

Hands-on OpenMC introduction II

Jiwon Choe

Tuesday, August 8, 2023 Joint ICTP-IAEA Workshop on ONCORE 1) Introduction to CEFR

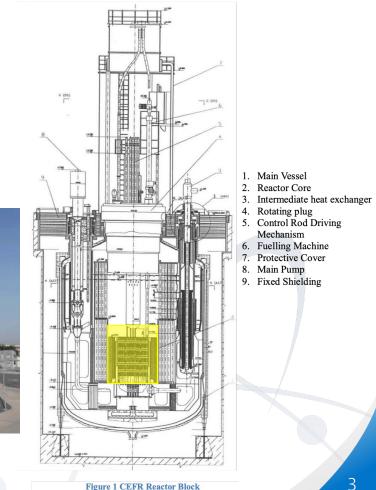
2) CEFR Core Specification & Configuration

3) OpenMC Input Structure for CEFR

4) References

CONTENTS

Introduction to CEFR 01 China Experimental Fast Reactor (CEFR)


About CEFR

- China's first fast neutron reactor
- Pool-type sodium-cooled oxide-fueled fast reactor with thermal capacity of 65 MW and 20 MWe
- Start-up tests in 2010-2011, operation in July 2011

IAEA CRP (I31032) **Neutronics Benchmark of CEFR Start-Up Tests**

- 6 different start-up tests
 - Fuel loading and criticality
 - Control rod worth
 - Sodium void reactivity
 - Temperature reactivity
 - Subassembly swap reactivity
 - Foil activation

Related TECDOC and TCS are publishing soon

REAL IN THE

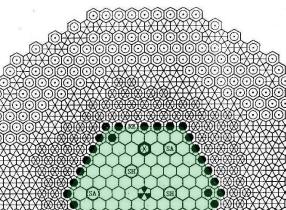
CEFR (Photo: China Institute of Atomic Energy)

Main parameter of CEFR

Parameter	Value
Thermal/electric power, MW	65/20
Designed life, year	30
Maximum burn-up, MWd/t	60,000
Maximum neutron flux, cm ⁻² s ⁻¹	3.2×10 ¹⁵
Refueling period, day	80
Diameter/height of main vessel, m	8.0/12.2
Covering gas pressure, MPa	0.005
Core inlet/outlet temperature (full power), °C	360/530
SA lattice pitch, mm	61.0
SA outer/inner flat-to-flat dimension, mm	59.0/56.6
Wrapper thickness, mm	1.2

* All the parameters are given for first loading, at installation temperature of 20°C, and in nominal value or design value.

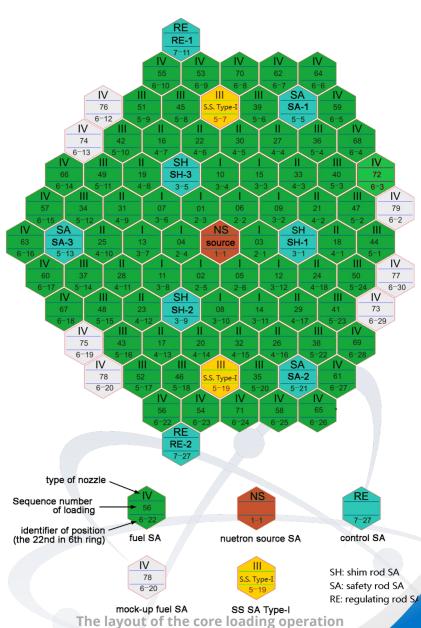
Key specifications


Fuels

- Fuel region of 450 mm with 64.4 wt.% ²³⁵U of UO₂
- Blanket region of 350 mm with 0.3 wt.% ²³⁵U of UO₂
- B₄C with different ¹⁰B enrichment
 - 2 regulating CRs (RE) with natural ¹⁰B
 - 3 shim CRs (SH), 3 safety CRs (SA) with 92% enriched ¹⁰B
 - Boron shielding subassemblies with natural ¹⁰B

02 CEFR Core Specification 8 CEFR Core Core Cc

CEFR Core Loadin


- Criticality with 72 ft
 - Other CRs are at out-o
- Operating core cor

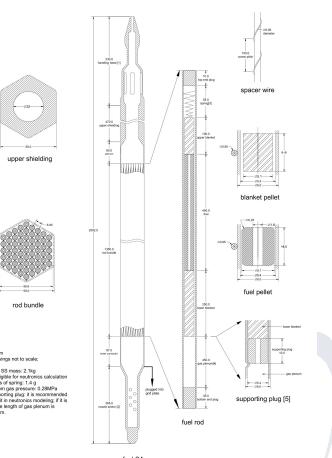
Legend	Assembly Type	Number
0	Fuel Assembly	79
8	1-Steel Shielding Assembly	2
۲	2-Steel Shielding Assembly	37
\otimes	3-Steel Shielding Assembly	132
\otimes	4-Steel Shielding Assembly	223
\bigcirc	Boron Shielding Assembly	230
(SA)	Safety Rod Assembly	3
RE	Regulating Rod Assembly	2
(III)	Shim Rod Assembly	3
÷.	Neutron Source Assembly	1

CEFR Core Layout (First Loading) Figure 1 CEFR Core Layout (First Loading)

03 OpenMC Input Structure for CEFR Core Modelling in Brief What participants will do in this workshop

Single fuel sub-assembly modelling

Preprocessing data


 Geometry expansion and material density change from room temperature (20°C) to cold state (250°C) based on measured information

Making OpenMC input script

- Define surfaces that make up the fuel subassembly
- Define pins and lattices in 2D for fuel region
- Stack universes in 3D
- Configure a core
- Set calculation options: basic options, plotting, and tallies

Simulation OpenMC

- All participants get the same k-eff results
- Visualization the output, such as pin-power distribution, flux spectrum

03 OpenMC Input Structure for CEFR Core Modelling in Brief Optional Activities

The rest of the SAs can be defined in a similar manner

Expanding this tutorial to modelling a whole core of CEFR

to simulate 3 simplified benchmarks based on CEFR Start-up Test

• first criticality, control rod worth, and sodium void reactivity.

- The IAEA TCS includes not only rest of core specifications but also modelling dataset of two Monte Carlo codes (OpenMC and Serpent)
- Let's compare your results with those in the TCS

- Fundamentals of Neutron Simulation of a Fast Reactor Based on IAEA's Benchmark of China Experimental Fast Reactor Start-up Tests, IAEA Training Course Series, IAEA-TCS-xx, Publishing soon
- Neutronics Benchmark of CEFR Start-Up Tests, IAEA TECDOC Series, IAEA-TECDOC-xxxx, Publishing soon (I31032)
- X. Huo, et al., Technical Specifications for Neutronics Benchmark of CEFR Start-up Tests (CRP-I31032), China Institute of Atomic Energy, 2019
- https://www.iaea.org/newscenter/news/new-crp-neutronics-benchmark-of-cefrstart-up-tests-i31032

THANK YOU

.

¢

0