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Content of this webinar

• Introduction to OpenFOAM

• Examples of use of OpenFOAM for multi-physics modelling in nuclear

• How to approach a new problem with OpenFOAM

• Lessons learnt
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OpenFOAM

• Officially described as an open-source CFD toolbox

– Capabilities mirror those of commercial CFD

– Free-to-use software without paying for licensing

• ~10k to 20k estimated users worldwide 
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What is OpenFOAM really?

OpenFOAM stands for Open Field Operation and 
Manipulation
• Essentially a large, well organized, HPC-scalable, C++ 

library for the finite-volume discretization and solution of 
PDEs, and including several functionalities like ODE 
solvers, projection algorithms, and mesh search algorithms

• Object-oriented, with a high-level “fail-safe” API

4



Equation Mimicking

• Natural language of continuum mechanics: partial differential equations
• Example: turbulence kinetic energy equation

𝑑𝑘

𝑑𝑡
+ 𝛻 ∙ 𝑢𝑘 − 𝛻 ∙ 𝜈 + 𝜈𝑡 𝛻𝑘 = 𝜈𝑡

1

2
𝛻𝑢 + 𝛻𝑢𝑇

2

−
𝜖0
𝑘0

𝑘

• Objective: represent PDEs in their natural language

solve

(

fvm::ddt(k)

+ fvm::div(phi, k)

- fvm::laplacian(nu() + nut, k)

==

nut*magSqr(symm(fvc::grad(U)))

- fvm::Sp(epsilon/k, k)

);

• Correspondence between implementation and equation is clear
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OpenFOAM: Solvers

• Several solvers already available in the standard distribution:
– 5 for basic CFD
– 14 for incompressible flow (incl. adjoint, rotating frame, non-Newtonian, ...)
– 11 for compressible flow (incl. trans-sonic and super-sonic)
– 25 for multi-phase flow (incl., Euler-Euler, VOF, cavitation, free-surface,  and options for mesh 

topology changes and adaptive re-meshing)
– 1 for DNS
– 10 for combustion 
– 9 for heat transfer (incl. multi-region solid-fluid)
– 17 for particle tracking
– 2 for molecular dynamics
– 1 for Monte Carlo simulations
– 3 for electromagnetics (incl. MHD)
– 2 for stress analysis
– 1 for finance

https://www.openfoam.com/news/main-news/openfoam-v1906/post-processing
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OpenFOAM: Solvers 

• Several solvers (and solver collections) developed by the community:
– e.g., solids4foam: large collection of solvers for solid mechanics from UC Dublin 

Z. Tukovic et al. “OpenFOAM Finite Volume Solver for Fluid-Structure Interaction”, 

2018

P. Cardif et al. “A Lagrangian cell-centred finite volume method for metal 

forming simulation”, 2016
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OpenFOAM: Functionalities

• Large library with lots of available functionalities (in addition to finite-volume 

discretization and solution):
– Mesh to mesh projections

– Dynamic meshes, including adaptive meshes with topological changes

– ODE solvers

– Finite area method

– Monte Carlo (Direct simulation Monte Carlo for multi-species flows)

– Lagrangian particle tracking (two-phase flows, aerosols, DPM, etc.)

– ...

http://www.tfd.chalmers.se/~hani/kurser/OS

_CFD_2011/SamFredriksson/Tutorial_buoy

antBoussinesqPisoSurfactantFoam.pdf

https://openfoam.org/release/2-3-0/mesh-

motion/

https://cfd-

training.com/2018/01/06/how-to-use-

dynamicrefinefvmesh-library/

https://www.sciencedirect.c

om/science/article/pii/S001

0465517303375 8
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OpenFOAM: Functionalities

• Several additional functionalities (and libraries) developed by the community:
– e.g., foam-extend project (https://sourceforge.net/projects/foam-extend/)

http://openfoam-

extend.sourceforge.net/OpenFOAM_Workshops/OFW11_2016_Guimar

aes/special.html

https://foam-extend.fsb.hr
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OpenFOAM: Standing on the shoulders of 
giants

Extremely large set of 
available solvers and 

functionalities

Modular code structure, 
high-level API, object-
oriented programming

Quick and reliable 
development of new, 

advanced tools, or tailoring 
of existing ones

State-of-the-art numerics
Quality control

(ISO-9001)
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Disclaimer

• Most of the following content is taken from
– Carlo Fiorina, Ivor Clifford, Stephan Kelm, Stefano Lorenzi, 2022. “On the development of multi-

physics tools for nuclear reactor analysis based on OpenFOAM ®: state of the art, lessons learned 
and perspectives”. Nuclear Engineering and Design 387, 111604. 
https://www.sciencedirect.com/science/article/pii/S0029549321005562
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Use of OpenFOAM for nuclear multi-physics
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Pebble Bed HTGR Modelling (PBMR)

• First known attempt to model reactor 
multi-physics using OpenFOAM

• Goal to develop next generation pebble 
bed HTGR solver
– Fully 3D, unstructured mesh, parallelised, 

extensible
– 3D multi-group diffusion
– Delayed neutrons
– Xenon/Samarium 
– CFD-like modelling of fluid

• Key question whether OpenFOAM could 
handle time-dependent multi-group 
neutron diffusion in HTGRs…

• … with a positive answer:
– Seamless implementation of equations
– Stable solution (segregated approach, or 

possibility of matrix-coupled approach 
thanks to foam-extend)
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Prismatic HTGR (Penn State Univ.) 

Multi-scale thermal conduction
• Homogenization of subscale models with 

capability of reconstructing temperature 
down to TRISO particle level

• Subscale response using reduced order 
models (ROMs)

CFD-like approaches applied to heat 
transfer and fluid flow in prismatic HTGRs
• Porous medium flow: RANS with porosity 

terms; modified discretization to treat 
domain discontinuities; turbulence 
modelling in porous media

Benefits of OpenFOAM
• Existing CFD solvers (incl. turbulence)
• Easy tailoring of equations
• Available functionalities (multi-mesh, 

multi-zone, ODE, POD, …)
• Streamlined modification of 

discretization schemes

ROM reconstructed 
temperatures in TRISO 
coated particles

ROM reconstructed 
temperatures in core

Full-core coarse-mesh 
thermal-hydraulics
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Porous-medium thermal-hydraulics: 
governing equations

• The coarse-mesh governing equations for a region with uniform porosity:

• These reduce to traditional CFD approaches in clear fluid regions, a system-code-like approach 
in 1-D regions, and a sub-channel-like approach in porous regions  (multiple scales)
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Porous-medium thermal-hydraulics: 
governing equations

Ideal situation…
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Porous-medium thermal-hydraulics: 
governing equations

In practice...
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Porous-medium thermal-hydraulics: 
governing equations

In practice...

One needs familiarity with their problem and its numerics
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Porous-medium thermal-hydraulics: 
governing equations

In practice...

One needs familiarity with their problem and its numerics

OpenFOAM will often help you out with already available solvers
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MSR modelling (PoliMi -> CNRS / GeN-
Foam)

• Among the first fully-fledged multi-physics solvers for MSRs
• A reference today for the MSR community

• Benefits of OpenFOAM
– Available CFD solvers
– Arbitrary geometries
– Streamlined implementation of diffusion and DNP equations

MSFR

MSRE
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MSR modelling: advanced 

Dump tanks

• Available two-phase CFD solvers

• Radiative heat transfer

• Thermo-mechanics and moving mesh

• …

Helium 
sparging
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Fluoride Salt-Cooled High-Temperature 
Reactor (FHR, UCB)

• Discrete Element Method + coarse-mesh thermal-hydraulics + Serpent Multi-

physics interface

Coupled DEM and porous-
medium solution for 
thermal-hydaulics

Approach to 
criticality
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GeN-Foam: Generalized Nuclear Field 
operation and manipulation

• First general solver for reactor safety based on OpenFOAM

Multi-physics 
modelling of the 
MSRE

Core flowering in a SFR Assembly windows in a 
SFR

The Argonaut reactor

– Open-source + object-oriented -> use of 
previous work

– Available CFD solvers
– Available thermo-mechanics solver

– Multi-mesh with projection algorithms
– Multi-material
– Mesh deformations
– …. 25

• Benefits of OpenFOAM



• Fuel thermo-mechanics with finite volumes: from  a wild idea to a multi-dimensional solver for fuel 
behavior included in several Euratom project (in 5 years!)

OFFBEAT: OpenFoam Fuel BEhavior Tool

• Benefits of OpenFOAM
– Use of community contributions (solid4foam)
– Region-coupled boundaries and AMI
– Multi-material (cellZones)
– Object-oriented programming to streamline inclusion of correlations
– …
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HPC-oriented containment analysis -
containmentFoam

ISP-37 VANAM-M3 
experiment with 
containmentFOAM

27

• From a general CFD tool to a next-generation tool 

for containment analysis

• Benefits of OpenFOAM
– Available solvers (incl. Monte Carlo radiative heat 

transfer!)

– Turbulence models

– Conservative formulation

– Parallel scalability

– …



With a bit of ingenuity and imagination,

one can model pretty much everything… 

28
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Lessons Learned
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What’s the 
effort?

What about 

the license?

What 

competences 

do I need?

What is the 

quality of the 

result?

How do I 
approach the 

problem?



How to Approach the Problem

Let’s consider some hypothetical reactor
• Monolithic block core with coolant channels
• Lower and upper plena
• RPV

We want to model thermal-hydraulics coupled 
to 3D kinetics
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How to Approach the Problem

Coolant

Neutronic 
Domain Solid 

Structures 31



How to Approach the Problem

Coolant

Neutronics 
Domain

Solid 
Structures

Neutronics mesh
Coolant mesh (porous?)

Solid mesh (porous?)
Fields:
Cross-sections, fluxes, 
DN precursors, power

Fields:
Velocity, Pressure, 
Temperature, thermophysical 
properties

Fields: Temperature, 
thermophysical propertiesEquations:

neutron diffusion, delayed 
neutron production/decay

Equations: RANS (porous?) Equations:
Heat conduction (porous?)
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How to Approach the Problem

Neutronics Class

Inputs: solid 
temperature,  
coolant temperature

Outputs:
neutronic power

Coolant Class

Inputs: neutronic 
power and solid 
temperature

Outputs:
Coolant 
temperature

Solid 
Structures 

Class

Inputs: neutronic 
power and 
coolant 
temperature

Outputs:
Solid temperature

Mesh-to-mesh
mapping

Mesh-to-mesh
mapping
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How to Approach the Problem

Neutronics Class

Inputs: solid 
temperature,  
coolant temperature

Outputs:
neutronic power
neutronic power to 
solid, neutronic 
power to coolant

Coolant Class

Inputs: neutronic 
power and solid 
temperature

Outputs:
Coolant 
temperature, solid 
to coolant power

Solid 
Structures 

Class

Inputs: neutronic 
power and 
coolant 
temperature

Outputs:
Solid temperature

Mesh-to-mesh
mapping

Mesh-to-mesh
mapping

In reality it’s a bit more complicated than this…
• The class API needs to match the physical and numerical requirements
• Each class may need to contain nested classes (e.g. cross-sections, thermophysical properties, heat 

transfer correlations)

solid to coolant
power
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How to Approach the Problem

Create neutronics

Create solid

Create coolant

Solve neutronics

Solve solid

Solve coolant

Time control
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License

GNU GPL v3 license
• Copyleft type license: automatically affects derivative works

– If you develop a code based on OpenFOAM, you cannot distribute it without including the 
source code

• Favors a collaborative development with minimal work duplication

• Can limit investments from commercial players
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OpenFOAM Workflow

Workflow mirrors that of traditional CFD workflow

Downsides
• No official graphical user interface
• Meshing, pre-processing and post-processing are performed with separate tools
• Geometry preparation and meshing often require proprietary tools
• Requires familiarity with Linux
• Documentation often scattered
• Steep learning curve (please don’t use as a black-box)

Advantages
• Transparent
• Access to source code

Better integration of application and development

Geometry Mesh Setup Solution Post-processing
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Structure of the base library

38

• Very complete
– Discretization and linear system solution
– Mesh-to-mesh projections
– Mesh deformation
– Mesh manipulation
– Dense matrix algebra
– Ordinary differential equations
– Monte Carlo methods (Direct simulation Monte Carlo solver for transient, multi-species flows + 

molecular dynamics solver for fluid dynamics)
– Octree-based mesh search
– Proper orthogonal decomposition (foam-extend)
– Built-in (e.g., multi-application coupling) and third-party (e.g., PRECICE) code coupling 

functionalities
– …

• Object oriented
– Data encapsulation
– Multi-level API



Finite volumes

Pros:
• Flexible
• Scalable
• Intuitive
• Mathematically conservative formulation
• Ideal for convection-driven problems; CFD-friendly
• Ok for diffusion problems; thermo-mechanics and neutron diffusion
• Generally yield sparse diagonally dominant matrices; fast efficient matrix solution

Cons:
• Require good quality meshes (non-orthogonality, skewness, aspect ratio, etc.)
• Max second order accuracy in space
• First order elements, with flat faces → high mesh resolution needed for curved surfaces
• Users require familiarity with concepts associated with PDEs (well-posed problems, 

initial and boundary conditions), geometry creation, meshing, discretization, linear 
solution, etc.
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Unstructured meshes 

• Complete flexibility in terms of geometry
– Appropriate for non-traditional reactor designs and complex components

• All cells are 3D
– 1D and 2D meshes can be mimicked, but…
– Requires one to think out of the box in some cases, e.g. 1D pipes, thin gaps.

• Higher computational footprint than, for example, fixed rectangular grids
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Operator-splitting 

• One matrix for each equation + fixed 
point iteration
– Equation coupling terms treated explicitly

• Pros
– Easier preconditioning and optimal choice of 

solution method
– No need to solve all physics at once
– Simpler development and easier to debug; 

focus on one equation at a time.

• Cons
– Can be slow to converge for weakly-coupled / 

strongly non-linear equations
– Can be unstable for stiff problems, requiring 

numerical tricks to get a stable solution

41
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Parallelization 

• Domain decomposition using MPI
• Optimally scales up to thousands of CPU 

cores 
• Some bottlenecks (common to most FEM 

and FVM solvers)
– the sub-optimal sparse matrices storage format 

(LDU) that does not enable any cache-blocking 
mechanism (SIMD, vectorization)

– I/O can be limiting for very large problems

• The OpenFOAM HPC Technical Committee 
is currently working on the limitations 
– interface to external linear algebra libraries
– recent work from NVIDIA 
– ongoing Horizon2020 exaFoam project
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Computational requirements

43

• CPU cores
– Rule of thumb: 30’000 mesh cells per CPU core
– CFD

o 2D RANS-> several hundred thousand cells -> 10 CPU cores
o 3D RANS -> several hundred millions cells -> 5000 CPU cores

– Coarse-mesh thermal-hydraulics and neutron diffusion
o Full-core models -> few hundred thousand to few million cells -> workstations or laptops

• Runtime
– Steady-state simulations on the optimal number of CPU cores: several minutes to several hours
– Long-running time-dependent problems: up to a week 
– In some specific applications, such as detailed containment simulations: up to a month

• Memory requirements 
– Single-phase RANS CFD simulation -> order of 10 fields -> 1 GB of memory per million cells
– 3D discrete ordinates neutron transport -> several thousand solution fields -> 200 GB of 

memory per million cells
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Thank you!
Contact: ONCORE@iaea.org
Course Enrolment : Multi-physics modelling and simulation of nuclear reactors using OpenFOAM
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