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 Multivariate nature of AMV

* Climate Impacts of multidecadal AMOC variability and AMV

* Modelling biases of the AMOC-AMYV linkage and associated climate impacts



Introduction - Atlantic Multidecadal Variability

Atlantic Multidecadal Variability (AMV) has impacts on many regional climate phenomena (ITCZ position, Sahel/India monsoon,
Atlantic hurricane, North Atlantic Oscillation, North American/European heat waves and drought, Pacific climate variability, and
Arctic sea ice) (Zhang et al. 2019)
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AMV: multidecadal timescales, multivariate phenomenon, unique to the Atlantic, with the global mean signal removed

NASST Anomaly: all timescales, including global mean signal and inter-annual SST variability induced by North Atlantic Oscillation



The observed positive AMV is associated with more
heat flux released from mid-latitude NA into the
atmosphere and vice versa, supporting Bjerknes'
hypothesis (1964) and early observational/modeling
studies suggesting that multidecadal AMOC
variability plays an active role in the observed AMV
(Folland et al. 1986; Deser & Blackmon, 1993;

- Delworth et al. 1993; Schlesinger & Ramankutty,
1994; Kushnir, 1994; Enfield & Mestas-Nufiez, 1999;
Delworth & Mann, 2000; Latif et al. 2004)
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The observed anti-correlated variations between TNA surface and subsurface temperature
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The anticorrelation between TNA surface and subsurface temperature has been identified as a tropical AMOC fingerprint
indicating the important role of AMOC in the observed tropical AMV signal

The AMOC induced anti-correlated TNA surface and subsurface temperature variations are also found in many climate models
(Wang and Zhang, 2013)



Anticorrelated Tropical North Atlantic (TNA) Surface and Subsurface Temperature
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High-resolution temperature records of the last deglacial transition from a southern Caribbean sediment core indeed show
anticorrelated TNA surface and subsurface temperature changes, with warmer subsurface temperature corresponding to
colder surface temperature during the Younger Dryas, a period with a much weaker AMOC



Observational and Modeling Evidence for the AMOC-AMV Linkage
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The leading mode of extratropical NA upper ocean heat content variations (opposite variations in the subpolar gyre and the Gulf Stream
region) has been identified as an extra-tropical AMOC fingerprint (Zhang, 2008)

The reconstructed multidecadal AMOC variations are coherent with the observed AMV index, supporting a close AMOC-AMV linkage

(Zhang, 2008; Yan et al. 2017)

The inferred AMOC decline during 2005-2015 by the fingerprint is consistent the observed cooling trend in subpolar NA (Robson et al.
2016) and the directly observed AMOC decline from the RAPID program (Frajka-Williams et al. 2016; Smeed et al. 2018)
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Evolution of the Extra-tropical AMOC Fingerprint

CM2.1 1000-year control simulation
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obtained by initializing AMOC anomalies at northern high
latitudes in decadal prediction experiments (e.g. Robson
et al. 2012; Yeager et al. 2012; Yang et al. 2013)
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Relationship between AMOC, AMV and Atlantic Decadal Predictability & Prediction
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Hypotheses for AMV Mechanisms without an Essential Role for the AMOC

Fully Coupled Models Slab Ocean Models
Regression of LIES)ST on AMV

AMV has been proposed as a red noise response of NA SST to stochastic
atmospheric forcing without a role of ocean dynamics, because NA SST
patterns associated with AMV and spectra of basin-averaged NA SST are
similar in fully coupled models with ocean dynamics and in slab ocean
models without ocean dynamics
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A Simple Conceptual Model for SST Anomalies
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Decadal Persistence of Subpolar NASST Anomalies
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Autocorrelation of Subpolar NASST (Slab Ocean Model SM2.1)
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The observed and GFDL CM2.1 simulated decadal persistence of subpolar NASST
anomalies associated with AMV will lead to a much higher decadal predictability than that
obtained from slab ocean models or the red noise process

Multidecadal AMOC variability is a major source for the decadal persistence in the subpolar
North Atlantic SST anomalies associated with AMV



Coherent Multivariate Nature of AMV

The observed AMV is associated with coherent variations among the subpolar North Atlantic SST, SSS, and upper ocean
heat/salt content (UOHC/UQOSC). The high coherences only occur at low frequency and not at high frequency
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Hypotheses for AMV Mechanisms without an Essential Role for AMOC

(a) ERSST and HadGEM2-ES Atlantic response
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Anthropogenic aerosols have been implicated as the prime driver of the
observed AMV, because basin-averaged NA SST anomalies in externally
forced simulations including aerosol indirect effects is similar to observations
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The simulated detrended subpolar NA SSS anomalies are quite
different from that observed




Issues with the Aerosol Mechanism of AMV

The aerosol mechanism of AMV (e.g. Booth et al., 2012) is based on the resemblance of the linearly detrended basin-wide
SST-based AMV index between observations and modeled externally forced response in historical simulations

Linear Trend Removed
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* The resemblance between linearly detrended observed and CMIP5 forced basin-wide SST-based AMV indices is an artifact of linear detrending

* When the signal associated with global mean SST is removed, such resemblance disappears: the CMIP5 MMM simulated AMV index is much
smaller, whereas the observed AMV index remains pronounced



Multivariate AMV Index (MAI)
Signal Regressed on GLobal Mean SST Removed (Nonlinear Detrending)

CMIP5 MMM oBS CMIP5 MMM

1 =3 2
SST 5T B s S e M . Subpolar NA SST
=g T
1293 E < <r:
=38 I 1950 1970 = 1990 = 2010 l 1950 ' 1970 = 1990 = 2010
555 0:23 g §JMWA g1 Subpolar NA SSS
pou o1 “ < 1950 1970 ~ 1990 = 2010 < 1950 ' 1970 = 1990 = 2010
Upper Ocean Hee = o | Subpolar NA
Heat Content Ef_z g o pper Ocean Heat
=S > =2 w0
=l i 7 Content
ok S 1950 = 1970 ' 1990 ' 2010 1950 ' 1970 ' 1990 ' 2010
8 = ] S
s ubpolar NA
Upper Ocean zg £ = o | P
Salt Content 3 g~ o Upper Ocean Salt
%= 5 5 — & | Content
K- 1950 1970 1990 = 2010 1950 1970 1990 = 2010
Multivariate = : : NA SST
AMV Index 2 — -
I 1950 1970 © 1990 = 2010 I 1950 ' 1970 = 1990 = 2010

Year Year

Yan, Zhang, and Knutson, 2019, GRL

* Multivariate EOF analysis has been applied to obtain a Multivariate AMV Index (MAI), defined as the normalized leading principal component of
combined detrended NA SST, SSS, upper ocean heat and salt content anomalies to reflect the observed multivariate nature of AMV

* The CMIP5 externally forced multivariate AMV index (MAI) and multidecadal signal in the subpolar NA SST, SSS, upper ocean heat and salt content
disagree strongly with that observed



Extra-tropical AMOC Fingerprint (Observed vs. CMIP5 Externally Forced Response)
_ Signal Regressed on Global Mean SST Removed (Nonlinear Detrending)
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The modeled externally forced AMOC index/fingerprint, which is in phase with the
externally forced multivariate AMV signal, is also very different from observations
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* The AMV-related multidecadal variability is also found in the observed deeper subpolar NA temperature (Polyakov et al. 2010;
Hodson et al. 2014; Kim et al. 2018; Desbruyeres et al. 2020; Thomas and Zhang, 2022)

* It has been suggested that the AMV-related upper subpolar NA temperature anomalies propagate downward through boundary
vertical advection and diffusion (Desbruyeres et al. 2020)

* The AMV-related upper subpolar NA temp/salinity anomalies are also advected/mixed into the central Labrador Sea, then vertically
mixed down into the deeper ocean through deep convection and spread into the deeper subpolar NA (Thomas and Zhang, 2022)



Issues with the Aerosol Mechanism of AMV

Recent satellite observations and cloud-resolving models (Sato et al. 2018; Toll et al. 2019) suggest that the
sign of the second aerosol indirect effect should be negative, i.e. opposite to that simulated in low-resolution
climate models, and the net aerosol indirect effects have been overestimated in many climate models
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Paleo reconstructions largely indicate that
AMV is a phenomenon that existed prior to
the instrumental period, with enhanced
power at multidecadal timescales significantly
above a red noise background and not
dominated by solar and volcanic forcing



Climate Impacts of Multidecadal AMOC Variability and AMV

Impact on ITCZ

Statistical analyses of observations suggest that AMV is correlated with multidecadal fluctuations of ITCZ position
and Sahel summer rainfall (e.g. Folland et al. 1986)

Summer (JJAS) precipitation anomalies associated with AMV
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The causal linkage between AMV and ITCZ shifts is associated with changes in AMOC-induced Atlantic heat transport and

compensated atmospheric heat transport across the equator, consistent with coupled climate model simulations of
ocean-atmosphere heat transport compensation and ITCZ shift induced by an abrupt AMOC change

Similar impacts on ITCZ are also found in recent modeling studies (e.g. Ruprich-Robert et al., 2017; Levine et al. 2018)
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A positive AMV phase leads to a northward shift of the ITCZ in both the Atlantic and Pacific
in coupled model simulations with the North Atlantic SST restored to the AMV signal
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A substantial weakening of the AMOC leads to a southward shift of ITCZ in both the Atlantic and Pacific in water hosing experiment



Impact of AMV on Atlantic Hurricane Activity

Negative AMV Phase

Positive AMV Phase
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major hurricane landfalls
during the negative (left) and
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A positive AMV phase leads
to a reduction of the vertical
shear over the tropical North
Atlantic Main Development
Region (MDR) for hurricanes
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Schematic Diagram
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@ Anomalous Eastward Surface Wind
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_=> Enhanced Northward
Ocean Heat Transport

The positive AMV phase (associated with a stronger AMOC)



Impacts of AMOC on Atlantic Major Hurricane Frequency

5) Observed Trend Regression of

Observed Low Frequency Anomalies Inverted Vertical Wind Shear on AMOC
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Observations show coherent multidecadal variations among the Atlantic major hurricane frequency, AMOC
fingerprint, AMV index, and inverted vertical wind shear index. The observed decline of the Atlantic major hurricane
frequency during 2005—-2015 is associated with the directly observed AMOC weakening from the RAPID program

GFDL ESM2G Simulated Low Frequency Anomalies GFDL ESM2G Simulated 11-Year Trend Regression of
Inverted Vertical Wind Shear on AMOC
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GFDL-ESM2G control simulation has similar coherent variations among AMOC Index/fingerprint, AMV index, and inverted vertical
wind hear index, supporting an important role of the AMOC in AMV and multidecadal variability of Atlantic major hurricane frequency

Yan, Zhang, and Knutson, 2017, Nature Communications
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Multi-year Predictability of Tropical Atlantic Atmosphere Driven by the Subpolar North Atlantic Ocean

Anomaly correlations for Years 2-6 ensemble means of the perfect and the initialized forecast experiments using HadCM3
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The North Atlantic Subpolar Gyre is identified as a key driver of skills in predicting the tropical Atlantic
atmosphere, including tropical precipitation, wind shear, vertical velocity, and storm numbers

Dunstone et al. 2011, GRL



Multi-year Predictability of Tropical Atlantic Atmosphere Driven by the Subpolar North Atlantic Ocean
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The multiyear predictability skill of vertical wind shear over the MDR is lost when ocean is not initialized in the extratropical North Atlantic,
but remains when ocean is initialized in the extratropical North Atlantic but not initialized in the tropical Atlantic or the tropical Pacific

Dunstone et al. 2011, GRL
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Impact on Climate over Europe and North America

O ——— + (b) -
N, O ?",ﬁe-v‘ BO°N

A t g
R TSR i) |
40°N - ir ,. 7 400N The positive AMV can lead to warmer and wetter summers
. S 1 over western Europe, warmer and drier summer climate
J W] & I over central North America in both observations and AGCM
20°N = & b \ 20°N H .
o P experiments
+toss .} 1 -
0 — i p -

I-II-LIIII R P e G s e

summer preC|p|tat|on (d) surface air temperature

Fully coupled models with strong positive correlations between
AMYV and multidecadal surface turbulent heat flux anomalies
over the midlatitude NA can simulate a warmer summer over
Europe during the positive AMV phase; in contrast, the positive
AMV simulated in slab ocean models cannot lead to a warmer

summer over Europe (O'Reilly et al., 2016)
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Sutton and Hodson, 2005, Science



Impact on Winter North Atlantic Oscillation

(a) (Warm-Cold) Composite, JFM SLP (b) High-Top Response, 1000mb Geopotential Height (C) Low-Top Response, 1000mb Geopotential Height
‘D\

________

-18 12 -6 o]

Omrani et al. 2014

*  AGCM experiments suggest that a positive AMV can induce a negative winter NAO response with an amplitude comparable to
that observed (Omrani et al. 2014; Peings and Magnusdittir 2016)

e Arealistic winter NAO response to AMV exists in a high-top AGCM with well-resolved stratosphere but not in a low-top AGCM
that has poorly resolved stratosphere and inhibits upward propagation of planetary waves (Omrani et al. 2014)

e The simulated amplitude of winter NAO signal associated with AMV in coupled models is much weaker than that observed (Ting et
al. 2014; Peings et al. 2016), due to the underestimated internal AMV signal and associated surface turbulent heat flux anomalies
(Peings et al. 2016), consistent with the underestimation of internal multidecadal winter NAO in many climate models (Kravtsov,
2017; Wang et al. 2017; Kim et al. 2018; Simpson et al. 2018; Xu et al. 2018)



Impact of AMV on Pacific Low-Frequency Variability

« Can the AMV influence the Pacific Decadal Variability (PDV) ?

Regression of DJF 500mb
EOF 1 of Northern Pacific geopotential height on PDV Observed PDV Index
winter SST (1901-2000) - PDV (1949-2000) ——

b] 1 1 L k L L L L L
1910 1920 1930 1940 1950 1960 1970 1980 1990 2000

Modeled PDV Index

U] L 1 1 Il L L I L 1
1910 1920 1930 140 1950 1960 1970 1980 1990 2000

Modeled AMV Index

1970 190 1930 1040 1950 1960 1970 1980 1990 2000

Zhang and Delworth, 2007, GRL

Modeling results suggest that AMV can contribute to the PDV and Pacific/North American (PNA)
pattern, and provides a source of multidecadal variability to the North Pacific



Impact of AMV on Pacific Low-Frequency Variability
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Regression of SST and surface winds on the AMV Index in AMV pacemaker experiments
Kucharski et al. 2015, Climate Dynamics
Many recent modeling studies (e.g. Kucharski et al. 2015; Ruprich-Robert et al. 2017) show that AMV also has significant impacts on the
low-frequency ENSO-like variability in the tropical South Pacific

A positive AMV leads to stronger trade winds/Walker circulation and La Nifia-like cooling over the tropical South Pacific similar to changes
induced by the AMOC weakening but with an opposite sign (e.g. Dong and Sutton, 2002; Zhang and Delworth, 2005)



Impact of AMV on Pacific Low-Frequency Variability

(a) CESM1 DJFM - T2m (b) CESM1 DJFM - 2500 / SF200

A recent modeling study (Ruprich-Robert et al.
2017) suggests that the tropical AMV forcing
dominates the response in both the tropical and
North Pacific, consistent the responses to the
AMOC weakening (Okumura et al. 2009)
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Impact of AMV on Pacific Low-Frequency Variability
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* Multichannel singular spectrum analysis (MSSA) applied jointly to SST, SLP, and surface winds in a coupled model (CSIRO Mk3.6.0)
reveals a global scale multidecadal mode, resembling AMV and associated impacts over the Pacific (e.g. a positive AMV is

associated with stronger trade winds/Walker circulation and La Nifia-like cooling over the tropical South Pacific)

* This mode is closely linked to the simulated multidecadal AMOC variability, suggesting an important role of the AMOC in this

interbasin teleconnected multidecadal mode



Impact of AMOC on Multidecadal Arctic Sea Ice Variability

Modeled SIC Regression on AMV Observed SIC Trend
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Zhang, 2015, PNAS

Modeling studies suggest that AMOC and associated Atlantic heat transport is a key player for low-frequency Arctic sea ice variability



Impact of AMOC on Muitidecadal Arctic Sea Ice Variability
|
Reduced Northward Atmos Heat Transport (HTyry)

Atmosphere ~fs ENhanced Upward Surface Heatflux
6.9 TW (Fsrc)

Zhang, 2015, PNAS ~ 66.5'N Arctic Region 90N

» The Bjerknes compensation (Bjerknes, 1964) has been found at decadal time
scale (e.g. Shaffrey & Sutton, 2006; Jungclaus & Koenigk, 2010)

« At multidecadal and longer time scales, the coherences among HTag, Arctic SHF,
and inverted HTary are much higher than those at decadal time scale

« Changes in HTar\y are forced by anti-correlated changes in HTr thus provide a
negative feedback to Arctic sea ice variations



Predictive Impact on Winter Arctic Sea Ice

CORE, ice 1997-2007 DP, ice 1997-2007
180 180

0.32 0.40 fraction/decade

The predicted decadal winter Arctic sea ice decline since the late 1990s is very similar to that simulated in
the OGCM hindcast due to a strengthening in the AMOC and associated Atlantic heat transport

Yeager et al. 2015



Modelling Biases of the AMOC-AMYV linkage and Associated Climate Impacts

. ® OBS (AMOC Fingerprint)
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Yan, Zhang, and Knutson, 2018, GRL

Scatterplot of standard deviations of decadal AMOC trends vs. amplitudes of low-frequency AMOC variability
(i.e. standard deviations of the 10-year low-pass filtered AMOC anomalies) across CMIP5 control simulations

* Most coupled models underestimate amplitudes of multidecadal AMOC variability, leading to the
underestimation of the AMOC-related climate impacts and Atlantic decadal predictability

 The underestimated multidecadal AMOC variability amplifies the relative role of external radiative
forcing or stochastic atmospheric forcing in AMV (Kim et al. 2018)



AMOC-AMV Linkage is Underestimated in Many CMIP5 Models
Models with Stronger AMOC Variability
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Correlations with AMOC Yan, Zhang, and Knutson, 2018, GRL
The correlation between the AMOC and AMV-related subpolar signal in SST, SSS, upper ocean heat/salt content, and net downward surface

heat flux is much stronger (weaker) in models with relatively stronger (weaker) multidecadal AMOC variability

Most climate models underestimate amplitudes of multidecadal AMOC variability, leading to the underestimation of the AMOC-AMV linkage



Modelling Biases on the Pattern/Amplitude of AMV-related SST and Turbulence Heat Flux
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Drews and Greatbatch, 2016, GRL Kiel Climate Model

Climate model with corrected mean state North Atlantic Current (NAC) pathways can
simulate more realistic pattern/amplitude of AMV and associated surface turbulence
heat flux anomalies induced by AMOC variability (Drews and Greatbatch 2016; 2017)



Modelling Biases on Teleconnections between Subpolar and Tropical AMV SST Signal
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Evolution of the Observed AMV SST Signal

Ruiz-Barradas et al. 2013
Climate Dynamics
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Observational and modeling studies suggest that coupled air-sea feedbacks,
such as wind-evaporation-SST feedback, cloud feedback, and dust feedback,
are essential for the propagation of the subpolar AMV SST signal to the

tropical NA along the horseshoe pathway (e.g. Smirnov & Vimont, 2012;
Wang et al., 2012; Yuan et al. 2016; Bellomo et al., 2016; Brown et al., 2016)

Most current climate models lack the critical trade wind speed response
to the subpolar AMV signal and lack the positive low cloud feedback over
the tropical NA, contributing to the much weaker than observed
teleconnections between subpolar and tropical AMV SST signal

Yuan et al. 2016, GRL
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Ruiz-Barradas et al. 2013, Climate Dynamics

Most CMIP3 and CMIP5 coupled models underestimate the tropical AMV SST signal and associated ITCZ shift



Mean State SST Bias in Tropical North Atlantic and Impact of AMOC/AMV on ITCZ

a) SST: HadISST
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Correlation

Modelling Biases on the Impact of AMV on Winter NAO
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Correlations between the AMV index and the decadal winter NAO index in CMIP5 models and in observations (black)

Peings et al. 2016, JGR-Atmospheres

Observations show that the observed AMV leads the anti-correlated decadal winter NAO by several years. Coupled
climate models underestimate the internally generated AMV signal and its associated impact on winter NAO



Summary

The AMOC-AMV linkage is consistent with all observed key elements of AMV and underlies the enhanced decadal
prediction skills of AMV

Multidecadal AMOC variability is a key contributor to the subpolar AMV SST signal and should not be neglected

Coupled air-sea feedbacks in response to changes in the subpolar NA are important for the propagation of AMV
SST signal from the subpolar to the tropical NA

The observed AMV is a multivariate phenomenon unique to the Atlantic, and it is critical to use multivariate
metrics to understand the underlying mechanisms

Externally forced SST response is not unique to the Atlantic. The resemblance between linearly detrended
observed and modeled externally forced SST-based AMV indices is an artifact of linear detrending

The hypothesis that changes in external radiative forcing or stochastic atmospheric forcing is the primary driver of
AMV disagrees with many observed key elements of AMV

Many climate models underestimate multidecadal AMOC variability, thus underestimate the AMOC-AMV linkages
and associated decadal predictability/climate impacts
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Synthesis of ~480 studies from the climate community

* Essential role for the AMOC, associated ocean heat transport, and heat flux released from the ocean in many AMV-related
climate impacts (e.g. ITCZ, Sahel/Indian monsoons, Atlantic Hurricanes, ENSO, PDV, NAO, climate over Europe, North America,
and Asia, Arctic sea ice and surface temperature, and hemispheric mean surface temperature)

e Various climate linkages associated with AMV (e.g. linkages with the ITCZ, Western African Monsoon, climate over Europe,
North America, Asia, and Arctic, Northern Hemisphere mean surface temperature) are also imprinted in paleo proxy records



