artificially high correlations between
members with the same realisation of noise), then the resulting
correlation should ideally be the same, as each ensemble forecast
member is meant to represent an alternate, but perfectly viable
version of the observed evolution.
However, as shown in Fig. 1, in practise the correlation between

the ensemble mean and observations (rmo) is higher than the
correlation between the ensemble mean and individual ensemble
members (rmm), yielding an RPC value in excess of 2 as explained
above, and suggesting that the model is better able to predict the
real world than it is able to predict itself. Now as the total
ensemble standard deviation (σSm

2+ σNm
2) is close to the

observed variability of 8 hPa, the only remaining term in Eq. (4)
is the signal standard deviation (σSm) which must therefore be at
least two times too small. Note that independent sets of ensemble
predictions give a similar result26 and other climate models show
similar effects in their predictions of the NAO and AO.22,25,28,29

Note also that practical calculations of the RPC are expected to
be underestimates of the true value.20 This is because any practical
ensemble is finite in size and so the correlation with observations
(rmo) will likely be lower than that of an infinite ensemble.
Furthermore, the ensemble mean variance (σSm

2) will likely be
higher than that of an infinite ensemble due to incomplete
suppression of noise. According to Eq. (4), the RPC from any
practical ensemble is therefore also likely to be an underestimate.
We deduce that ensemble mean signals are likely more than two
times too small for the NAO and recommend use of Eq. (5) to
calculate the RPC as it is an unbiased estimate.
Finally, as noted above, the signal-to-noise paradox is not only

limited to the NAO. Although it is clearest in and around the
Atlantic basin, it also occurs in parts of the Pacific and the
southern hemisphere (Fig. 2) where it occurs in predictions of the
Southern Annular Mode.33 Similar situations have been found on
longer timescales in both interannual and decadal predic-
tions20,26,34,35 and in other predicted variables such as surface
temperature,20 wind,28 and rainfall.20,36

Fig. 1 Predictability of the North Atlantic Oscillation in the real
world (black) is higher than the predictability in the model (blue).
The effects of ensemble size on seasonal hindcasts of the winter
North Atlantic Oscillation are plotted. The black line shows the
average correlation score when different size ensemble averages are
correlated with the observed NAO (rmo). The blue line shows the
same quantity when ensemble means are correlated with a single
forecast member (rmm). The black dotted line is a theoretical fit to
the solid black line.23 The skill grows with ensemble size due to the
suppression of unpredictable noise, but in principle the curves
should be the same. In practice the model is better able to predict
the real world than itself. Data are from the GloSea5 forecast
system23

A signal-to-noise paradox in climate science
AA Scaife and D Smith

2

npj Climate and Atmospheric Science (2018) �28� Published in partnership with CECCR at King Abdulaziz University
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A smarter ensemble approach – the supermodel

A supermodel is an optimal dynamical combination of models that is 
superior to its individual constituent models

Schevenhoven et al. 2023



Overall, rainfall patterns 
in the tropics are 

improved

Climatology mean for the period 1980-2005

Schevenhoven et al. 2023



The role of tropical basin-interactions in climate predictability

1. Mechanisms are becoming understood

2. Potential to enhance prediction skill on seasonal-to-decadal 
timescales starting to be realised

3. Transforming our view of tropical climate variability, but key 
challenges exist – model biases

Keenlyside et al. Basin Interactions and Predictability, CUPS, 2020


