

DOE/UCAR Cooperative Agreement Regional and Global Climate Modeling Program

Mechanisms of AMOC

Aixue Hu

Thanks Prof. De-Zheng Sun for sharing his notes

TBI and AMV Summer School

Thermohaline Circulation or Atlantic Meridional Overturning Circulation

Linear sea water equation of state:

$$\rho = \rho_0 - \alpha (T - T_0) + \beta (S - S_0)$$

(Marotzke, PNAS, 2000)

Ical mode

$$k = k[\rho_1 - \rho_2]$$

= $k[\alpha(T_2 - T_1) - \beta(S_2 - S_1)]$
= $k[\alpha\Delta T - \beta\Delta S]$

k is a hydraulic constant.

- AMOC strength determined by the thermal and haline related density differences between these two boxes.
- If thermal induced density contrast is larger than haline induced density contrast, AMOC flows clockwise; otherwise, AMOC flows counterclockwise.

Schematics of two box model (III

Without external forcing

With external forcing

Two box AMOC model (2

$$\begin{array}{c} H & Surface flow \\ \hline H & q > 0 \\ \hline T_2 \\ S_2 \\ S_2 \\ \hline Bottom flow \\ \hline S_1 \\ S_1 \\ \hline S_$$

$$\frac{dT_1}{dt} = -|q|\Delta T + \gamma(\overline{T_1} - T_1)$$
$$\frac{dT_2}{dt} = |q|\Delta T + \gamma(\overline{T_2} - T_2)$$
$$\frac{dS_1}{dt} = |q|\Delta S - H$$
$$\frac{dS_2}{dt} = -|q|\Delta S + H$$

$$q = k[\alpha \Delta T - \beta \Delta S]$$

$$\frac{dq}{dt} = -k\beta \frac{d\Delta S}{dt} \qquad (d \Delta T/dt = 0)$$

$$\frac{d\Delta S}{dt} = -2|q|\Delta S + 2H$$

$$\Delta S = (-q + k\alpha \Delta \overline{T})/(k\beta)$$

$$\begin{cases} q_{1/2} = \frac{k\alpha\Delta\overline{T}}{2} \pm \sqrt{\left(\frac{k\alpha\Delta\overline{T}}{2}\right)^2 - Hk\beta} & q > 0\\ q_{3/4} = \frac{k\alpha\Delta\overline{T}}{2} \pm \sqrt{\left(\frac{k\alpha\Delta\overline{T}}{2}\right)^2 + Hk\beta} & q < 0 \end{cases}$$

Referee:matteo.willeit@pik-potsdam.de

AMOC Tipping by Freshwater or Noise

Kim, npj Climate and Atmospheric Sciences, 2022

Questions to think

- What if ΔT is not constant, but changes slowly with the varying AMOC strength? Is this slowly varying ΔT going to affect the AMOC stability?
- What if H is not only a salt flux, but also includes heat flux? Is this combined thermohaline forcing going to affect the AMOC stability?

Across Hemisphere three box model

Marotzke, PNAS, 2000

Channel model in simulating AMOC stability

Symmetric circulation 1.000 Depth (m) 2,000 3.000 0 0 4,000 5,000 30° EQ 30° 60° 90°N 60° 90°S Latitude

Model:

3-d primitive equations of motion
60° wide pole to pole channel
Flat bottom with a depth of 5 km
3.75° longitude X 4.5° latitude
12 vertical levels

Bryan, Nature, 1986

Channel model in simulating AMOC stability

90°N

4-Box mode for AMOC (

$$m = -\frac{1}{2}k\alpha(T_2 - T_1) \pm \left[\sqrt{\frac{1}{4} [k\alpha(T_2 - T_1)]^2 - k\beta S_0 F_1} \right]$$

4-Box mode for AMOC (II

Results of the 4-box model and EMIC model

 F_{ov} is proposed as a diagnostic indicator of AMOC stability; $F_{ov} < 0$ AMOC multiequilibrium states; $F_{ov} > 0$, AMOC monostable.

Rahmstorf, Climate Dynamics, 1996

AMOC stability and Fov in CMIP5 models

5 EMIC models and 25 CMIP5 models

11 models with $F_{ov} < 0$ 15 models with $F_{ov} > 0$ 4 models show that F_{ov} changes signs over time.

Weaver et al., GRL, 2013

5-box model for AMOC

Wood et al.. Climate Dynamics. 2019

5-box model for AMO

 K_N : Higher values of K_N result in a larger H_{crit} .

 K_S : Larger values of K_S result in a smaller H_{crit} .

KIP: Larger values of KIP result in a smaller H_{crit} .

 λ : The sensitivity is weak because a change in λ does not directly change the North Atlantic freshening (hosing) needed to bring the N–S density difference to zero.

 γ : Larger values of γ have smaller values of H_{crit} .

Fi: Here all the surface freshwater fluxes are scaled by a factor of 0.5 or 1.5, maintaining zero global mean flux in each case. A stronger mean hydrological cycle results in a larger initial salinity difference $(S_N - S_S)$. Hence more hosing is needed to reverse the density gradient, and larger freshwater fluxes result in a larger H_{crit} .

Idealized channel model

Idealized channel model

AMOC hysteresis in models

AMOC hysteresis under freshwater and Greenhouse gas forcing

Hu et al., Communications Earth and Environment, 2013

Key processes controlling the AMOC strength and variability

Johnson et al., JGR-Oceans, 2019

Atlantic Meridional Streamfunction

Johnson et al., JGR-Oceans, 2019

Sensitivity of AMOC to mixing and southern ocean winds

ummary

• It is now clear that the wind, in both hemispheres, plays a prominent role in setting the mean AMOC strength and determining its variability. This includes the interaction between the wind stress and the surface buoyancy distribution, because wind-driven upwelling, and the vertical flux of buoyancy associated with eddies and gyres, brings water to the surface where its density can be transformed by buoyancy fluxes.

- Simplified models are moving from two-dimensional zonally averaged representations to geometries that capture the fundamentally three-dimensional aspects of the circulation. This includes a distinction between the western boundary and the basin interior and a focus on the circulation between multiple basins.
- The degree to which water mass transformation in the ocean interior is important, or whether the circulation in the Atlantic sector is essentially adiabatic, remains an open question.
- Multiple lines of evidence suggest that eddies at high latitudes in both hemispheres are essential to the dynamics of the AMOC. Johnson et al., JGR-Oceans, 2019

AMOC hysteresis and abrupt climate change

Weijer et al., JGR-ocean, 2019

