Tropical Pacific Climate Change

Natalie Burls

Center for Ocean-Land-Atmosphere Studies Dept. of Atmospheric, Oceanic, & Earth Sciences George Mason University

ICTP Summer School on Atlantic Variability and Tropical Basin Interactions at Interannual to Multi-Decadal Time Scales

https://www.youtube.com/watch?v=Yb3NsMJ-YQ8

High CO₂ Climates of the Past

Tierney et al. Science 2020

GISTEMP 5-Year Annual LOTI Anomaly

1880-1884

Outline

- Climate Sensitivity and the importance of the Tropics
- Theories of Tropical Climate Change
- The equilibrium response and insights from past warm climates
- The transient response, observed Tropical Climate Change
 - A model-data mismatch?
- Changes in ENSO with warming (a topic for another day)

What is Climate Sensitivity?

The "Charney Report"

Carbon Dioxide and Climate: A Scientific Assessment

Report of an Ad Hoc Study Group on Carbon Dioxide and Climate Woods Hole, Massachusetts July 23–27, 1979 to the Climate Research Board Assembly of Mathematical and Physical Sciences National Research Council The conclusions of this brief but intense investigation may be comforting to scientists but disturbing to policymakers. If carbon dioxide continues to increase, the study group finds no reason to doubt that climate changes will result and no reason to believe that these changes will be negligible. The conclusions of prior studies have been generally reaffirmed. However, the study group points out that the ocean, the great and ponderous flywheel of the global climate system, may be expected to slow the course of observable climatic change. A wait-and-see policy may mean waiting until it is too late.

The "Charney Report"

Carbon Dioxide and Climate: A Scientific Assessment

Report of an Ad Hoc Study Group on Carbon Dioxide and Climate Woods Hole, Massachusetts July 23–27, 1979 to the Climate Research Board Assembly of Mathematical and Physical Sciences National Research Council The conclusions of this brief but intense investigation may be comforting to scientists but disturbing to policymakers. If carbon dioxide continues to increase, the study group finds no reason to doubt that climate changes will result and no reason to believe that these changes will be negligible. The conclusions of prior studies have been generally reaffirmed. However, the study group points out that the ocean, the great and ponderous flywheel of the global climate system, may be expected to slow the course of observable climatic change. A wait-and-see policy may mean waiting until it is too late.

When it is assumed that the CO_2 content of the atmosphere is doubled and statistical thermal equilibrium is achieved, the more realistic of the modeling efforts predict a global surface warming of between 2°C and 3.5°C, with greater increases at high latitudes. This range reflects both uncertainties in physical understanding and inaccuracies arising from the need to reduce the mathematical problem to one that can be handled by even the fastest available electronic computers. It is significant, however, that none of the model calculations predicts negligible warming.

https://brian-rose.github.io/ClimateLaboratoryBook/courseware/radeq.html, Rose 2018 9

Climate Sensitivity

0 Dimension – Global Mean Top of the Atmosphere Energy Balance Model (EMB)

 $R \sim 4 W m^{-2}$ per CO₂ doubling

Simplest OD EMB with only the Planck Feedback to come back into equilibrium

$$T_{e(mission)} = \beta T_{s(urface)}$$

$$T_{e} = 255$$

$$T_{s} = 288$$

$$\beta = 225/288 = 0.885$$

Climate Sensitivity with just the Planck Feedback

*See David Hartmann's textbook & Brian Rose's online course notes for detailed derivation https://www.atmos.albany.edu/facstaff/brose/classes/ATM623_Spring2015/Notes/Lectures/Lecture02%20--%20Solving%20the%20zero-dimensional%20EBM.html

Climate Sensitivity

0 Dimension – Global Mean Top of the Atmosphere Energy Balance Model (EMB)

 $R \sim 4 W m^{-2}$ per CO₂ doubling

Simplest OD EMB with all the fast feedbacks

$$C \frac{d\Delta T_{s}}{dt} = R + \Delta F_{TOA} = R + \lambda \Delta T_{s}$$
$$-R = \Delta F_{TOA} = \lambda \Delta T_{s} \longrightarrow \lambda = \frac{\partial}{\partial T_{s}} (\Delta F_{TOA}) \qquad \overset{Lo}{Fe}_{(V)}$$

Lambda the **Climate Feedback Parameter** (Wm⁻²K⁻¹)

 Δx_i = "Fast Feedbacks"

- Planck feedback
- Lapse rate feedback
- Surface (sea-ice) albedo feedback
- Water vapor feedback
- Net cloud feedback

$$\lambda_i = \frac{\partial \Delta F_{TOA}}{\partial x_i} \frac{\Delta x_i}{\Delta T_s}$$

Reviews of Geophysics

REVIEW ARTICLE

10.1029/2019RG000678

Key Points:

- We assess evidence relevant to Earth's climate sensitivity *S*: feedback process understanding and the historical and paleoclimate records
- All three lines of evidence are difficult to reconcile with S < 2 K, while paleo evidence provides the

An Assessment of Earth's Climate Sensitivity Using Multiple Lines of Evidence

S. C. Sherwood¹ D, M. J. Webb² D, J. D. Annan³, K. C. Armour⁴ D, P. M. Forster⁵ D, J. C. Hargreaves³, G. Hegerl⁶ D, S. A. Klein⁷ D, K. D. Marvel^{8,9}, E. J. Rohling^{10,11} D, M. Watanabe¹² D, T. Andrews² D, P. Braconnot¹³ D, C. S. Bretherton⁴ D, G. L. Foster¹¹ D, Z. Hausfather¹⁴ D, A. S. von der Heydt¹⁵ D, R. Knutti¹⁶ D, T. Mauritsen¹⁷ D, J. R. Norris¹⁸, C. Proistosescu¹⁹ D, M. Rugenstein²⁰ D, G. A. Schmidt⁹ D, K. B. Tokarska^{6,16} D, and M. D. Zelinka⁷ D

Abstract We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of atmospheric CO₂, characterized by an effective sensitivity S. This evidence includes feedback process understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to produce a probability density function (PDF) for S given all the evidence, including tests of robustness to difficult-to-quantify uncertainties and different priors. The 66% range is 2.6–3.9 K for our Baseline calculation and remains within 2.3-4.5 K under the robustness tests; corresponding 5-95% ranges are 2.3-4.7 K, bounded by 2.0-5.7 K (although such high-confidence ranges should be regarded more cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the low end of the range. This narrowing occurs because the three lines of evidence agree and are judged to be largely independent and because of greater confidence in understanding feedback processes and in combining evidence. We identify promising avenues for further narrowing the range in S, in particular using comprehensive models and process understanding to address limitations in the traditional forcing-feedback paradigm for interpreting past changes.

Climate Sensitivity is Model, Time and State Dependent

Armour et al., 2015 14

Climate Sensitivity

Regional structure to Fast Feedbacks

$$C \frac{d\Delta T_s}{dt} = R + \Delta F_{TOA} + \Delta OHT + +\Delta AHT = R + \lambda \Delta T_s$$
$$-R = \Delta F_{TOA} = \lambda \Delta T_s \quad \longrightarrow \quad \lambda = \frac{\partial}{\partial T_s} (\Delta F_{TOA})$$

- Δx_i = "Fast Feedbacks"
- Planck feedback
- Lapse rate feedback
- Surface (sea-ice) albedo feedback
- Water vapor feedback
- Net cloud feedback

FIG. 5. Spatial patterns of net and individual local feedbacks within CCSM4: local feedbacks (local TOA response per degree local surface temperature change) separated into (a) net (sum of all individual feedbacks), (b) Planck, (c) LW water vapor, (d) SW water vapor, (e) lapse rate, (f) surface albedo, (g) cloud SW, and (h) cloud LW feedbacks.

$$\lambda_i = \frac{\partial \Delta F_{TOA}}{\partial x_i} \frac{\Delta x_i}{\Delta T_s}$$

The State Dependence of Climate Feedbacks

A climate with sea-ice versus one without sea-ice

Roe et al., 2015

The Time Dependence of Climate Feedbacks

The Time Dependence of Climate Feedbacks

The Dependence of Global Cloud and Lapse Rate Feedbacks on the Spatial Structure of Tropical Pacific Warming

TIMOTHY ANDREWS AND MARK J. WEBB

Met Office Hadley Centre, Exeter, United Kingdom

(Manuscript received 10 February 2017, in final form 29 September 2017)

amip-slow4K

ABSTRACT

90N 45N 45S 90S 0 90E 180 90

An atmospheric general circulation model (AGCM) is forced with patterns of observed sea surface temperature (SST) change and those output from atmosphere-ocean GCM (AOGCM) climate change simulations to demonstrate a strong dependence of climate feedback on the spatial structure of surface temperature change. Cloud and lapse rate feedbacks are found to vary the most, depending strongly on the pattern of ropical Pacific SST change. When warming is focused in the southeast tropical Pacific—a region of climatological subsidence and extensive marine low cloud cover—warming reduces the lower-tropospheric stability (LTS) and low cloud cover but is largely trapped under an inversion and hence has little remote effect. The net result is a relatively weak negative lapse rate feedback and a large positive cloud feedback. In contrast, when warming is weak in the southeast tropical Pacific and enhanced in the west tropical Pacific—a strong convective region—warming is efficiently transported throughout the free troposphere. The increased atmowhere stability results in a strong negative lapse rate feedback and increases the LTS in low cloud regions resulting in a low cloud feedback of weak magnitude. These mechanisms help explain why elimate feedback and sensitivity change on multidecadal time scales in AOGCM abrupt4xCO₂ simulations and are different from those seen in AGCM experiments forced with observed historical SST changes. From the physical understanding developed here, one should expect unusually negative radiative feedbacks and low effective climate sensitivities to be diagnosed from real-world variations in radiative fluxes and temperature over decades in which the eastern Pacific has lacked warming.

Global Radiative feedback response to local warming

How will the tropical Pacific respond to global warming?

Thermodynamic Arguments

1) The thermodynamically driven weakening of atmospheric circulation in a warmer climate resulting in weaker SST gradients via ocean-atmosphere coupling (Betts and Ridgway, 1989; Held and Soden, 2006, Vecchi and Soden, 2007, Ma et al., 2012).

A global budget:

$$P = Mq$$

Precipitation=Mass exchange
between the boundary
layer and free
troposphere – the
Circulation StrengthXHumidity+ 2% per Kelvin
*Radiatively
constrained
as global P-E = 0- 5% per Kelvin
+ 7% per Kelvin
Clausius Clapeyron
$$\frac{d \ln e_s}{dT} = \frac{L}{RT^2} \equiv \alpha(T),$$

Thermodynamic Arguments

1) The thermodynamically driven weakening of atmospheric circulation in a warmer climate resulting in weaker SST gradients via ocean-atmosphere coupling (Betts and Ridgway, 1989; Held and Soden, 2006, Vecchi and Soden, 2007, Ma et al., 2012).

2) "Evaporative damping" leads directly to weaker SST gradients (Knutson and Manabe, Merlis and Schneider, 2011)

*Merlis and Schneider (2011), SOM experiments with ocean heat transport is held fixed and no clouds

 $\Delta T_s \sim \Delta q_s \left(\frac{\partial q_s}{\partial T}\right)$

2.5

1.5

0.5

280

290

T (K)

Thermodynamic Arguments

The weakening of atmospheric circulation in a warmer climate resulting in weaker SST gradients via ocean-atmosphere coupling (Betts and Ridgway, 1989; Held and Soden, 2006, Vecchi and Soden, 2007, Ma et al., 2012).

"Evaporative damping" leads directly to weaker SST gradients (Knutson and Manabe, Merlis and Schneider, 2011)

Accounting for Ocean Dynamics

The "ocean thermostat" leads to an increase in the zonal SST gradient as upwelling in the eastern Pacific opposes surface heating (Clement et al., 1996, Sun and Liu 1996).

Thermodynamic Arguments

The weakening of atmospheric circulation in a warmer climate resulting in weaker SST gradients via ocean-atmosphere coupling (Betts and Ridgway, 1989; Held and Soden, 2006, Vecchi and Soden, 2007, Ma et al., 2012).

"Evaporative damping" leads directly to weaker SST gradients (Knutson and Manabe, Merlis and Schneider, 2011)

Accounting for Ocean Dynamics

The "ocean thermostat" leads to an increase in the zonal SST gradient as upwelling in the eastern Pacific opposes surface heating (Clement et al., 1996, Sun and Liu 1996).

Accounting for Extratropical Influences

A couple ocean-atmosphere theory that includes the influence of the extra-tropics (Liu and Huang 1997; Liu 1998, Burls and Fedorov 2014a).

Accounting for Extratropical Influences

In the steady state:

$$\Delta SST \propto Q_{tropics} = \nabla \cdot F_o = -Q_{extratropics}$$

under the constraint of a balanced heat budget (Boccaletti et al., 2004).

Gu and Philander, 1997

Lagrangian analysis of the origin of water upwelled along the equator in the Pacific (IPSL Model)

Probability density function showing the origins of upwelled EEP water in the model

Thomas and Fedorov, 2017

A couple ocean-atmosphere theory that includes the influence of the extra-tropics

Liu and Huang, 1997

Gu and Philander, 1997 27

A couple ocean-atmosphere theory that includes the influence of the extrat-ropics

Liu and Huang, 1997

Equilibrium Arguments

A couple ocean-atmosphere theory that includes the influence of the extratropics

A couple ocean-atmosphere theory that includes the influence of the extratropics

Equilibrium Response

CMIP6 abrupt 4xCO2 simulations

Dong et al., 2020

Modified Cloud Albedo and Abrupt CO₂ Sensitivity Experiments

Experimental Setup

- The Community Earth System Model (CESM)
- Modified Cloud albedo experiments

Reflectivity of clouds changed by modifying the atmospheric liquid and ice water path, but only in the shortwave radiation scheme. The changes imposed are hypothetical.

• Abrupt 2x, 4x, 8x and 16x CO₂ experiments

Simulating a broad range of meridional SST gradients

Tightly linked zonal and meridional upper ocean temperature gradients

Past warm climate analogues

Tierney et al. Science 2020

Tightly linked ocean zonal and meridional temperature gradients over the past 5 million years

Tightly linked ocean zonal and meridional temperature gradients over the past 5 million years

Simulating Pliocene conditions

Burls & Fedorov, *PNAS*, 2017 ³⁹

Thermal Structure of the Early Pliocene Ocean

40

Transient Response

Historical Trends

Heede and Fedorov, 2022 42

Historical Trends

43

Why the model-data mismatch

- Pacific multi-decadal variability (internal variability, a.k.a. natural variability) e.g. McPhaden et al, 2011; England et al., 2014
- Remote influence of Atlantic multi-decadal variability e.g. McGregor et al., 2014
- Missing aerosol forcing e.g. Takahashi and Watanabe 2016
- Tropical Pacific Biases e.g. Seager et al., 2019
- Southern Ocean forcing e.g. Huang et al., 2017

Historical Trends

Transient versus Equilibrium

Heede and Fedorov, 2022

Transient Response in the Idealized Box Model

Model Dependance of Transient and Equilibrium Response

Heede, Fedorov, Burls, 2021 ⁴⁸

Model Dependance of Transient and Equilibrium Response

Heede, Fedorov, Burls, 2021 49

Model Dependance of Transient Response

Heede, Fedorov, Burls, 2021 50

Model Dependance of Transient Response

Low Res CESM

High Res CESM

Heede, Fedorov, Burls, 2021 51

Transient versus Equilibrium

CMIP6 abrupt 4xCO2 simulations

[K/K]

Summary

- Tropical Pacific warming patterns play a crucial role in setting global climate sensitivity
- Opposing theories exist for the response of the tropical Pacific to global warming – "Weaker Walker vs Thermostat)
- This discrepancy can be addressed by including the influence of the extra-tropics and paying attention to time scale
- Coupled climate models struggle to capture the historical tropical Pacific warming pattern
- Past high-CO₂ warm climates suggest a weakening of largescale SST gradients once equilibrium is reached

- Andrews, T., & Webb, M. J. (2018). The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. Journal of Climate, 31(2), 641-654.
- Armour, K. C., Bitz, C. M., & Roe, G. H. (2013). Time-varying climate sensitivity from regional feedbacks. Journal of Climate, 26(13), 4518-4534.
- Held, I. M., & Soden, B. J. (2006). Robust responses of the hydrological cycle to global warming. *Journal of climate*, *19*(21), 5686-5699.
- Ma, J., Xie, S. P., & Kosaka, Y. (2012). Mechanisms for tropical tropospheric circulation change in response to global warming. Journal of Climate, 25(8), 2979-2994.
- Merlis, T. M., & Schneider, T. (2011). Changes in zonal surface temperature gradients and Walker circulations in a wide range of climates. Journal of climate, 24(17), 4757-4768.
- Xie, S.-P., C. Deser, G. A. Vecchi, J. Ma, H. Teng, and A. T. Wittenberg, 2010: Global warming pattern formation: Sea surface temperature and rainfall. J. Climate, 23, 966–986.
- Liu, Z., & Huang, B. (1997). A coupled theory of tropical climatology: Warm pool, cold tongue, and Walker circulation. Journal of climate, 10(7), 1662-1679.
- Roe, G. H., Feldl, N., Armour, K. C., Hwang, Y. T., & Frierson, D. M. (2015). The remote impacts of climate feedbacks on regional climate predictability. Nature Geoscience, 8(2), 135-139.
- Tierney, J. E., Poulsen, C. J., Montañez, I. P., Bhattacharya, T., Feng, R., Ford, H. L., ... & Zhang, Y. G. (2020). Past climates inform our future. Science, 370(6517), eaay3701.

- Dong, Y., Armour, K. C., Zelinka, M. D., Proistosescu, C., Battisti, D. S., Zhou, C., & Andrews, T. (2020). Intermodel spread in the pattern effect and its contribution to climate sensitivity in CMIP5 and CMIP6 models. Journal of Climate, 33(18), 7755-7775
- Xie, S. P., Deser, C., Vecchi, G. A., Ma, J., Teng, H., & Wittenberg, A. T. (2010). Global warming pattern formation: Sea surface temperature and rainfall. Journal of Climate, 23(4), 966-986.
- Erfani, E., & Burls, N. J. (2019). The strength of low-cloud feedbacks and tropical climate: A CESM sensitivity study. Journal of Climate, 32(9), 2497-2516.
- Wills, R. C. J., Dong, Y., Proistosecu, C., Armour, K. C., & Battisti, D. S. (2022). Systematic Climate Model Biases in the Large-Scale Patterns of Recent Sea-Surface Temperature and Sea-Level Pressure Change. Geophysical Research Letters, 49(17), e2022GL100011. https://doi.org/10.1029/2022GL100011
- McPhaden, M. J., Lee, T., & McClurg, D. (2011). El Niño and its relationship to changing background conditions in the tropical Pacific Ocean. Geophysical Research Letters, 38(15).
- Fedorov, A. V., Burls, N. J., Lawrence, K. T., & Peterson, L. C. (2015). Tightly linked zonal and meridional sea surface temperature gradients over the past five million years. Nature Geoscience, 8(12), 975-980.
- England, M. H., McGregor, S., Spence, P., Meehl, G. A., Timmermann, A., Cai, W., ... & Santoso, A. (2014). Recent intensification of wind-driven circulation in the Pacific and the ongoing warming hiatus. Nature climate change, 4(3), 222-227.
- Burls, N. J., & Fedorov, A. V. (2014). What controls the mean east-west sea surface temperature gradient in the equatorial Pacific: The role of cloud albedo. *Journal of Climate*, 27(7), 2757-2778.

- McGregor, S., Timmermann, A., Stuecker, M. F., England, M. H., Merrifield, M., Jin, F. F., & Chikamoto, Y. (2014). Recent Walker circulation strengthening and Pacific cooling amplified by Atlantic warming. Nature Climate Change, 4(10), 888-892.
- Takahashi, C., & Watanabe, M. (2016). Pacific trade winds accelerated by aerosol forcing over the past two decades. Nature Climate Change, 6(8), 768-772.
- Seager, R., Cane, M., Henderson, N., Lee, D. E., Abernathey, R., & Zhang, H. (2019). Strengthening tropical Pacific zonal sea surface temperature gradient consistent with rising greenhouse gases. Nature Climate Change, 9(7), 517-522.
- Hwang, Y. T., Xie, S. P., Deser, C., & Kang, S. M. (2017). Connecting tropical climate change with Southern Ocean heat uptake. Geophysical Research Letters, 44(18), 9449-9457.
- Kohyama, T., Hartmann, D. L., & Battisti, D. S. (2017). La Niña–like mean-state response to global warming and potential oceanic roles. Journal of Climate, 30(11), 4207-4225.
- Kang, S. M., I. M. Held, D. M. W. Frierson, and M. Zhao (2008), The response of the ITCZ to extratropical thermal forcing: Idealized slab-ocean experiments with a GCM, J. Clim., 21(14), 3521–3532.
- Kang, S. M., Xie, S. P., Shin, Y., Kim, H., Hwang, Y. T., Stuecker, M. F., ... & Hawcroft, M. (2020). Walker circulation response to extratropical radiative forcing. *Science advances*, 6(47), eabd3021.
- Luongo, M. T., Xie, S. P., Eisenman, I., Hwang, Y. T., & Tseng, H. Y. (2023). A pathway for northern hemisphere extratropical cooling to elicit a tropical response. Geophysical Research Letters, 50(2), e2022GL100719.
- Vecchi, G. A., Clement, A., & Soden, B. J. (2008). Examining the tropical Pacific's response to global warming. Eos, Transactions American Geophysical Union, 89(9), 81-83

- Andrews, T., & Webb, M. J. (2018). The dependence of global cloud and lapse rate feedbacks on the spatial structure of tropical Pacific warming. Journal of Climate, 31(2), 641-654.
- Sherwood, S. C., Webb, M. J., Annan, J. D., Armour, K. C., Forster, P. M., Hargreaves, J. C., ... & Zelinka, M. D. (2020). An assessment of Earth's climate sensitivity using multiple lines of evidence. Reviews of Geophysics, 58(4), e2019RG000678.
- Thomas, M. D., & Fedorov, A. V. (2017). The eastern subtropical Pacific origin of the equatorial cold bias in climate models: A Lagrangian perspective. Journal of Climate, 30(15), 5885-5900.
- Gu, D., & Philander, S. G. (1997). Interdecadal climate fluctuations that depend on exchanges between the tropics and extratropics. Science, 275(5301), 805-807.
- Betts and Ridgway, 1989; Held and Soden, 2006, Vecchi and Soden, 2007, Ma et al., 2012
- Zhou, C., Zelinka, M. D., & Klein, S. A. (2017). Analyzing the dependence of global cloud feedback on the spatial pattern of sea surface temperature change with a G reen's function approach. Journal of Advances in Modeling Earth Systems, 9(5), 2174-2189.
- Heede, U. K., & Fedorov, A. V. (2023). Colder eastern equatorial Pacific and stronger Walker circulation in the early 21st century: separating the forced response to global warming from natural variability. Geophysical Research Letters, 50(3), e2022GL101020.

Extra Slides

Scaling the strength of the low cloud amount feedback

 $CF(SST) = CF_o (1-c)^{\overline{SST} - \overline{SST}_o}$

where CF_o = cloud fraction before modification SST = globally-averaged sea surface temperature at each time step SST_o = globally-averaged SST for the last 100 years of the control c = arbitrary constant to control the strength of the feedback modification

Erfani and Burls, JOC, 2019 59

Scaling the strength of the low cloud amount feedback

c parameter	SST (°C)		LCC (%)		TOA imbalance (W m ⁻²)		
	Preindustrial CO ₂	$2 \times CO_2$	Preindustrial CO ₂	$2 \times CO_2$	Preindustrial CO ₂	$2 \times CO_2$	ECS (°C
No modification	16.59	18.78	37.65	37.33	0.0465	0.0350	3.08
-0.2	16.53	18.08	37.62	39.14	0.0699	-0.0054	2.18
-0.15	16.51	18.20	37.60	38.82	0.0923	0.0352	2.35
-0.1	16.53	18.32	37.63	38.46	0.0596	0.0349	2.50
-0.05	16.53	18.52	37.64	37.94	0.0751	0.0350	2.76
0.05	16.60	19.31	37.65	36.20	0.0968	0.0722	3.77
0.1	16.61	20.63	37.61	33.60	0.0725	0.2009	5.37
0.15	16.59	23.11	37.66	28.61	0.0932	0.4364	8.32
0.2	16.60	24.41	37.61	25.69	0.0928	0.4733	9.81

Erfani and Burls, JOC, 2019

Scaling the strength of the low cloud amount feedback

Changes in Large Scale Meridional and Zonal SST Gradients

Erfani and Burls, JOC, 2019

Wetter Subtropics in a Warmer World

