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“Climate is what you expect, weather is 
what you get”, E. Lorenz



Climate and weather

Bergen
Atlantic Ocean

Wet weather

Westerly wind

Dry weather

Bergen

Easterly wind

Cause of unusual summer conditions

Wet and cold More frequent westerly wind regimes

Dry and warm More frequent easterly wind regimes

Climate is determined by how often different types of weather occur



Take home message:

“For climate variability, red noise is what 
you expect”, Hasselmann 1976



Mechanisms for climate variability

Externally forced

Internally 
generated

Natural
(e.g., solar forcing, volcanic eruptions)

Anthropogenic
(e.g., greenhouse gas emissions)

Stochastic climate models

Uncoupled oscillations
(e.g., basin modes, MJO)

Coupled ocean-atmosphere 
oscillations



Global have warmed by around 1 degree since 1900
Tropical Atlantic and Indian Ocean have seen some of the strongest warming

HadISST [Rayner et al., 2003]



The long-term warming is superposed by variability



Causes of short and long-term changes 
in climate

Year to year fluctuations 
caused by natural processes 

in the climate system

Long-term trend 
caused mainly by 
global warming

Decade to decade changes 
caused by both natural and 

anthropogenic factors



Regional differences in surface temperature variability
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but is also related to the different feedbacks, as discussed in the previous sections of this course.
Natural seasonal to interannual climate variability over land is in the order of 1°C. Over oceans
it is weaker ∼0.5°C. We also note that, in general variability increase with higher latitudes. This
is partly related to the stronger variability over partially ice covered regions. The ’movement’ of
ice edges or the fluctuations in ice and snow cover strongly increase the variability, which again
is related to the ice/snow feedbacks discussed in the earlier sections of this course. The strongest
variability is at the edge of sea ice regions. It is also very strong where strong temperature gradients
exist (e.g. Melbourne in summer).

Figure 6.11: Surface temperature monthly mean standard deviation.

Time scales

The Melbourne temperature record and the global temperature anomaly maps showed some clear
time scale dependence of the variability, with the longer time scales having in general less variability
(e.g. Figs. and ). We will discuss this time scale dependent strength of variability more later when
we discuss the stochastic climate variability, see section 6.3.
Figure 6.12 illustrate the different time scale behaviour of the atmosphere, ocean surface (SST) at
two different locations and the deeper subsurface ocean. All four time series show the time evolution
from 1950 to 2000. The atmospheric temperature over central Asia looks almost perfectly random.
We dont see any long time fluctuations or anomalies of one sign persisting for more than a year.
Thus the atmospheric temperature over central Asia is dominated by month-to-month variability.
The SST in the North Pacific is also quite chaotic, but we can see now some anomalies that persist
from several years (e.g. 1956-57). The SST in the tropical Pacific, which is a good indicator for
the El Nino variability, appears less chaotic. The variability is not only stronger than in the North
Pacific, but is also has less of the month-to-month variability and more pronounced interannual
variability. Some of those look almost like an oscillation (e.g. around 1965, 1977 or 1987). Finally
the subsurface ocean temperature has almost no month-to-month variability and pronounce low-
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Different characteristics of land and ocean temperature
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frequency (decadal) variability, with anomalies that persist more than a whole decade (e.g. 1960s).
In summary, the time scales of variability can be very different for different regions. Over land it
fluctuates faster than over oceans. Land variability changes mostly from month to month and over
oceans variability changes over several months or years and sometimes even decades. In the deeper
ocean it takes 10 to 10,000 years.
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Figure 6.12: Four examples of monthly mean variability time scales: 2 meter over land (central
northern Asia) (upper), sea surface temperature (SST) in the north Atlantic, ocean temperature
at 200 meter depth and for the tropical Pacific El Nino SST variability. It illustrates the different
time scales of variability. Amplitudes of the different time series

The characteristics of the time evolution of variability can be roughly put into the following char-
acteristics:

1. Oscillation: Positive and negative anomalies taking turns on regular time intervals (periods).
The time series of the tropical Pacific SST (El Nino) showed some indication of oscillations
(Figure 6.12).

2. Chaotic: Positive and negative anomalies taking turns on irregular time intervals. Best
described by the persistence of the anomalies. The time series of the 2m temperature over
central north Asia was essentially purely chaotic without any persistence (Figure 6.12). The
SST in the North Pacific showed some persistence, but was mostly chaotic too.
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Observed internal decadal-to-multidecadal 
variability in the Atlantic and Pacific  

Keenlyside and Ba, 2010



Rainfall over Central Sahel and Guniea Coast

activity for then coldest (squares) andwarmest (triangles)
years are depicted in Fig. 3 for a wide range of subsample
sizes n. The difference between these correlations (solid
line) is greater than the difference observed in more than
99% of the Monte Carlo tests for all sample sizes greater
than n5 11, meaning that there is strong reason to believe
that the nature of the relationship between central
Sahelian precipitation and ACE is different in years
when the western North Pacific is cold than in years
when that region is warm.

3. West African rainfall and Atlantic hurricane
activity

It is well known that correlations in the climate systems
are nonstationary; that is, they vary over time. LG92 split
up their investigation period into wet (1950–70) and dry
(1970–90) Sahelian rainfall eras and concluded that the

relation of West African rainfall to intense Atlantic
hurricanes was stable. In this section, their work is ex-
panded upon by looking into the time dependence of the
relation between West African rainfall and various in-
dices of Atlantic hurricane activity for an extended time
period.

a. Variability of West African rainfall between
1921 and 2007

Figure 4 displays the JJAS rainfall anomalies in the
western and central Sahel for the extended 87-yr period
1921–2007 and with respect to the 1950–90 base period.
It is evident from Fig. 4 that, in addition to the 1950–70
wet period, an earlier rainy period in the Sahel occurred
in the 1920s and 1930s. In the years since the investigation
period of LG92, rainfall in the Sahel improved, with the
recovery in the central Sahel being more pronounced
(Fig. 4b). In this region, the 11-yr running mean of the

FIG. 4. (a) Normalized index of rainfall anomalies (nondimensional, left ordinate) with re-
spect to the 1950–90 mean in the west Sahel for the period JJAS 1921–2007. The solid curve
represents the 11-yr running mean. The dashed curve indicates the annual number of stations
used in the index calculation (right ordinate). (b) As in (a), but for the central Sahel. The
western and central Sahel regions and stations are displayed in Fig. 1.
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rainfall anomaly is positive from 2001 onward. The up-
turn in Sahelian rainfall has recently been mentioned
elsewhere (e.g., Levinson and Lawrimore 2008; Kennedy
et al. 2008); however, the degree of the improvement very
much depends on the base period chosen. As can be seen
in Fig. 4, the 1950–90 base period spans one wet and dry
era of about equal length and amplitude. For example,
Kennedy et al. (2008) used the 1920–73 period; thus, the
Sahel rainfall shown in their Fig. 11 is still very much
below their average. The annual reports on the climate of
the preceding year published in the Bulletin of the
American Meteorological Society use 1970–2000 as the
base period; not surprisingly, those reports conclude that
the 2006 and 2007 rainy seasons in the Sahel have been
among the wettest since about the late 1960s (Levinson
and Lawrimore 2008). Less attention has been devoted to
the rainfall development in the wetter Guinea coast re-
gion. It should be stressed that the ASON period covers
the height of the little dry season in August and the sec-
ond, less intense, rainy season peaking in October along
the Guinea coast. The linear correlation of ASON rain-
fall to the annual rainfall is 0.7. Thus, there may be sub-
stantial differences between the ASON variability and
the annual fluctuations at the Guinea coast. For, exam-
ple as noted in Ofori-Sarpong and Annor (2001) and as
seen in Fig. 8 of Nicholson et al. (2000), the wetness of
the 1960s due to the very wet years 1962, 1963, and 1968
is not so evident in Fig. 5 since it was due to abundant
rains in the first rainy season peaking in June. Figure 5
corroborates the notion of Nicholson and Palao (1993)
that the Guinea coast exhibits a stronger year-to-year
variability, but it also shows some distinct decadal fluc-
tuations. Specifically, rainfall has been above (below)
average in the 1950s (1970s and 1980s) in concert with the
decadal trend in the Sahel. Much as was the case for the

Sahelian regions, after the drier 1970s and 1980s a recent
increase in rainfall can be observed along the Guinea
coast in Fig. 5. As is evident in Figs. 4 and 5, the number of
stations used to calculate the rainfall indices has been
relatively constant over time, thus minimizing the im-
pacts of inhomogeneities due to sampling problems
over time. The rainfall indices displayed in Figs. 4 and 5
can be downloaded online (http://www.impetus.uni-koeln.
de/rainfall-indices.html).

b. Correlations between West African rainfall and
hurricane activity in various eras

The quality and quantity of the observations will nat-
urally have an impact on the detection of any correlation
between climate variables. The observations of the num-
bers and intensities of tropical cyclones are especially
subject to large inhomogeneities in the study period
due to changes in the observation methodology, such as
the onset of routine reconnaissance by aircraft in 1944
(Landsea et al. 1999) or the development and imple-
mentation of theDvorak technique in the early 1970s for
assessment of tropical cyclone intensity using satellite
imagery (Landsea et al. 2006). Both of these changes
were shown by Martin and Gray (1993) to create signif-
icant variations in the final tracks and intensities of
tropical cyclones in the northwesternPacific, for example.
For this reason, in addition to theLG92 period (i.e., 1949–
90), the following periods are potentially significant for
understanding the nonstationary nature of the correla-
tions that are due to changes in the observation networks:

1) 1921–2007, the West African rainfall indices are
available;

2) 1921–48, the approximate era before hurricane re-
connaissance flights in the Atlantic;

FIG. 5. As in Fig. 4, but for theGuinea coast and forASON1921–2007. TheGuinea coast region
and stations are displayed in Fig. 1.
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Stochastic climate models



Chaotic nature of the atmosphere
• Climate system is 

deterministic chaotic 
system (Lorenz model 1963)

• Non-linearity associated 
with convection and 
instabilities cause 
atmospheric variability to 
be chaotic

• For climate timescales this 
high-frequency weather 
type variability can be 
considered as stochastic 
noise

Weather forecasting limited to 
14 days

[Lorenz 1963]



Stochastic uncoupled climate variability

• Stochastic process has a white spectrum (i.e., an uncorrelated 
time series of normally distributed random values)

• By definition variability occurs on all time scales, and this can 
explain large-part of observed atmospheric climate variability

Keenlyside et al. 2016

year Period (years)





Simplest stochastic climate model
• Simplest assumption is 

that the atmosphere 
interacts with the ocean 
mixed layer, neglecting 
ocean dynamics:

𝜕𝑇
𝜕𝑡

=
𝑄!"#
𝜌𝐶$𝐻

• Where H is the mixed 
layer depth

Slab ocean (depth H)

Thermodynamic
coupling

Hasselmann (1976)



Heat-flux drives SST variations on short time scales in 
the extra-tropics

Cayan 1992

The relation can change on longer timescales, e.g., Bjerknes 1964 
(Rhys lecture tomorrow)

Correlation of DT/dt in winter with turbulent fluxes
Based on 2 month differences, COADS data



Simplest stochastic climate model
• Surface heat flux is assumed to be related to 

atmospheric variability,
• Assuming general form for turbulent fluxes, we 

can parameterize the heat flux as follows
– 𝑄 = 𝑐𝑡(𝑇! − 𝑇)

• Which gives
– "#

"$
= %!(#"'#)

)*#+

• Which has the general form
– "#

"$
= −𝑐𝑇 + 𝑓!

• Where we have represented the atmosphere by 
noise



Simplest stochastic climate model
• )*
)+
= −𝑐𝑇 + 𝑓,

• The heat capacity of the ocean acts to damp 
the variability

• Typical values of 𝑐 = 40𝑊𝑚-.𝐾-/

• The equation represents a first order 
autoregressive process AR1, this can be seen 
by discretizing:

• 𝑇01/ = 𝛼𝑇0 + 𝑓0



AR(1) - First order autoregressive process 
• AR(1) processes in discretized form:

• The variance is given

• Where 𝛼% = 𝜌% is the lag 1 auto-correlation 
• To understand the case for the slab-ocean, we can put this 

into the alternate form: 

• We can see because correlation is positive that the coefficient 
is negative and greater than -1, and the slab ocean damps the 
variability and integrates it!
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Figure 7.2: Different realization of AR(1) processes with different α = 0.5, 0.9, 0.99 but with iden-
tical unit variance normal white noise processes Zt. Note the different y-axis scaling.

7.3.2 Examples of AR(1) Processes

A discrete AR(1)-process follows the equation:

Xt = α1Xt−1 + Zt (7.15)

Fig. 7.2 illustrates some AR(1) Processes with α1 ∈]0, 1[. Note that α1 can take all real values,
but only α1 ∈ [0, 1[ are of physical relevance. For α1 < 0 the time series flips sign in every time
step, while for |α1| ≥ 1 the process becomes non-stationary.
Note that the different AR(1) Processes are integrated with identical white noise processes, we can
see that all AR(1) Processes exhibit the same fluctuation, but that the AR(1) Process acts as a
low-frequency amplifier of the white noise time series. Following eq.[7.13] we find that the variance
is given by

V ar(Xt) =
σ2

z

1 − α2
1

(7.16)

which uses the fact that the lag(1) auto-correlation ρ1 = α1. See Fig.7.2 for increase in variance
with increase in α1. The auto correlation of an AR(1) process is decreasing exponentially with
ρt−k = αk

1 , but is never zero (theoretically). Note, that in this discrete AR(1)-process the variance
of Xt is larger than that of Zt, which is somewhat misleading if we think of continuous physical
processes.
Physical model are usually written as differential equations. The differential equation for an AR(1)
process is

dx(t)

dt
= a1x(t) + z(t) (7.17)

with

a1 =
α1 − 1

α1
(7.18)
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AR(1) integrates the noise to produce low-frequency 
variability
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Spectra of AR(1) processes

76 CHAPTER 9. THE SPECTRUM

cos(2πω) = 1 − (2πω)2

2!
+ ...

thus the AR(1) spectra is approximately:

Γ(ω) ≈ σ2
Z

1 + α2
1 − 2α1(1 − (2πω)2

2! )
=

σ2
Z

1 + α2
1 − 2α1 + α1(2πω)2

=
c1σ2

Z

c2 + ω2
(9.6)

The spectra of an AR(1) process is therefore approximately following a linear gradient of -2 in
loglog-scale for frequencies ω >> 0. This spectrum has no extremes in the interior of the interval
[0, 1/2] because, everywhere inside the interval, the derivative

d

dω
Γ(ω) = −2α1Γ1(ω)2 sin(2πω) ≠ 0

The sign of the derivative is determined by α1. Thus the spectrum has a minimum at one end of
the interval [0, 1/2] and a maximum at the other end. When α1 > 0, the ’spectral peak’ is located
at frequency ω = 0, where it reaches a plateau. Such processes are often referred to as red noise
processes.
In Fig. 9.5 we see the spectra of AR(1) processes with different α1 compared with the spectrum of
the driving white process. We can see that all spectra of AR(1) processes have more variance on the
low-frequencies while they have less variance for the high-frequencies if compared with the spectrum
of the driving white process. In the intermediate frequencies all spectra of AR(1) processes have a
linear decreasing spectrum with a gradient of -2, while the AR(1) process with the largest α1 has
the longest increase in variance.
Note that this presentation may be somewhat misleading, since it indicates that an AR(1)-process
amplifies the forcing. But a linear damping system, the physical process associated with an AR(1)-
process (see section7.3.2), is always damping the forcing signal. For more details see 9.9.
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Figure 9.6: The spectra of AR(1) processes with different α1 compared with the spectrum of the
driving white process. The spectra correspond to the time series in Fig. 7.2.

In Fig. 9.6 we see the spectra of different AR(1)-process, as estimated from time series and the
theoretical spectrum.

9.7 Fitting the AR(1)-Process to a time series.

The AR(1)-process, red noise, is often chosen as the null hypothesis for the time scale characteristics
of a climate variables variance. It is therefore a practice to compare the spectra of time series with
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What causes climate to vary?



Mechanisms for climate variability

Externally forced

Internally 
generated

Natural
(e.g., solar forcing, volcanic eruptions)

Anthropogenic
(e.g., greenhouse gas emissions)

Stochastic climate models

Uncoupled oscillations
(e.g., basin modes, MJO)

Coupled ocean-atmosphere 
oscillations
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3.5.3 Interpretation of the Spectrum

The Spectrum is: Γ(ω) = [V ar(ω)]
[ω]

The spectrum gives a variance density along the frequency-scale.

It gives the amplitude of a sine-function at frequency ω fitted to the time series:
σ(ω) =

√

Γ(ω) · ω
Note: that you have to divide by the frequency. So a constant spectrum will have sine-functions with
decreasing amplitude for low-freq.

Sketch how band-pass filtered time series correspond to the spectrum.
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The spectrum gives a variance density along the frequency-scale.

It gives the amplitude of a sine-function at frequency ω fitted to the time series:
σ(ω) =

√

Γ(ω) · ω
Note: that you have to divide by the frequency. So a constant spectrum will have sine-functions with
decreasing amplitude for low-freq.

Sketch how band-pass filtered time series correspond to the spectrum.

5. Interactions with ENSO

A simple coupled model for the interactions of the
Pacific with the Atlantic or Indian Ocean is presented in
Dommenget et al. (2006). It consists of the simplest
recharge oscillator model presented by Burgers et al.
(2005) coupled to a linear damped model for the At-
lantic or Indian Ocean. It proposes a feedback from the
Atlantic/Indian Ocean on Pacific SST. Kug and Kang
(2006) propose a similar model, but with a feedback on
western equatorial thermocline depth. In the following,
the model as used by Dommenget et al. (2006) is ex-
tended by a feedback of Indian/Atlantic Ocean SSTA
on averaged Pacific thermocline depth. It can be written
as

d

dt
TP 5 v0hP ! 2gPTP 1 cPI=PATI=A

d

dt
hP 5 !v0TP 1 chPI=PATI=A

d

dt
TI=A 5 !2gI=ATI=A 1 cIP=APTP

; ð3Þ

where v0 is the coupling between TP and hP, gP/I/A are
the damping parameters, TP is eastern Pacific (Niño-3)
SSTA, hp denotes thermocline depth anomaly averaged
over the equatorial Pacific, and TI/A is SSTA averaged
over the equatorial Indian/Atlantic Ocean. The cIP/AP

term describes the coupling of the Indian/Atlantic Ocean
on Pacific SSTA, whereas cPI/PA and chPI/PA represent
the feedback of Indian/Atlantic Ocean SSTA on Pacific
SST and thermocline depth, respectively.

Note, that some studies of the Indian Ocean interac-
tion with ENSO may suggest a more complex interac-
tion, not captured by this model, which may also be true
for the Atlantic Ocean (e.g., Annamalai et al. 1995).
However, in this first attempt of quantifying the feed-
back from observations, we have to note that the limited
observational data may prevent us from using more
complex models, even though they may seem desirable.

a. Indian Ocean

The parameters of Eq. (3) are fitted to 1951–2001
EqInd and Niño-3 SSTA. Note that some studies sug-
gest a regime shift in the Indian Ocean–ENSO rela-
tionship (e.g., Dominiak and Terray (2005)), but the
statistics are too short to evaluate this in the context of

FIG. 5. Seasonally resolved cross correlation between equatorial
Atlantic thermocline depth anomalies and Atl3 SSTA, as in Fig.
3b, but for the recharge oscillator model with stochastic excitation.

FIG. 6. (a) Eastern Atlantic SST spectrum of the recharge os-
cillator model with stochastic excitation (gray), compared to the
observed Atl3 SST spectrum from 1870 to 2003 (black). The thin
red lines show the 95% confidence interval. (b) The model spec-
trum compared to an AR1 process fitted to observational data in a
linear scale. The thin vertical black lines denote a frequency of
four years in both plots.
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Causes decadal to multi-decadal climate 
variability are greatly debated

• Instrumental observational records are 
comparatively short

• Paleo proxy records show large uncertainties
• Model simulations show large uncertainties



Observed internal decadal-to-multidecadal 
variability in the Atlantic and Pacific  

Keenlyside and Ba, 2010



Spectrum of mid-latitude (30-55N) SST 
similar to AR-1 processes

profile of the diffusion coefficient kz determines the shape
of the spectrum, which has an influence on the relative
importance of variability at longer time scales.

4. Discussion

[16] Some important characteristics of the spatial struc-
ture and timescale behaviour of hyper modes can be
simulated within the framework of local air-sea interactions
and the upper ocean’s heat capacity. A simple climate model
suggests the following elements: (1) On seasonal to decadal
timescales, regional or basin scale modes of variability exist
in the different oceans, which are forced by the atmosphere,
ocean dynamics or coupled ocean-atmosphere interactions.
(2) The extra-tropical modes involve persistent SST vari-
ability, due to the interaction with the large ocean heat

capacity, which can lead to weak but persistent forcing of
the tropical regions. (3) Once SST anomalies have devel-
oped in the Tropics through atmospheric teleconnections
[Barnett et al., 1999; Vimont and Battisti, 2001], global
atmospheric teleconnections spread the signal around the
world. (4) Global-scale modes may only be damped by long
wave radiation and could be amplified by feedbacks such as
water-vapour-temperature and ice-albedo feedbacks. The
variance spectrum of this process can increase to timescales
longer than 1,000 years and may therefore, in interaction
with glacial-feedbacks, potentially be important for ice age
cycles.
[17] The questions arises, however, what the role of

varying ocean dynamics in the generation of global-scale
multidecadal variability is. El Niño-like dynamics [Neelin et
al., 1994] will amplify the pattern of the hyper mode in the

Figure 3. (a) The mean spectrum of observed midlatitudinal SSTs. The spectrum is averaged over all grid points in the
North Pacific and North Atlantic Oceans between 30!N and 55!N. (b) Spectra of simulated midlatitudinal SST. (c) Spectrum
of PC-1 of the ECHAM5-OZ simulation from the EOF-analysis shown in Figure 2c compared with the mean spectrum of
midlatitudinal SSTs and a fitted red noise (AR(1)) process.

Figure 4. (a) Selected temperature spectra of the conceptual multi-layer model given by equation (1) for different layers.
(b) A blow up to ease comparison with the observations shown in Figure 3a. The thin dashed black lines denote the w!2

slope.
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A more complete stochastic model:
Linear Inverse Model (LIM) of the PDO

• LIM is a generalized form of the stochastic climate model:

• X is multi-variate vector
• 𝜂 is stochastic forcing
• G is a linear operator capturing the dynamics of the system, and can 

represent the process described above:
– Local impacts, local ocean dynamics, re-emergence mechanism, remote 

teleconnections

• Eigen vectors of G describe the dynamics, each one can be 
considered as stochastic mode with its own damping timescale

As (1) is extended into (2) by including observed,
nonstochastic forcing in F, it is no longer strictly
speaking an AR1 model, nor is it a closed model. Also,
while the patterns corresponding to these processes are
not identical and their characteristic time scales are
quite different, they all project strongly onto the PDO
pattern. However, many common multivariate analysis
techniques cannot distinguish between spatially similar,
or nonorthogonal, patterns with differing patterns of
evolution.
These problems can be addressed by extending the

AR1 model to many variables:

x(n)5Gx(n2 1)1h
s
, (3)

where x is now a multivariate state vector and hs repre-
sents noise. In the following, x represents maps of ob-
served SSTAs covering the tropical (188S–188N) and
North Pacific (208–708N) Oceans. The resulting multi-
variateAR1model [linear inverse model (LIM); Penland
and Sardeshmukh 1995; Newman 2007; Alexander et al.
2008] yields patterns representing different dynamical
processes with different evolutions, which are in-
dependent but not orthogonal; that is, they have poten-
tially similar spatial structures. In analogy with (1), each
pattern (each eigenmode of G) is associated with a time
series that has its own value of r (the real part of its ei-
genvalue), but not all the patterns are static (some also
propagate with characteristic frequency given a nonzero
imaginary eigenvalue). Here, we extend the Newman
(2007) LIM to finer spatial (28 3 28) and temporal (3-
month runningmean) resolution (details of the approach,
including strengths and weaknesses, can be found there
and the many papers cited therein). Similar to that study
and related LIM analyses (Compo and Sardeshmukh
2010; Newman 2013), the leading eigenmode’s pattern
(not shown) is the departure of the local SST trend from
the global mean SST trend and makes almost no contri-
bution to the PDO. Results below are also little changed
using a linearly detrended dataset (Newman 2013).
Ordered by decreasing r, the three eigenmodes in

Fig. 6 represent dynamical processes with maxima in
the northern, central tropical–northern subtropical,
and eastern tropical Pacific, respectively; similar pat-
terns from various analyses have been reported else-
where (e.g., Barlow et al. 2001; Chiang and Vimont
2004; Guan and Nigam 2008; Compo and Sardeshmukh
2010). The first eigenmode represents largely North
Pacific dynamics. The latter two represent interannual-
to-decadal tropical dynamics driving North Pacific
variability (Newman 2007), consistent with Schneider
and Cornuelle (2005); their tropical portions form a
simple basis for ENSO evolution including its ‘‘flavors’’

or diversity (e.g., Penland and Sardeshmukh 1995;
Trenberth and Stepaniak 2001; Takahashi et al. 2011;
Capotondi et al. 2015). Each eigenmode’s projection
on the PDO EOF yields time series (also in Fig. 6)
that when summed result in a ‘‘reconstructed’’ PDO
(Fig. 6g) that is quite similar to the full PDO (Fig. 6h),
with 0.7 correlation that increases to over 0.8 when
both are smoothed with the 6-yr low-pass filter used in
Fig. 1b. The residual between the two time series,
representing the contributions of other eigenmodes
(not shown), is likely primarily noise since its decor-
relation time scale is approximately 5 months.
The PDO appears to undergo rapid transitions be-

tween extended periods of opposite phase every few de-
cades or so (e.g., Ebbesmeyer et al. 1991; Graham 1994;
Mantua et al. 1997; Minobe 1997; Fleming 2009; Minobe
1999), as denoted by the green lines in Fig. 6h. Such
‘‘regime shifts’’ (if significant; see Rudnick and Davis
2003)might represent sudden nonlinear changes between
relatively stable climate states. However, similar behav-
ior is also well known to exist in aggregations of AR1
processes (Granger 1980; Beran 1994), that is, in (3). So,
to the extent that the PDO represents an aggregation of
several basin-scale dynamical processes with differing,
but substantial, projections onto the PDO pattern, each
PDO regime could result from different combinations of
processes (see also Deser et al. 2004), with apparent re-
gime shifts due to randomly forced variations in the su-
perposition of these processes (Newman 2007), as
captured by the reconstructed PDO in Fig. 6g. In other
words, PDO climate regime shifts could be partly an ar-
tifact of measuring the multivariate North Pacific Ocean
climate system with a single index.
As a corollary, a PDO regime shift need not corre-

spond to pronounced changes throughout the North
Pacific. This point is illustrated by comparing multi-
decadal SST change across 1976/77 relative to change
across 1969/70. The latter time is not typically identi-
fied with a Pacific regime shift (although see Baines
and Folland 2007), but it is when the time series of the
most slowly varying PDO component ended a long
period of negative values (Fig. 6a). For the 1976/77
regime shift between 20-yr epochs (Fig. 7b), the well-
documented warming in the tropical Indo-Pacific and
along the west coast of North America is evident,
along with central northeastern Pacific cooling (e.g.,
Graham 1994; Miller et al. 1994b; Meehl et al. 2009).
However, North Pacific multidecadal cooling across
1969/70 (Fig. 7a) was stronger and extended farther
westward; note also a corresponding Atlantic signal.
The two figures together show that these multidecadal
shifts in tropical and North Pacific SSTs were not co-
incident but rather occurred over several years, and
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Linear Inverse Model (LIM) of the PDO

may not have corresponded to a coherent basin-wide
Pacific climate regime shift.

b. PDO representation by coupled climate models

Perhaps our most comprehensive tool for under-
standing how processes interact to produce the PDO is
the coupled general circulation model (CGCM). Here,

we assess a CGCM reproduction of the PDO and PDO
processes.
Figure 8 exemplifies the range of PDO patterns

(defined according to Mantua et al. 1997) across the
historical model runs from phase 5 of the Coupled
Model Intercomparison Project (CMIP5), in compari-
son with the observed pattern (Fig. 1a). All CMIP5

FIG. 6. Reconstructing the PDO as the sum of three different dynamical processes. Time series for the contri-
butions to the PDO from the (a) second (North Pacific), (c) third (central Pacific ENSO), and (e) fourth [eastern
Pacific ENSO; showing the most energetic phase of this complex eigenmode (essentially, cosine phase), with the
least energetic phase (sine phase) not shown] eigenmodes and (b),(d),(f) the corresponding maps of the LIM
described in the text. Note that unlike EOFs, these eigenmodes are nonorthogonal. Contour intervals are the same
in all three eigenmode maps; all eigenmodes are normalized to have unit amplitude. For all time series, positive
(negative) values are drawn in red (blue). The LIM is determined in a reduced EOF space (with 25 degrees of
freedom) that retains about 85% of the SST variance in the tropics and North Pacific domains. (g) PDO re-
construction is the sum of the time series shown in (a),(c),(e). (h) PDO index time series (as in Fig. 1c, but with a 3-
month runningmean smoothing applied). In the time series panels, thick black lines represent the application of the
same 6-yr low-pass smoother as in Fig. 1b, and vertical green lines indicate times of PDO regime shifts.
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interest and North Pacific Ocean variability. As sum-
marized in Fig. 14, the PDO represents not a single
phenomenon but rather a combination of processes
that span the tropics and extratropics. It is therefore
important to distinguish climate impacts correlated
with the PDO from climate impacts that are predictable
by the PDO. Within this context, since much of the
PDO represents the oceanic response to atmospheric
forcing, care should be taken when using the PDO as a
‘‘forcing function’’ of nonoceanic responses without a
convincing argument for the physical forcing mecha-
nism. For example, claiming that PDO drives contem-
poraneous changes in rainfall over western North
America may be more simply explained by both vari-
ables (PDO and rainfall) being driven by a common
forcing function (Pierce 2002) such as diverse ENSO
events and the internal variability of the midlatitude
atmosphere. A common forcing function must there-
fore be considered to be the first approximation for
explaining a discovered simultaneous correlation be-
tween nonoceanic variables and PDO, including when
reconstructing PDO-related variability into the past

with proxy records. Caution is also needed when using
the PDO together with other indices in analyses where
the PDO depends upon those indices; determining
which portion of the PDO, and/or which PDO process,
is legitimately an ‘‘independent’’ predictor is an im-
portant first step. Still, it is important to note that while
the PDO is generally not an independent predictor, it
also may not be assumed to be entirely dependent upon
other predictors.
Ultimately, climate models may offer the best hope

for establishing links with the PDO, because the his-
torical record of PDO has limited degrees of freedom, a
consequence of PDO representing an ‘‘integrated in
time’’ response to forcing. Of course, the issues pre-
sented above still need consideration when analyzing
model output. Moreover, while a realistic balance of
PDO processes must be simulated in CGCMs, it appears
that the current generation of models underestimates
the tropical forcing of the PDO in the North Pacific
Ocean. While models with particularly weak tropical–
PDO connections could still be useful for examining
some aspects of internal North Pacific Ocean dynamics

FIG. 14. Summary figure of the basic processes involved in the PDO.
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Extended stochastic climate model 
with one column ocean

• We can extend the model to include vertical mixing with the 
deep ocean, and this gives a more realistic representation of 
the spectra

298 CHAPTER 6. NATURAL CLIMATE VARIABILITY

Figure 6.52: Observed annual mean surface temperature anomalies

No vertical diffusion: (slab ocean)

γsurf
dTsurf

dt
= −cTsurf + ξsurf (6.7)

ξsurf ∝ Tatmos

With vertical diffusion:

γsurf
dTsurf

dt
= −cTsurf + κz∇2

zTocean + ξsurf (6.8)

γsurf = surface layer heat capacity
Tsurf = surface layer temperature
c = damping by interaction with atmosphere
κz = vertical diffusivity coeffecient
Tocean = temperature of ocean
ξsurf = surface forcing

γsurf = H · cp
H = surface layer thickness
cp = heat capacity of layer per m3
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γsurf = surface layer heat capacity
Tsurf = surface layer temperature
c = damping by interaction with atmosphere
κz = vertical diffusivity coeffecient
Tocean = temperature of ocean
ξsurf = surface forcing

γsurf = H · cp
H = surface layer thickness
cp = heat capacity of layer per m3

Dommenget 2018



Mid-latitude (30-55N) SST variability in climate 
models consistent with stochastic climate model

Dommenget and Latif (2008)

profile of the diffusion coefficient kz determines the shape
of the spectrum, which has an influence on the relative
importance of variability at longer time scales.

4. Discussion

[16] Some important characteristics of the spatial struc-
ture and timescale behaviour of hyper modes can be
simulated within the framework of local air-sea interactions
and the upper ocean’s heat capacity. A simple climate model
suggests the following elements: (1) On seasonal to decadal
timescales, regional or basin scale modes of variability exist
in the different oceans, which are forced by the atmosphere,
ocean dynamics or coupled ocean-atmosphere interactions.
(2) The extra-tropical modes involve persistent SST vari-
ability, due to the interaction with the large ocean heat

capacity, which can lead to weak but persistent forcing of
the tropical regions. (3) Once SST anomalies have devel-
oped in the Tropics through atmospheric teleconnections
[Barnett et al., 1999; Vimont and Battisti, 2001], global
atmospheric teleconnections spread the signal around the
world. (4) Global-scale modes may only be damped by long
wave radiation and could be amplified by feedbacks such as
water-vapour-temperature and ice-albedo feedbacks. The
variance spectrum of this process can increase to timescales
longer than 1,000 years and may therefore, in interaction
with glacial-feedbacks, potentially be important for ice age
cycles.
[17] The questions arises, however, what the role of

varying ocean dynamics in the generation of global-scale
multidecadal variability is. El Niño-like dynamics [Neelin et
al., 1994] will amplify the pattern of the hyper mode in the

Figure 3. (a) The mean spectrum of observed midlatitudinal SSTs. The spectrum is averaged over all grid points in the
North Pacific and North Atlantic Oceans between 30!N and 55!N. (b) Spectra of simulated midlatitudinal SST. (c) Spectrum
of PC-1 of the ECHAM5-OZ simulation from the EOF-analysis shown in Figure 2c compared with the mean spectrum of
midlatitudinal SSTs and a fitted red noise (AR(1)) process.

Figure 4. (a) Selected temperature spectra of the conceptual multi-layer model given by equation (1) for different layers.
(b) A blow up to ease comparison with the observations shown in Figure 3a. The thin dashed black lines denote the w!2

slope.
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Extend one-column 
ocean stochastic 

climate model
• Captures spatial 

patterns well
• Spatial structure 

increases with 
timescale

• This is because of 
atmospheric 
teleconnections 

variability. The mean spectrum of the observed SSTs in the
Midlatitudes (Figure 3a) exhibits a red behaviour, with
increasing power towards lower frequencies, as expected
from the stochastic climate model scenario [Hasselmann,
1976]. There are, however, two important deviations from a
simple autoregressive model of the first order (AR-1) which
was fitted to the data: First, the spectrum does not start to
flatten over the timescales analysed, as it does for the fitted
AR-1 model. We note that a stationary climate must have a
flat spectrum at long periods. Second: The slope of the
spectrum is less than w!2, which was also found by
Dommenget and Latif [2002] and Fraedrich et al. [2004].
The less steep slope has the effect that the relative impor-
tance of variances at longer periods is increased if compared
to the fitted AR-1 spectrum.
[12] Similar spectra are found in the IPCC-models and

the simplified global climate model (Figure 3b) and in the
PC-1 of ECHAM5-OZ (Figure 3c). We also note an annual

peak in all data sets, despite the fact that the mean annual
cycle was removed, which is due to decadal modulations of
the annual cycle, as discussed by Möller et al. [2008].
[13] Our simplified global climate model can be approx-

imated to zero order by a conceptual model for the upper
ocean temperatures:

c
dT

dt
¼ !gsurf # T þ kz #r2

z T þ xsurf ð1Þ

Here T is the temperature of an upper ocean layer, c is the
heat capacity of the ocean layer, and gsurf and xsurf are the
damping by the atmosphere and the atmospheric weather
forcing, respectively, both of which act only on the surface
layer. The latter is considered to have a white frequency
spectrum and it is assumed to be independent of T. The
vertical diffusion coefficient kz is depth dependent.
[14] In a first evaluation of this simple model, we may

neglect the finite vertical diffusion and assume a well mixed
layer. Then this model reduces to a simple AR-1 model,
with the spectrum of the temperature, G (v), given by a
Fourier transform

G vð Þ ¼
x2surf

g2surf þ c2v2
ð2Þ

From this we can understand why the spectra obtained from
both the observations and the simplified global climate
model increase well into the centennial timescales. The
atmospheric damping gsurf in relation to the heat capacity c
controls the timescale at which the spectrum will flatten. A
larger heat capacity c leads to reduced variance on the
shortest periods and leaves the variance on the longest
periods unchanged. The damping gsurf controls the time-
scale on which the spectrum flattens. On seasonal to
interannual timescales, gsurf is rather strong and of the order
of gsurf ' 20 W/K/m2 for extra tropical regions [Barsugli
and Battisti, 1998]. On longer timescales and for global-
scale patterns, the atmospheric damping will reduce
considerably to about gsurf ' 3 W/K/m2, which is basically
due to long wave radiation to space [Barsugli and Battisti,
1998]. This value may be even smaller due to positive
feedbacks in the climate system such as ice-albedo or the
water-vapour-temperature feedbacks. For a 5000m deep
ocean with gsurf = 3 W/K/m2, the spectrum will increase
until periods of about 10,000 years. Thus the understanding
of ocean-atmosphere interaction and the climate feedbacks
acting on the hyper climate modes, require rather long
simulations.
[15] If we now consider the full model (1) as a multi-layer

model with exponentially decreasing diffusivities between
the layers, the slope of the spectrum at the surface can
deviate considerably from the AR-1 model’s w!2 slope.
This is shown in Figure 4a which displays ocean temper-
ature spectra at layers of different depths, from an integra-
tion of (1) with a 1000m deep ocean, gsurf = 10 W/K/m2 and
xsurf = 30 W/m2. In particular, the shape of the spectra
obtained from the observations and the simplified global
climate model (Figure 3) can be mimicked nicely in such a
conceptual multi-layer model (Figure 4b). Thus the vertical

Figure 2. Correlation maps of the EOF-1 of the simple
global climate model (ECHAM5-OZ) at different time-
scales: (a) 1–5 years, (b) 5–41 years, and (c) longer than 41
years.
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Extended stochastic climate model:
Ocean driven by stochastic atmospheric variability (Mecking et al. 2013)

Results from an 1000 year ocean model simulation driven by stochastic 
NAO forcing – power spectrum

North Atlantic Ocean 
circulation

North Atlantic Sea Surface 
Temperature 



Atlantic multi-decadal variability: Stochastic, external forced, 
ocean dynamics?

Atmosphere-slab ocean models 
reproduce the pattern, 

Clement et al, 2015

External forced climate models 
reproduce the observed AMV

Otterå et al. 2010, Booth et al. 2012

But, ocean dynamics shown to be important in driving 
the extra-tropical SST (e.g. Zhang et al. 2016)



Coupled perspective for Atlantic multi-decadal 
variability

1. Understanding of ocean-atmosphere interaction

NAO

Atlantic Meridional
Overturning circulation

Wintertime Oceanic Deep 
convection

North Atlantic SST (AMV)

Atmospheric response remains 
most poorly understood part of 
the loop

Omrani et al. 2022



Summary



Mechanisms for climate variability

Externally forced
Natural

(e.g., solar forcing, volcanic eruptions)

Anthropogenic
(e.g., greenhouse gas emissions)



Slow climate
components

Fast atmospheric 
dynamics

Ocean
Sea ice
Land surface

External 
forcing 

Climate Variability before Hasselmann



Mechanisms for climate variability

Externally forced

Internally 
generated

Natural
(e.g., solar forcing, volcanic eruptions)

Anthropogenic
(e.g., greenhouse gas emissions)

Stochastic climate models

Uncoupled oscillations
(e.g., basin modes, MJO)

Coupled ocean-atmosphere 
oscillations



Slow climate
components

Fast atmospheric 
dynamics

Ocean
Sea ice
Land surface

Variety of 
weather regimes

External 
forcing 

Deterministic 
predictability 

Probabilistic 
predictability 

Weather noise is 
integrated by slow 
climate components

Hasselmann’s stochastic climate model



Slow climate
components

Fast atmospheric 
dynamics

Ocean
Sea ice
Land surface

Variety of 
weather regimes

External 
forcing 

Deterministic 
predictability 

Probabilistic 
predictability 

Weather noise is 
integrated by slow 
climate components

Slow climate components 
impact probabilistic properties 

of weather regimes


