Interannual Variability in the Tropical Pacific

Ingo Richter

Application Laboratory, JAMSTEC, Yokohama, Japan

ICTP Summer School on AMV and TBI Trieste, Italy 2 August 2023

Outline

- observations
- coupled air-sea feedbacks
- negative feedbacks
- the delayed oscillator
- the recharge oscillator
- phase locking of ENSO
- flavors of ENSO
- ENSO precursors
- simulation of ENSO by climate models

Observations

The big picture

What is El Niño?

- anomalous warming (or cooling) in the central and eastern equatorial Pacific
- often referred to El Niño-Southern Oscillation (ENSO)
- occurs at irregular intervals (~2-7 years)
- amplitude ~ 1-3 K
- positive and negative events tend to alternate but double and even triple events do occur (not a pure oscillation)
- relies on coupled air-sea feedbacks in the equatorial region

A selective history of ENSO

18th century or earlier	 Peruvian fisherman note unusual warming off the coast of Peru in some years around Christmas dubbed "the child Jesus" (El Niño in Spanish)
1890s	Carranza and Carillo note impacts on rainfall in Peru
1920s	Sir Gilbert Walker "discovers" the Southern Oscillation
1950s	first evidence for coupling between Southern Oscillation and El Niño
1969	Jacob Bjerknes postulates an air-sea coupled feedback to explain ENSO growth
1960s- 1970s	equatorial wave theory worked out by Matsuno, Gill and others
1982	the 1982/1983 extreme El Niño catches researchers by surprise; indicates clear need for more observations
1986	Cane and Zebiak intermediate complexity model developed; first model that can predict ENSO events

A selective history of ENSO

1988	Schopf and Suarez suggest delayed oscillator theory to explain ENSO phase reversal
1997	Fei-Fei Jin suggests recharge oscillator theory to explain phase reversal
2003	Vecchi and Harrison suggest mechanism for ENSO phase locking
2004	Chiang and Vimont suggest that North Pacific variability could act as an ENSO precursor
2007	Ashok et al. suggest the existence of El Niño Modoki (aka central Pacific or date line El Niño)
2009	Rodriguez-Fonseca et al. suggest that the equatorial Atlantic can act as an ENSO precursor
2013	Ham et al. suggest that the northern tropical Atlantic can act as an ENSO precursor

A selective history of ENSO

2014/15	back-to-back blockbuster Nature papers by Wenju Cai suggest more extreme El Niño and La Niña events under global warming
2014/15	everybody thinks they have a good grip on ENSO now; then the 2014/15 event fails to develop and people are scratching their heads

Neutral conditions

El Niño

La Niña

NOAA Climate.gov

El Niño composite – yr0 March

ERA-5 omega (shd) and u (cnt) and ORAS-5 temp

El Niño composite – yr0 June

ERA-5 omega (shd) and u (cnt) and ORAS-5 temp

ERA-5 omega (shd) and u (cnt) and ORAS-5 temp

El Niño composite – yr0 December

ERA-5 omega (shd) and u (cnt) and ORAS-5 temp

El Niño composite – yr1 March

ERA-5 omega (shd) and u (cnt) and ORAS-5 temp

Coupled air-sea feedbacks

Enter Bjerknes

The Bjerknes positive feedback loop

- 1) westerly wind stress in the western equatorial Pacific triggers Kelvin waves
- 2) thermocline deepens in the eastern equatorial Pacific
- 3) upwelling becomes less efficient in cooling eastern equatorial Pacific
- 4) SSTs warm in the east
- 5) zonal surface pressure gradient weakens
- 6) zonal wind stress weakens -> back to 1)

Bjerknes feedback components

Limitations of the Bjerknes feedback

- role of convection not fully explained
- eastern equatorial Pacific usually too cold to support deep convection
- can explain the growth of ENSO events, but what about the decay?

Negative feedbacks

Where is the brake?

What limits ENSO growth?

- surface heat flux damps SST anomalies
- equatorial Pacific is leaky
 - coastal Kelvin waves carry energy poleward at eastern boundary
 - mean upwelling continuously cools SST
 - mean divergence carries water poleward
 - wind stress curl leads to poleward Sverdrup transport (see recharge oscillator)
- destructive wave interference (see delayed oscillator)

Damping through upwelling

ORAS5 cliamatology in December latitude-depth section, ave 180-120W shd: ocean temperature; arrows: currents

Warm water leakage into the coastal waveguide

Surface heat flux damping

El Niño composite from ERA5

The delayed oscillator

The revenge of the reflected Rossby wave

The importance of wave dynamics

- westerly wind stress forcing over the western equatorial Pacific excites two kinds of ocean waves
 - downwelling ("warm") Kelvin waves that travel eastward at ~ 2 m/s
 - upwellling ("cold") Rossby waves that travel westward at ~ 0.6 m/s
- why downwelling Kelvin waves but upwelling Rossby waves?

The ocean response to the wind stress and its curl

The delayed oscillator mechanism

Simple Model of Wind Induced Perturbation of the Tropical Pacific Ocean

The delayed oscillator mechanism

International Research Institute for Climate and Society

The delayed oscillator mechanism

International Research Institute for Climate and Society

Delayed oscillator summary

- westerly wind stress excites both downwelling Kelvin wave and upwelling Rossby wave
- Rossby wave travels more slowly
- eventually reflected into upwelling Kelvin wave
- travels to the eastern Pacific and terminates the event
- eventually leads to cold event -> phase reversal

Limitations of the delayed oscillator

- produces very periodic behavior, unlike observed ENSO
- air-sea interaction in the western Pacific
- wave reflection at the eastern boundary not considered
- cannot explain phase locking

The recharge oscillator

The importance of wind stress curl

RO basic idea

- westerly wind anomaly has two effects
 - in-phase adjustment of the thermocline tilt:
 shoaling in the west, deepening in the east
 -> due to zonal wind stress
 - out-of-phase response of the equatorial heat content: poleward discharge of heat
 -> due to wind stress curl
- the second response proceeds slowly and ultimately leads to the demise of the event (and its phase reversal)

Why does wind stress curl lead to poleward heat transport?

V=depth integrated meridional current

The RO mechanism (from Meinen and McPhaden 2001)

Limitations of RO

- cannot explain El Nino/La Niña asymmetry (same heat content anomaly leads to different amplitude in SST response)
- phase transition 4->1 not well supported by observations
- phase locking not explained

Phase locking of ENSO

Why this fixation on Christmas?

Mechanisms for phase locking

- still an area of active research
- anomaly models not enough to explain seasonality of ENSO -> annual cycle of full fields must play a role
- two lines of thought
 - frequency entrainment: non-linear dynamics modulate ENSO variability (e.g., Chang et al. 1994, Tziperman et al. 1995)
 - mean state changes modulate the coupling strength (e.g., Harrison and Vecchi 1999, Lengaigne et al. 2006, McGregor et al. 2012)

Composite lat-time section of El Niño precip (shd; mm/d) and sfc zonal wind (cnt; m/s) data: GPCP and ERA-Int; ave 160W-170E

adapted from Richter et al. (2017)

Composite lat-time section of Atl Niño precip (shd; mm/d) and sfc zonal wind (cnt; m/s) data: GPCP and ERA-Int; ave: 40-10W

Composite time-height section 40-20W, 2S-2N

ENSO diversity

Dateline Niño demands equal rights

A different type of El Niño (?)

- warming occurs further west, around the date line
- first noted by Larkin and Harrison (2005)
- different terminologies
 - date line Niño (Larkin and Harrison 2005)
 - El Niño Modoki (pseudo Niño; Ashok et al. 2007)
 - warm pool Niño (Kug et al. 2009) -> WP vs. CT
 - central Pacific Niño (Kao and Yu 2009) -> CP vs. EP
- Modoki terminology suggests a phenomenon whose outward appearance is that of ENSO, but whose mechanisms are different
- still an open question to what extent this holds true
- is ENSO "on a spectrum"? (e.g. Takahashi et al. 2010)

EP vs. CP El Niño EOFs #1 and #2 of tropical Pacific SST (ERA5)

Central Pacific Niño characteristics

- thermocline tilt does not change much
- heat content recharge/discharge plays less of a role -> more difficult to predict
- little shift in convection
- zonal advective feedback more important
- may have become more prevalent after 2000
- may have different teleconnections

ENSO precursors

Outside influences

Precursors

- may enable to extend skillful ENSO predictions, particularly across the spring predictability barrier
- two examples
 - the Atlantic zonal mode (aka Atlantic Niño)
 peaks in JJA and <u>may</u> trigger an ENSO event
 of the opposite sign 6 months later
 - the North Pacific Meridional Mode may trigger ENSO events

The PMM pattern

Regression of PMM index on SST, u10, v10 CTI removed

Considerations

- PMM develops in boreal winter and may trigger development of El Niño, particularly the CP type however, high lag-0 correlation of PMM with CP ENSO -> usefulness as predictor (Stuecker 2018; Richter et al. 2022)
- importance of tropical Atlantic influences on ENSO still under debate

Simulation of ENSO by climate models

How good is good enough?

How well do global climate models simulate ENSO?

• overall quite realistically...

Can you spot the "fake"?

NDJ composite; SST (shd), wind (arrows), precip (cnt)

How well do global climate models simulate ENSO?

- overall quite realistically
- some common problems
 - SST pattern extends too far west
 - weak phase locking

Phase locking

stddev of Niño 3.4 SST

How well do global climate models simulate ENSO?

- overall quite realistically
- some common problems
 - SST pattern extends too far west
 - weak phase locking
 - low-frequency variability too weak
 - ENSO asymmetry not well represented

Final remarks

- understanding of ENSO has advanced considerably since the 1980s
- some open questions remain, such as phase locking mechanism, and the role of influences from outside the tropical Pacific
- climate models have also improved considerably, and are useful tools for improving our understanding