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I. Prediction System Theory & Design



Meehl et al. (2021, 10.1038/s43017-021-00155- x)

Climate Prediction vs. Climate Projection

Initialized Prediction Forced Projection



forced

internal

https://esgf-data.dkrz.de/projects/mpi-ge/

Climate Projection Large Ensembles

Predictions depend solely on future emissions scenarios 

Permits decomposition into forced vs. internal variability

Ensemble spread develops from 
slight differences in initial conditions

Kay et al. (2015, 10.1175/BAMS-D-13-00255.1)



Greenhouse Gases

Volcanic Eruptions

Solar Cycles
Atlantic Meridional 
Overturning 
Circulation (AMOC)

El Niño/La Niña 

Forced Variability & Change Internal Variability
Atmospheric Turbulence Oceanic Turbulence

Regional 
Environmental
Change

Biomass Emissions



Greenhouse Gases

Volcanic Eruptions

Solar Cycles
Atlantic Meridional 
Overturning 
Circulation (AMOC)

El Niño/La Niña 

Forced Variability & Change Internal Variability
Atmospheric Turbulence Oceanic Turbulence

Regional 
Environmental
Change

Biomass Emissions

Uninitialized Large 
Ensembles

Ensemble mean (signal) = 
forced variability/change

Ensemble spread (noise) = 
internal variability
(“irreducible uncertainty”)



Greenhouse Gases

Volcanic Eruptions

Solar Cycles
Atlantic Meridional 
Overturning 
Circulation (AMOC)

El Niño/La Niña 

Forced Variability & Change Internal Variability
Atmospheric Turbulence Oceanic Turbulence

Regional 
Environmental
Change

Biomass Emissions

Initialized Decadal 
Prediction Ensembles

Ensemble mean (signal) = 
forced variability/change +
predictable internal variability

Ensemble spread (noise) = 
unpredictable internal variability



Prediction in the Large Ensemble Limit

• Observations:   𝑿 = 𝝌 + 𝒙 = 𝝌𝒇 + 𝝌𝒊 + 𝒙
• Uninitialized Projections:    𝑼 = 𝝓+ 𝒖 = 𝝓𝒇 +𝝓𝒊 + 𝒖
• Initialized Hindcasts: 𝒀 = 𝝍+ 𝒚 = 𝝍𝒇 +𝝍𝒊 + 𝒚
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è Initialized systems are better suited for exploring real-world predictability 
because they allow quantification of the full potentially predictable component

Potentially Predictable 
Noise

Uninitialized

Initialized

Boer et al. (2013, 10.1007/s00382-013-1705-0)
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• Implies an inherent prediction skill limit:  𝑟+,- = p ≤ 1
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with finite ensemble size 
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system fidelity (initialization, physics, etc)
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Inherent predictability limit 



Prediction in the Large Ensemble Limit

Scaife et al. (2014, 10.1002/2014GL059637)
Eade et al. (2014, 10.1002/2014GL061146)
Dunstone et al. (2016, 10.1038/ngeo2824)
Scaife & Smith (2018, 10.1038/s41612-018-0038-4)
Strommen & Palmer (2019, 10.1002/qj.3414)
Smith et al. (2020, 10.1038/s41586-020-2525-0)

• Instructive to consider the ratio of predictable components (RPC):
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• RPC=1 (well-behaved system)
• RPC<1 (overconfident system; achieved skill is less than 

implied by ensemble spread)
• RPC>1 (underconfident system: achieved skill is greater than

implied by ensemble spread)
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“signal-to-noise paradox”: model is able to 
predict the real-world better than it can predict 
itself



S2S system design:
• Weekly initializations (1999-2020)
• 45-day simulations
• 10-member ensembles

è ~1,600 sim-years

S2S Prediction with CESM

Richter et al. (2022, 10.1175/WAF-D-21-0163.1)

CESM Earth System Prediction Working Group
www.cesm.ucar.edu/working-groups/earth-system



S2I system design:
• Quarterly initializations (1st of Nov/Feb/May/Aug 

1958-2020)
• 24-month simulations
• 20-member ensembles

è ~10,000 sim-years

S2I Prediction with CESM

Yeager et al. (2022, 10.5194/gmd-15-6451-2022)

CESM Earth System Prediction Working Group
www.cesm.ucar.edu/working-groups/earth-system



S2D system design:
• Annual initializations (Nov. 1st 1954-2020)
• 122-month simulations
• 40-member ensembles 

è ~27,000 sim-years

S2D Prediction with CESM

Yeager et al. (2018, 10.1175/BAMS-D-17-0098.1)

CESM Earth System Prediction Working Group
www.cesm.ucar.edu/working-groups/earth-system



Decadal Prediction System Design: Choices & Challenges 

• How best to initialize a (biased) coupled climate/earth-system model?
- brute force, native data assimilation (uncoupled vs. coupled), forced single-component state 
reconstructions 
- “full field” vs. “anomaly”

• Include unpredictable external forcings (e.g., volcanic aerosols) in hindcasts?
- CMIP6 protocols say yes, to facilitate direct comparison with uninitialized projections

• How many {start dates, ensemble members} are needed?

• How best to generate ensemble spread? Does it matter?

★ How to explore design choice impacts without having to replicate full experiment?



Subpolar N. Atlantic Heat Content

• Standard post-processing to remove hindcast drift:

:𝑓14 = 𝑓14 − =𝑓4 = 𝑓14 − 5
6>

5

6

𝑓14

for hindcast samples 𝑖 = 1…𝑁 and forecast lead time 𝜏

• Other more sophisticated methods have been explored

FOSI

DP hindcasts

After drift 
correction

Model Drift & Drift Correction

Yeager et al. (2012, https://doi.org/10.1175/JCLI-D-11-00595.1)

Kharin et al. (2012, GRL, https://doi.org/10.1029/2012GL052647)
Meehl et al. (2022, CLI DYN, https://doi.org/10.1007/s00382-022-06272-7)



• Skill degradation resulting from imbalanced initial 
conditions

• Large initialization shock in CCSM4-DP was traced to a 
biased tropical Pacific zonal SST gradient in ocean 
initial conditions

• Long Range Forecast Transient Intercomparison 
Project (LRFTIP) dataset was developed by WGSIP to 
facilitate study of drift/shock in S2D systems 

Initialization Shock

Teng et al. (2017, https://doi.org/10.22498/pages.25.1.41)

Yeager et al. (2018, BAMS, https://doi.org/10.1175/BAMS-D-17-0098.1)

Saurral et al. (2021, JAMES, https://doi.org/10.1029/2021MS002570)



The CESM Decadal Prediction Large 
Ensemble (CESM-DPLE)

40-member uninitialized projection ensemble 

40-member initialized prediction ensemble 

Yeager et al. (2018, 10.1175/BAMS-D-17-0098.1)



The CESM Decadal Prediction Large 
Ensemble (CESM-DPLE)

Ocean & sea-ice initial conditions come from a forced ocean/sea-
ice (FOSI) simulation following the OMIP1 protocol (includes ocean 
biogeochemical fields).

Yeager et al. (2018, 10.1175/BAMS-D-17-0098.1)



The CESM Decadal Prediction Large 
Ensemble (CESM-DPLE)

Atmosphere and land initial conditions are not accurate 
historical states (they come from the uninitialized ensemble).

Yeager et al. (2018, 10.1175/BAMS-D-17-0098.1)



II. Predicting Atlantic Variability 
& Wider Impacts



CESM-DPLE

Correlation Skill 

Skill improvement
over persistence

Skill improvement 
due to initialization

Annual Sea Surface Temperature

Yeager et al. (2018, 10.1175/BAMS-D-17-0098.1)

Largest impact of initialization in SPNA, generally interpreted 
as coming from AMOC initialization. 



Correlation Skill 

Skill improvement
over persistence

Skill improvement 
due to initialization

Detrended Annual Sea Surface TemperatureCESM-DPLE

Yeager et al. (2018, 10.1175/BAMS-D-17-0098.1)

Detrended skill reveals more AMV-like improvement with 
initialization. Some improvement for PDV, but eastern Pacific 
skill remains low.



Smith et al. (2019, 10.1038/s41612-019-0071-y )

“Residual method” applied to large multi-model CMIP6 
ensemble reveals robust skill enhancement associated with 
initialization for: surface temperature, precipitation, and 
pressure.

Suggests AMOC/AMV the source of added predictability. 
Limited evidence of PDV skill/skill improvement.



Is PDV predictable?

• DP systems show generally low detrended/residual correlations in the eastern Pacific
• There is some evidence, however, that IPO transition events can be skillfully predicted and that predicted Pacific SST anomaly 

patterns beat persistence forecasts (Meehl et al. 2015, 2016, 2022). Pattern correlations appear degraded by large volcanic 
events (e.g. Pinatubo).

• Evidence of multiyear prediction skill for tropical trans-basin variability in at least one system (Chikamoto et al. 2015).

Meehl et al. (2022, 10.1007/s00382-022-06272-7) Chikamoto et al. (2015, 10.1038/ncomms7869)



Is PDV predictable?

• PDV skill appears to be degraded in many DP systems 
by an incorrect model response to volcanic forcing 
(tropical Pacific skill increases when forcing is withheld):

Timmreck et al. (2015, 10.1002/2015GL067431)
Ménégoz et al. (2018, 10.1088/1748-9326/aac4db)
Wu et al. (2023, 10.1007/s00382-022-06272-7)

• Wu et al. (2023) results suggest there is latent potential 
to predict PDV that is insensitive to AMV skill.

• High-resolution might help (see my talk on Thursday).

Wu et al. (2023, 10.1007/s00382-022-06272-7)



OBS
Uninitialized
DPLE

Lead Years 3-7:

Yeager et al. (2018, 10.1175/BAMS-D-17-0098.1)

Predicting AMV Impacts: Land Precipitation

Single model large ensemble (DPLE) shows significant skill and benefit of 
initialization for two regions known to be impacted by AMV. Little benefit of 
ensemble size > 20.



Predicting AMV Impacts: Sea Ice

• 10-member CESM1-DP

• Predictable decadal changes in N. Atlantic ocean thermohaline 
circulation (THC) strength & northward heat transport (related to 
low-frequency NAO buoyancy forcing) translates into predictable 
changes in the rate of Arctic winter sea ice decline.  

• Rapid sea ice decline in 1990s was associated with THC spinup, 
& ongoing and future THC spindown (weak NAO forcing after 
1997) will result in a slowdown in the rate of Arctic winter sea ice 
loss.

10-year JFM Sea Ice Extent Trends

Yeager et al. (2015, 10.1002/2015GL065364)

Start year of 10-year trend





2005-2015

FOSI

10-year JFM Sea Ice Extent Trends10-year Observed Trends extended through 2011-2021

Predicting AMV Impacts: Sea Ice Yeager et al. (2015, 10.1002/2015GL065364)

How accurate was the forecast?

Start year of 10-year trendStart year of 10-year trend



• Skill was related to skillfully predicted AMV: 

Athanasiadis et al. (2020, 10.1038/s41612-020-0120-6)

Predicting AMV Impacts: NAO
• CESM-DPLE exhibits skillful decadal prediction of 

winter NAO & winter blocking frequency: 

• Evidence of signal-to-noise paradox (RPC>5):



Smith et al. (2020, 10.1038/s41586-020-2525-0)

Predicting AMV Impacts: NAO

• CMIP5 & CMIP6 multi-model analysis (169 ensemble members → 
676 by lagging)

• NAO decadal prediction is skillful, but models severely 
underestimate the predictable signal (RPC=11), implying that NAO 
impacts are not well predicted (but potentially could be, by 
developing more realistic systems or using post-processing 
techniques like “NAO-matching”). 

Skill for DJFM Sea Level Pressure (FY2-9):



Simpson et al. (2019, 10.1038/s41561-019-0391-x)Predicting AMV Impacts: N. Atlantic Jet Shifts

• AMV drives low-frequency U700 variability 
that peaks in March with corresponding 
precip variations in Scotland/Portugal: 

• Skillful prediction of Scotland & Portugal 
March precip is possible through combined 
dynamical-statistical approach:



III. The Role of AMOC 



• Invoking “AMOC” as the source of prediction skill in the 
Atlantic builds on large body of past modelling work 
(Delworth et al. 1993; Griffies & Bryan 1997; Keenlyside et 
al. 2008; etc).

• Difficult to verify DP mechanisms given lack of long ocean 
observations, so state reconstructions are used as truth.

AMV Predictability Mechanisms

Yeager et al. (2012, 10.1175/JCLI-D-11-00595.1)

SPNA SST

AMOC & BSF

NAO



SPNA Upper Ocean
Heat Content (295m)

SPNA box:  45°W-20°W, 50°N-60°N 

• Remarkably stable high skill in SPNA 

Yeager (2020, 10.1007/s00382-020-05382-4)
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AMV Predictability Mechanisms r(DPLE,FOSI):

• 295m upper ocean heat budget predictability:
TEND = ADV + SHF + MIX

• Advective heat convergence (ADV) is the dominant term in the 
multiyear upper ocean heat budget along the NAC into the 
central/eastern SPNA in FOSI.

• High ADV skill is the key to high UOHC decadal prediction skill in 
the SPNA.

Yeager (2020, 10.1007/s00382-020-05382-4)



Model LSW

• AMOC(𝛔2) skill in the warm, salty upper limb
related to skill in the cold, fresh lower limb

★ Predictable near-surface advective heat 
convergence derives from highly predictable 
abyssal water mass thickness & bottom flow 
anomalies

• The Mechanism:  
Slow interior propagation of LSW thickness 
anomalies that drive predictable SSH anomalies 
at intergyre latitudes (buoyancy-driven gyre)

r(DPLE,FOSI):

What explains predictable advective heat 
convergence in SPNA?

AMV Predictability Mechanisms

Yeager (2020, 10.1007/s00382-020-05382-4)



Link between LSW thickness and 
near surface advection in FOSI

Color: 
dLSW thickness anomaly

Contours: 
SSH anomalies (5-year low pass filtered),
contour interval = 2cm

Time series:
Winter NAO index

Yeager (Clim Dyn 2020) 



Skillful prediction of LSW thickness 
underpins skillful prediction of 
AMOC Upper Limb

• Strong northward geostrophic surface flow anomalies 
over the MAR around year 2000 were associated with 
large LSW thickness anomalies (from early 1990s 
NAO forcing) that accumulated on the western flank of 
the MAR.

• Surface transport anomalies (∇SSH) exhibit high 
decadal predictability that reflects the exceptional 
predictability of abyssal layer thickness.

FOSI
DPLE
OBS

LSW thickness on western flank of MAR

Geostrophic northward flow over MAR
Yeager (Clim Dyn 2020) 



• Perfect model predictability in O(4°) 
GFDL model

• 12-member ensemble “A” initialized from 
year 130 of control run

• 10-20y predictability of EOF1 of N. 
Atlantic dynamic topography



• Large ensemble initialized decadal prediction has delivered more than most would have anticipated back in the 
2000s in terms of refining our understanding of and capacity to predict regional environmental change years in 
advance.

• Robust evidence of capacity to predict AMV on decadal timescales (particularly subpolar AMV) along with 
wider impacts in the Atlantic sector. 

• Pacific decadal prediction has proven less successful, but recent work suggests that skill could be improved.

• “Signal-to-noise paradox” identified in NAO predictions is a sign that systems underestimate predictable 
signals. This has important implications for climate modeling, generally, and suggests that further progress in 
decadal prediction is possible.

• AMV predictability derives from ocean thermohaline dynamics with memory residing in the deep ocean.

Final Thoughts


