

Joint ICTP-IAEA Workshop on Open-Source Nuclear Codes for Reactor Analysis August 7-11 2023

Introduction to GeN-Foam - Theory

Carlo Fiorina

About these two lectures

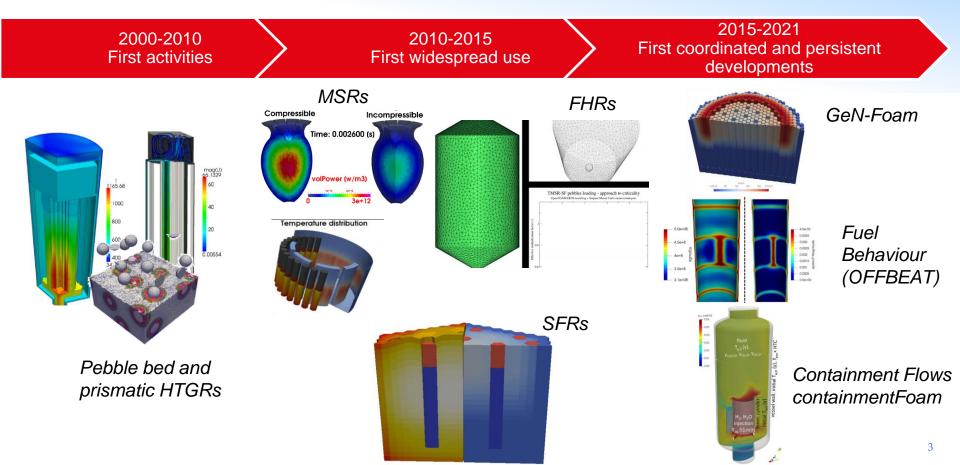
IAEA

What to expect

• A crash introduction to GeN-Foam: theory and practice

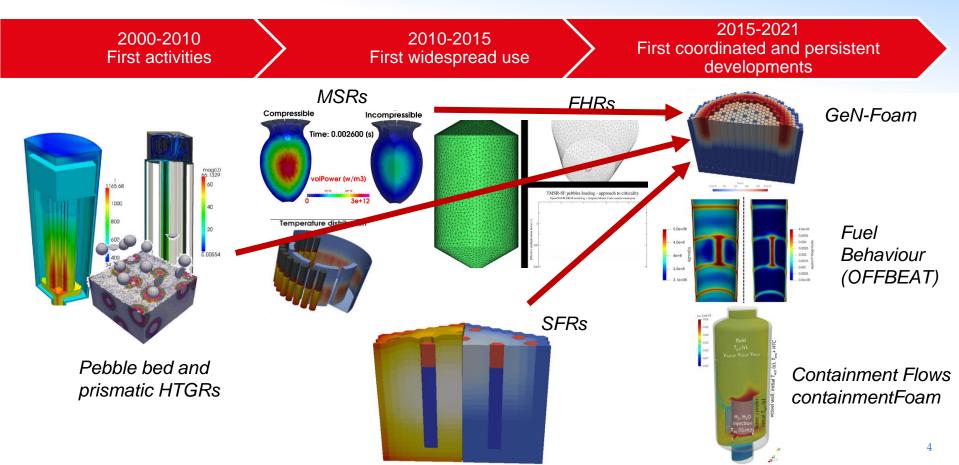
What not to expect

- A full course on the multi-physics analysis of nuclear reactors
- A full course on the use of GeN-Foam

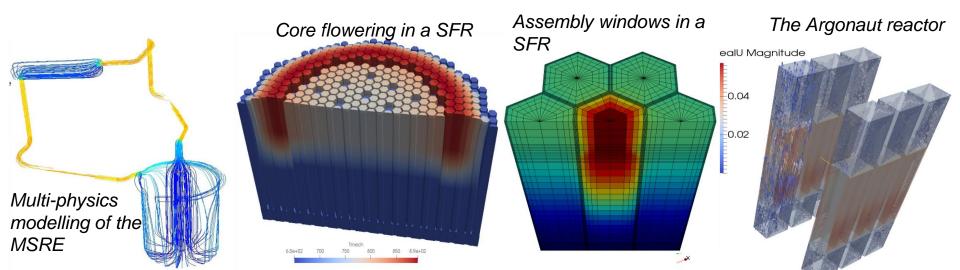

Objectives

- Brief recap of multi-physics modelling of nuclear reactors
- Description of the basics structure of GeN-Foam
- Understanding of modelling capabilities of GeN-Foam and its pros & cons
- How to approach GeN-Foam
- References, keywords, best practices that can simplify an autonomous learning of GeN-Foam

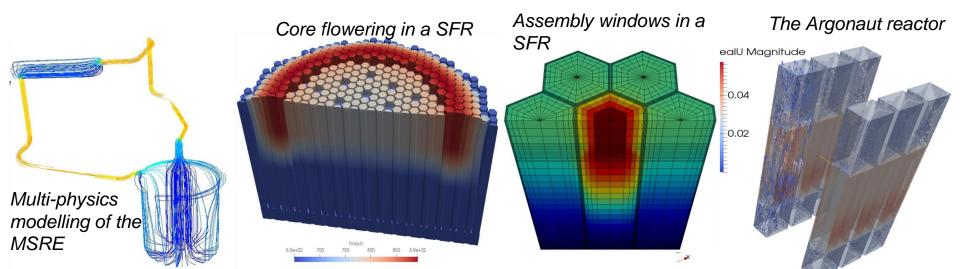
Warning: some slides with a lot of text. This is meant for autonomous use after the lecture.


Use of OpenFOAM for nuclear multi-physics

Use of OpenFOAM for nuclear multi-physics



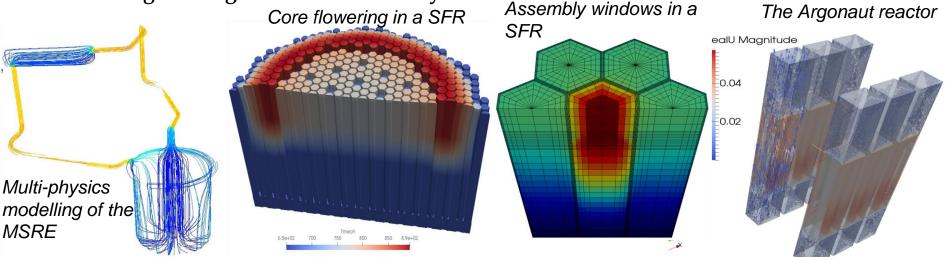
GeN-Foam: Generalized Nuclear Field operation and manipulation



- Since 2014, EPFL + PSI + contributions from various institutions
- Developed to complement legacy codes with more flexibility, mainly targeted to advanced concepts
- Distributed to 20+ institutions. Now freely available from GitLab (link on IAEA/ONCORE website)

GeN-Foam: Generalized Nuclear Field operation and manipulation

- Status:
 - Source code Stable version with a complete set of functionalities for most applications
 - V&V Mostly verified. Validation ongoing.
 - Documentation First version of a doxygen-based documentation + tutorials
- An extremely flexible code



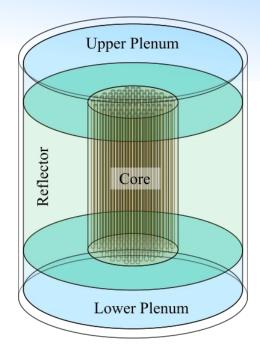
GeN-Foam: Generalized Nuclear Field operation and manipulation

IAEA

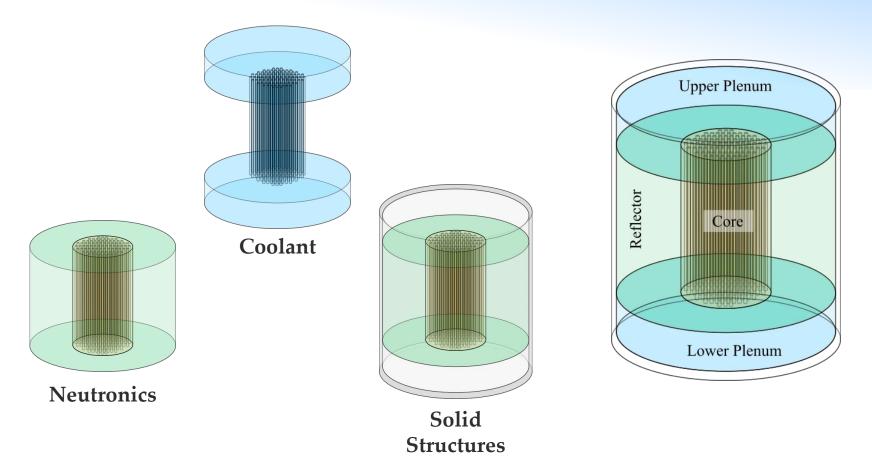
- Status:
 - Source code Stable version with a complete set of functionalities for most applications
 - V&V Mostly verified. Validation ongoing.
 - Documentation First version of a doxygen-based documentation + tutorials
- An extremely flexible code that requires some commitment and sound background both in nuclear engineering and numerical analysis

GeN-Foam: V&V status

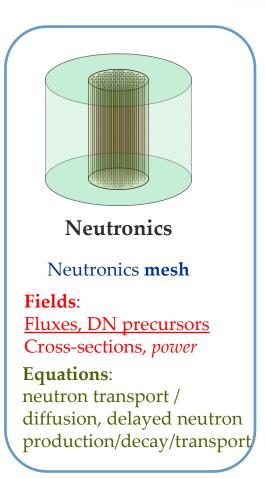
Brief description	Neutronics	Thermal-hydraulics	Thermal-mechanics	Coupling
Comparison against PARCS for a PWR a mini-core [15]	x (SP3)			
Comparison against Serpent for the CROCUS reactor [15]	x (SP3)			
Comparison against Serpent for the ESFR [17]	x (Diffusion)			
Comparison against Serpent for a PWR mini-core [17]	x (Diffusion)			
Comparison against various codes for the ESFR-SMART design [21]	x (Diffusion)			
Verification against analytic solutions for a simplified MSR [22]	x (Diffusion)	x (1 phase)		Х
Verification against the CNRS MSR benchmark [23]	x (Diffusion)	x (1 phase)		Х
Comparison against TRACE for the ESFR core [3,18]	x (Diffusion)	x (1 phase)	Х	Х
Verification using the method of manufactured solutions [6]		x (1-2 phases)		
Validation against the Godiva IV experiment [16]	x (SN)			
Validation against the FFTF LOFWOS Test 13 [4]	x (pk)	x (1 phase)		
Validation against the KNS-3-L22 experiment on sodium boiling [4]		x (1-2 phases)		
Validation against the ISPRA experiment on sodium boiling [4]		x (1-2 phases)		
Validation against the NEA PSBT benchmark on water boiling		x (1-2 phases)		
Validation against CROCUS measurements [19]	x (Diff, SP3, SN)			

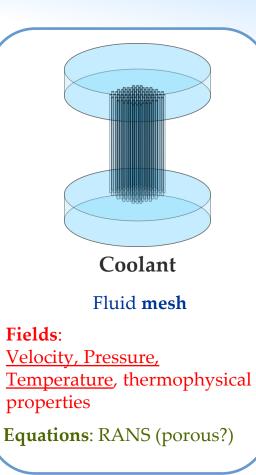

Basics

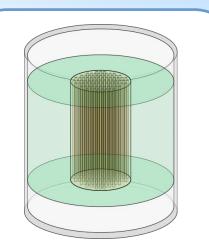
Let's consider some hypothetical reactor


- Core with coolant channels
- Lower and upper plena
- RPV

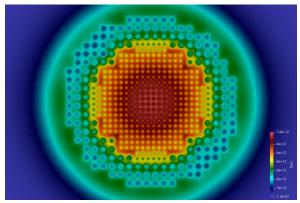
We want to model thermal-hydraulics coupled to 3D kinetics and thermal-mechanics

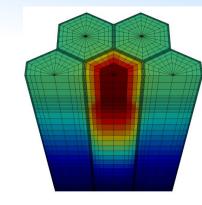

Basics





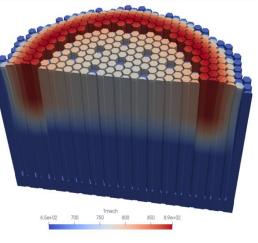
Basics





Solid Structures

Thermo-mechanic **mesh** Fields: <u>Temperature</u>, <u>Displacement</u>, thermophysical properties, *stresses*, *strains* **Equations**: Heat conduction (porous?) Cont. mechanics (porous?)


Physics in GeN-Foam

<u>Neutronics</u>

- Diffusion
- Adjoint diffusion
- SP3
- SN
- Point-kinetics
- Precursor transport

Thermal-hydraulics:

- RANS CFD + porous-med
- One and two phase
- Two phase models for sodium and water (not fully validated)

8.0e+02 750 700

- 650 - 600 - 5.7e+02

S

Thermal-mechanics

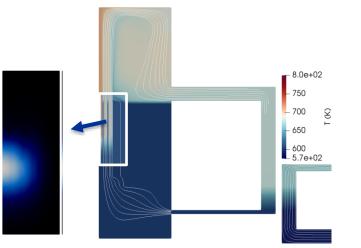
- Linear elasticity
- BC for multimaterial and contact

Physics in GeN-Foam

<u>Source code</u>		Case folder master GeN-Foam / Tutorials / 3D_SmallESFR Lock History / rootCase / 0 / + •		
master ~ GeN-Fo	bam / GeN-Foam / classes / + Lock History Find file Web I			
Merge branch 'develop' foam-for-nuclear project authored 2 months ago		Updated GeN-Faom to OpenFOAM v2006, which broke some aspects of FFSEulerFoam ••• Stefan Radman authored 2 years ago		
Name	Last commit	Name	Last commit	
timultiphysicsControl	IPorted restructuring of FFSEulerFoam (as of commit 5fd0cfd7fbb32ec7	fluidRegion	Updated GeN-Faom to OpenFOAM v2006, which broke some aspec	
neutronics	Merge branch 'develop' after upgrade to OF v2112	🗅 neutroRegion	All tutorials have been updated with the exception of the regressio	
thermalHydraulics	Updated to OpenFOAMv2206	thermoMechanicalRegion	All tutorials have been updated with the exception of the regressio	
thermoMechanics	Upgrade to OpenFOAM v2112	C cellToRegion	All tutorials have been updated with the exception of the regressio	

<u>controlDict</u>

true;
true;
true;


1

solveThermalMechanics true;

- 3 different meshes
 - · Different refinements

– Different regions of the reactor

• Mesh-to-mesh projection of coupling fields

Fixed-point iteration Time loop Simple Outer iteration loop Accurate Solve fluid-mechanics Stable Thermal-Well-suited for modular / hydraulics Solve fluid and structure enthalpy extensible code Interpolate thermal-hydraulics fields to thermal-mechanics mesh Thermal-Semi-implicit: Solve thermal-mechanics mechanics Extended PIMPLE loop: Interpolate displacement field to all meshes and deform meshes pressure-velocity coupling rarely fully implicit in Interpolate thermal-hydraulics fields to neutronics mesh commercial CFD solvers The rest can be iterated till Solve neutronics Neutronics full convergence Interpolate neutronics power density to thermal-hydraulics mesh

Neutronics – energy – thermal-mechanics ٠ coupling can be fully resolved on last pimple iteration

```
//- Correct flow regime map
if (solveFM or solveE)
    thermalHvdraulics.correctModels(solveFM, solveE);
//- Solve fluid-mechanics
if (solveFM)
    thermalHydraulics.correctFluidMechanics(FMResidual);
    if (!solveE and !solveN and !solveTM)
        Info << endl;</pre>
//- Solve energy
if (!multiphysics.finalIter())
{
    if (solveE)
        thermalHydraulics.correctEnergy(EResidual);
        if (!solveN and !solveTM)
            Info << endl;</pre>
```

//- Solve energy-neutronics-thermomechanics coupling on last outer iteration else if (solveE or solveN or solveTM)

```
scalar couplingResidual = 0.0;
label couplingIter = 0;
   Info << "Coupling iteration " << couplingIter << endl;</pre>
   //- Reset as the thermoMechanics.correct(couplingResidual) and
   // neutronics.correct(couplingResidual) always max() it against their
    // solution residual, meaning that with no reset, it will stay stuck
   // at its max value (likely the one of the first coupling iteration)
    couplingResidual = 0.0:
    if (solveE)
        thermalHydraulics.correctEnergy(couplingResidual);
```

```
if (!solveN and !solveTM)
   Info << endl;
```

```
if (solveTM or solveN)
```

```
#include "correctCouplingFields.H"
```

```
if (solveTM)
```

do

thermoMechanics.interpolateCouplingFields(mechToFluid); thermoMechanics.correct(couplingResidual); neutronics.deformMesh(mechToNeutro,thermoMechanics.meshDisp());

```
if (solveN)
```

couplingIter++;

neutronics.interpolateCouplingFields(neutroToFluid); neutronics.correct couplingResidual, couplingIter); (*powerDensity) *= 0.0; fluidToNeutro.mapTgtToSrc neutronics.powerDensity(),

```
plusEqOp<scalar>(),
    powerDensity->primitiveFieldRef()
);
```

master

master

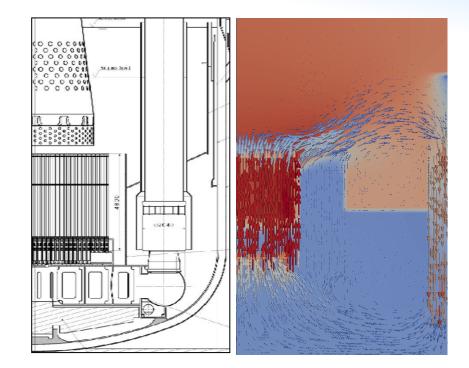
Tutorial ESFR: added README file, commented controlDict and

foam-for-nuclear project authored 2 years ago

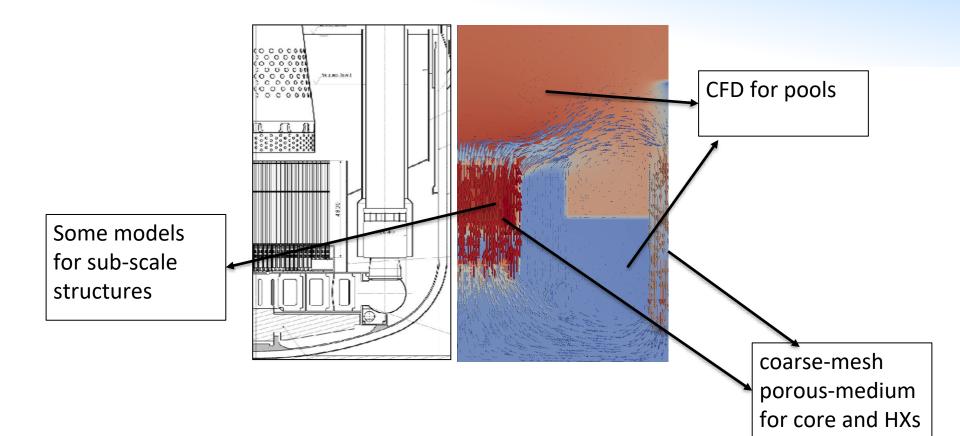
After the last large commit from Stefan (dcoc292d), foam-for-nuclear project authored 11 months ago	fvSolut
🕒 fvSolution 🛱 1.78 KiB	3
1 /**- C++ -**\	5
2	6
3 \\ / F ield OpenFOAM: The Open Source CFD Toolbox 4 \\ / O peration Website: https://openfoam.org	7
5 \\ / And Version: 6	
6 \\/ M anipulation	
7 **/	10
8 FoamFile	11
9 { 10 version 2.0;	
11 format ascii;	12
12 class dictionary;	13
<pre>13 location "system";</pre>	14
14 object fvSolution; 59 }	15
60 60	16
61 PIMPLE // a detailed explanation of this dictionary is available in this	17
62 // same fvSolution file of the 1D_boiling tutorial	18
63 {	19
64 nCorrectors 2;//pressure-velocity correctors	20
65 nNonOrthogonalCorrectors 0; 66 // partialEliminationMode implicit;	21
67 momentumMode faceCentered;	22
68 }	
69	23
70 relaxationFactors	24
71 {	25
72 equations 73 {	26
74 ".*" 1;	27
75 }	28
76 }	29
	20

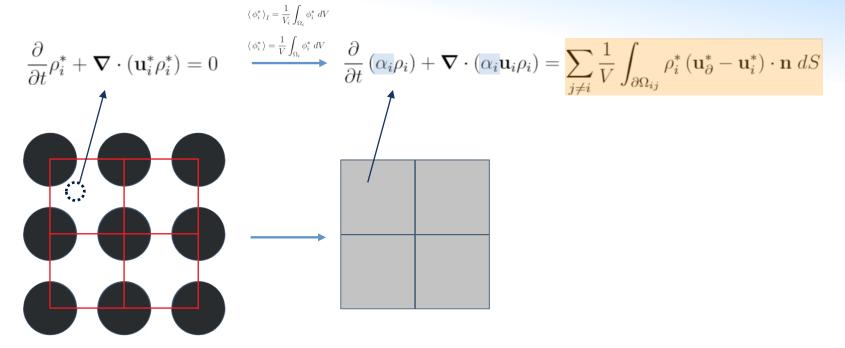
GeN-Foam / Tutorials / 3D_SmallESFR / rootCase / system / fluidRegion / fvSolution

utic	on [0] 1.43 KiB	
1	/*	*- C++ -**\
2	========	
3	\\ / F ield	OpenFOAM: The Open Source CFD Toolbox
4	\\ / O peration	Version: 2.2.1
5	\\ / And	Web: www.OpenFOAM.org
6	\\/ M anipulation	
7	(_*/
8	FoamFile	
9	{	
10	version 2.0;	
11	format ascii;	
12	class dictionary;	
13	object fvSolution;	
14	}	
15	// * * * * * * * * * * * * *	* * * * * * * * * * * * * * * * * * * *
16		
17	nOuterCorrectors	6; // number of energy-pressure-velcity correctors
18	tightlyCoupled	false; // tight coupling, at each time step, of
19		<pre>// neutronics, energy and thermal-mechanics.</pre>
20 21		<pre>// The coupling is regulated by the two // parameters below</pre>
22	timeStepResidual	0.00005; // max allowed residual at each time step
23	maxTimeStepIterations	6; // for transient.
24	maximescepticeracions	<pre>// Maximum iterations in the sub-loop between</pre>
25		<pre>// neutronics, energy and thermal-mechanics.</pre>
26		<pre>// The sub-loop is performed at the last outer</pre>
27		// corrector (see flag above)
28		,,
29	// ***************	***************************************


Thermal-hydraulics

- GeN-Foam was born for full-core and full-primary-circuit safety analyses
- Need for reducing computational footprint w.r.t. RANS models
- In legacy nuclear codes:
 - 1-D system-code approach
 - Sub-channel approach
- In GeN-Foam (and other solvers based on PDE libraries): porous-medium approach
 - Can be based on standard CFD solution algorithms
 - Equivalent to 1-D system codes if restricted to 1-D (essentially, a 3-D version of a system code where interaction with the structure is modelled using drag coefficients and Nusslet numbers)
 - Can reproduce results of sub-channel codes if properly tuned
 - Reverts back to fine-mesh RANS models in clear-fluid regions (plena, pools) -> fully implicit hybrid coarse/fine mesh simulations


Thermal-hydraulics: combined coarse / fine-mesh



Thermal-hydraulics: combined coarse / fine-mesh

Porous-medium thermal-hydraulics: volume averaging

Volume averaging results in:

- Additional variables (phase fraction, tortuosity, etc.);
- Additional source terms that require experimentally-informed closure;

The multi-phase coarse-mesh governing equations (Navier-Stokes and enthalpy)

are:

$$\frac{\partial}{\partial t} (\alpha_i \rho_i) + \nabla \cdot (\alpha_i \mathbf{u}_i \rho_i) = -\Gamma_{i \to j}$$

$$\frac{\partial}{\partial t} (\alpha_i \rho_i \mathbf{u}_i) + \nabla \cdot (\alpha_i \rho_i \mathbf{u}_i \otimes \mathbf{u}_i) =$$

$$-\alpha_i \nabla p + \nabla \cdot (\alpha_i \sigma_{d,i}) + \alpha_i \rho_i \mathbf{g} - \mathbf{S}_{\mathbf{u},i \to j}$$

$$\frac{\partial}{\partial t} (\alpha_i \rho_i h_i) + \nabla \cdot (\alpha_i \mathbf{u}_i \rho_i h_i) =$$

$$\nabla \cdot (\alpha_i \kappa_i T_i \cdot \nabla T_i) + \alpha_i \frac{\partial}{\partial t} p + \alpha_i \rho_i \mathbf{u}_i \cdot \mathbf{g} + \alpha_i q_{int,i} - S_{h,i \to j}$$

The multi-phase coarse-mesh governing equations (Navier-Stokes and enthalpy)

are:
$$\frac{\partial}{\partial t}(\alpha_i \rho_i) + \nabla \cdot (\alpha_i \mathbf{u}_i \rho_i) = -\Gamma_{i \to j}$$
Mass transfer between phasesVolume
fraction
occupied
by the
phase $\frac{\partial}{\partial t}(\alpha_i \rho_i \mathbf{u}_i) + \nabla \cdot (\alpha_i \rho_i \mathbf{u}_i \otimes \mathbf{u}_i) =$
 $-\alpha_i \nabla p + \nabla \cdot (\alpha_i \sigma_{d,i}) + \alpha_i \rho_i \mathbf{g} - \mathbf{S}_{\mathbf{u},i \to j}$ Momentum exchange with
other phases (or structure)
Energy exchange with
other phases (or structure) $\frac{\partial}{\partial t}(\alpha_i \rho_i h_i) + \nabla \cdot (\alpha_i \mathbf{u}_i \rho_i h_i) =$ $\nabla \cdot (\alpha_i \kappa_i T_i \cdot \nabla T_i) + \alpha_i \frac{\partial}{\partial t} p + \alpha_i \rho_i \mathbf{u}_i \cdot \mathbf{g} + \alpha_i q_{int,i} - S_{h,i \to j}$

The multi-phase coarse-mesh governing equations (Navier-Stokes and enthalpy) are: $\frac{\partial}{\partial t} (\alpha_i \rho_i) + \nabla \cdot (\alpha_i \mathbf{u}_i \rho_i) = -\Gamma_{i \to j} \qquad \text{Mass transfer between phases}$ $\frac{\partial}{\partial t} (\alpha_i \rho_i \mathbf{u}_i) + \nabla \cdot (\alpha_i \rho_i \mathbf{u}_i \otimes \mathbf{u}_i) = \qquad \qquad \text{Momentum entry}$ Momentum exchange with $\nabla \cdot (\alpha_i \rho_i \mathbf{u}_i \otimes \mathbf{u}_i) =$ $-\alpha_i \nabla p + \nabla \cdot (\alpha_i \sigma_{d,i}) + \alpha_i \rho_i \mathbf{g} - \mathbf{S}_{\mathbf{u},i \to j}$ Volume other phases (or structure) fraction occupied $rac{\partial}{\partial t}\left(lpha_{i}
ho_{i}h_{i}
ight) +\mathbf{
abla}\cdot\left(lpha_{i}\mathbf{u}_{i}
ho_{i}h_{i}
ight) =$ Energy exchange with by the other phases (or structure) phase $\boldsymbol{\nabla} \cdot (\alpha_i \kappa_i \boldsymbol{T_i} \cdot \boldsymbol{\nabla} T_i) + \alpha_i \frac{\partial}{\partial t} p + \alpha_i \rho_i \mathbf{u}_i \cdot \mathbf{g} + \alpha_i q_{int,i} - S_{h,i \to j}$

These reduce to traditional CFD approaches in clear fluid regions and a systemcode-like approach in 1-D regions (multiple scales).

In one phase, with some changes in notation:

 $\nabla \cdot \boldsymbol{u} = 0$ Volume fraction occupied by the phase = porosity

$$\frac{\partial(\chi\rho \boldsymbol{u})}{\partial t} + \boldsymbol{\nabla} \cdot (\chi\rho \boldsymbol{u} \otimes \boldsymbol{u}) = \boldsymbol{\nabla} \cdot (\mu_t \boldsymbol{\nabla} \boldsymbol{u}) - \boldsymbol{\nabla}(\chi p) + \chi \boldsymbol{F}_g + \chi \boldsymbol{F}_{ss}$$

Momentum exchange with the sub-scale structure

$$\frac{\partial(\chi\rho e)}{\partial t} + \nabla \cdot \left(\chi\rho u\left(e + \frac{p}{\rho}\right)\right) = \nabla \cdot (\chi k_t \nabla T) + F_{ss} \cdot u + \chi \dot{Q}$$
Energy
exchange with the sub-scale structure

Porous-medium thermal-hydraulics: Sub-scale structures – momentum exchange

$$\frac{\partial(\chi\rho \boldsymbol{u})}{\partial t} + \boldsymbol{\nabla} \cdot (\chi\rho \boldsymbol{u} \otimes \boldsymbol{u}) = \boldsymbol{\nabla} \cdot (\mu_t \boldsymbol{\nabla} \boldsymbol{u}) - \boldsymbol{\nabla}(\chi p) + \chi \boldsymbol{F}_g + \chi \boldsymbol{F}_{ss}$$

$$F_{ss} = \kappa(u_D) \cdot u_D$$

$$\kappa(u_D)_{ii} = \frac{f_{D,i}\rho u_{D,i}}{2D_h\gamma^2}$$

In 1-D, steady state

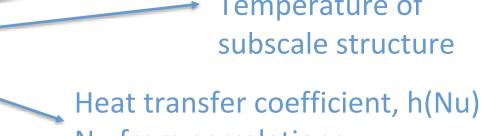
$$\frac{\Delta p}{L} = \frac{\partial p}{\partial x} = F_{ss,x} = 0.5 f_D \rho v^2 \frac{1}{D}$$

$$\Delta p = 0.5 f_D \rho v^2 \frac{L}{D}$$

Darcy friction
factor

Porous-medium thermal-hydraulics: Sub-scale structures – energy exchange

$$\frac{\partial(\chi\rho e)}{\partial t} + \boldsymbol{\nabla} \cdot \left(\chi\rho \boldsymbol{u}\left(e + \frac{p}{\rho}\right)\right) = \boldsymbol{\nabla} \cdot \left(\chi k_t \boldsymbol{\nabla} T\right) + \boldsymbol{F}_{ss} \cdot \boldsymbol{u} + \chi \dot{Q}$$

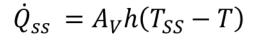

Temperature of

Nu from correlations

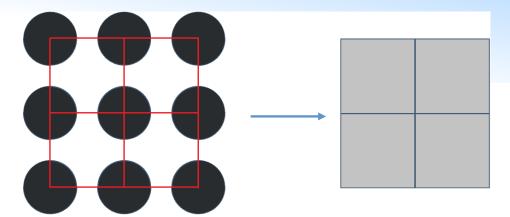
 $h(T_{SS} - T)$ in W/m² Multiply by volumetric area

 $Q_{ss} \propto h(T_{ss} - T)$

$$\longrightarrow \dot{Q}_{ss} = A_V h (T_{ss} - T)$$


Porous-medium thermal-hydraulics: Sub-scale structures – energy exchange

develop	 GeN-Foam / Tutoria 	ls / 3D_Smal	IESFR / roo	tCase / constant / fluidRegion / phaseProperties
1001	draft of user manual •••• n-for-nuclear project authored 1 mc	onth ago		
🕒 phasePr	roperties [^o 1 7.04 KiB			
1	/*	*- C++		*/
2		1		Υ.
3	\\ / Field	OpenFOAM:	The Open S	ource CFD Toolbox
4				enfoam.org
5		Version:	6	
6				*/
8				/
9				
10	version 2.0;			
121				
122	regimeMapModels			
123	{			
124	"lamTurb"			
125	{			
126	type	onePar	ameter;	
127	parameter	"Re";		
128	regimeBounds			
129	{			
130	"laminar"	(0	1000);	<pre>//- 0 is automatically extended</pre>
131			,,,	// to -inf
132	"turbulent"	(2300	2301);	//- 2031 is automatically extended
133		,	,,,	// to +inf
134	}			
135	}			


37	
38	// //
39	// REGIME PHYSICS FOR EACH REGIME //
40	// //
41	
42	physicsModels
43	{
44	dragModels
45	{
46	"diagrid:axialReflector:radialReflector:follower:controlRod:innerCore:outerCore"
47	{
48	type ReynoldsPower;
49	coeff 0.687;
50	exp -0.25;
51	}
52	}
53	
54	heatTransferModels
55	{
56	"diagrid:axialReflector:radialReflector:follower:controlRod:innerCore:outerCore"
57	{
58	type byRegime;
59	regimeMap "lamTurb";
60	
61	<pre>//- List of subdicts specifying a heatTransferModel for each regime</pre>
62	// in the lamTurb regimeMap
63	"laminar"
64	{
	<pre>// Nu = const + coeff * Re^expRe * Pr^expPr</pre>
	<pre>type NusseltReynoldsPrandtlPower;</pre>
67	const 4;
68	coeff 0;
69	expRe 0;
70	expPr 0;
71	}
72	"turbulent"
73	{

Porous-medium thermal-hydraulics: Sub-scale structures – the structures themselves

At minimum, 0-D

$$\rho_{SS} c_{p,SS} \frac{\partial T_{SS}}{\partial t} = A_V h(T - T_{SS})$$

Or 0-D with (coarse-mesh) thermal diffusivity

$$\rho_{SS} c_{p,SS} \frac{\partial T_{SS}}{\partial t} = \nabla \cdot (\gamma \boldsymbol{k_{SS}} \nabla T) + A_V h(T - T_{SS})$$

But not always enough...

Porous-medium thermal-hydraulics: Sub-scale structures – the structures themselves

- In GeN-Foam we have passive structures...
 - Modelled as in the previous slide
 - Can be used for instance to model assembly wrappers, reflectors, diagrids, etc.
- ... and power models
 - More complex models
 - Can be used together with a passive structure
 - Can be used to model nuclear fuel, electrically heated rods, heat exchangers, fixed-temperature structures, fixed-power structures, etc.
- For example, the nuclearFuelPin power model takes the power density from neutronics (or from a dictionary, if not solving for neutronics); solves, in each cell, a 1-D heat conduction problem in fuel, gap, and cladding; and gives back to the fluid equation the surface temperature of the cladding (which represents Tss in our equations).

Porous-medium thermal-hydraulics

master

懲

GeN-Foam / Tutorials / 2D_MSFR / rootCase / constant / fluidRegion / phaseProperties

Changed powerModels from constantPower and constantTemperature

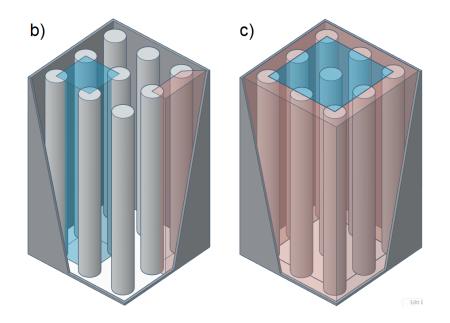
foam-for-nuclear project authored 9 months ago

phaseProperties [⁰₁ 2.77 KiB

1	/*			*- C+	+ -**\
2					
З	//	/	F ield	OpenFOAM:	The Open Source CFD Toolbox
4	//	/	0 peration	Website:	https://openfoam.org
5	//	/	A nd	Version:	6
6	//	/	M anipulation	1	
7	*				*/

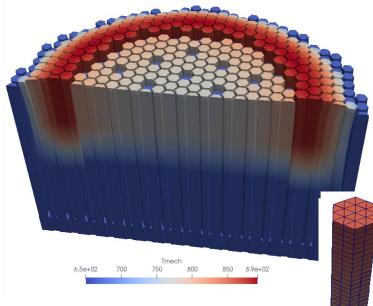
```
thermalHydraulicsType "onePhase";
     --- STRUCTURES PROPERTIES ----- //
     ----- //
   structureProperties
30
      "intermed:main fd"
        volumeFraction
                      0;
        Dh
                      1;
      "hx"
      £
        volumeFraction
                      0.6;
        Dh
                      0.01;
41
        powerModel
                      fixedTemperature;
           type
           volumetricArea 200;
           т
                      900;
46
```

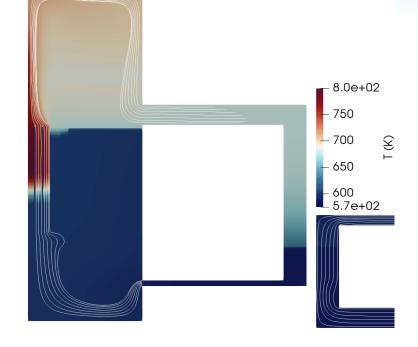
	nnerCore:outerCore"	
{		0.749520068
	volumeFraction Dh	0.718520968; 0.00365;
	Dn	0.000;
	powerModel // power	r production model for the sub-scale structure
	{	
	type	nuclearFuelPin;
	// The volumetr	ricArea keyword is now deprecated for the
		Pin and heatedPin powerModels, as it can be shown
		raging a cylindrical pin (or a bundle of pins) over
		any shape, the interfacialArea and volumeFraction
		lting porous pin structure are not independent, yet
		volumetricArea = 2*volumeFraction/outerPinRadius
	// volumetricAr	
	powerDensity	0; //- fields on disk have priority, if they
	, ,	<pre>// are not found, this value is used</pre>
	fuelInnerRadius	-
	fuelOuterRadius	5 0.004715;
	cladInnerRadius	
	cladOuterRadius	5 0.005365;
	fuelMeshSize	30;
	cladMeshSize	5;
	fuelRho	10480;
	fuelCp	250;
	cladRho	7500;
	cladCp	500;
	gapH	3000;
	fuelK	3;
	cladK	20;
	fuelT	668;
	cladT	668;
	}	
	passiveProperties	(/ these are the properties of the metallic unappear
	{	<pre>// these are the properties of the metallic wrappers</pre>
	۱ volumetricArea	5.
	rhoCp	5; 4.8e6;
	т	668;
	}	
	1	


54

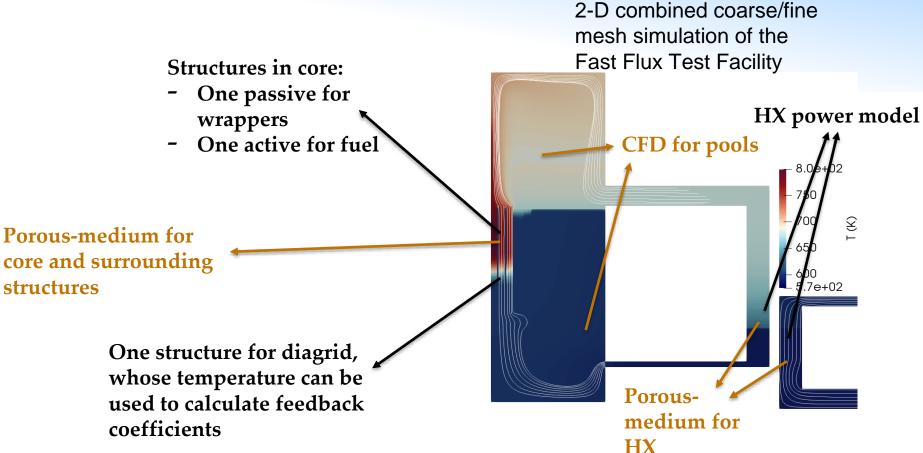
74

Porous-medium thermal-hydraulics: possibility to mimic sub-channel simulations


One can assign different properties to different regions to replicate results of sub-channel codes

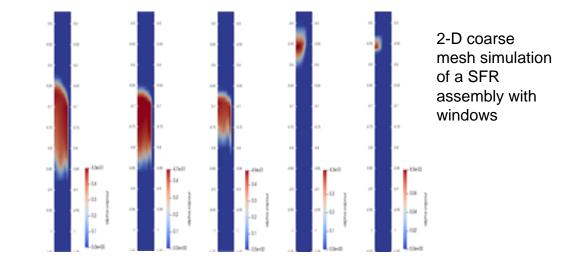

Thermal-hydraulics in GeN-Foam - examples

3-D coarse mesh simulation of a SFR core



2-D combined coarse/fine mesh simulation of the Fast Flux Test Facility

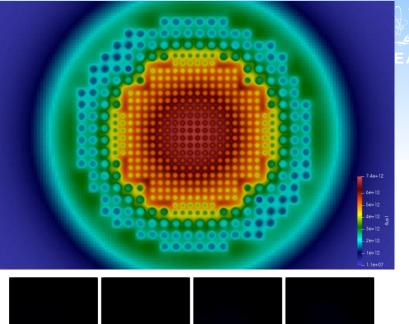
Thermal-hydraulics in GeN-Foam - examples

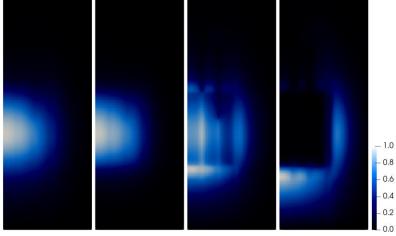


Two-phase flow

- Same approach as for single-phase thermal-hydraulics (porous-medium with sub-scale structure)
- Beyond the scope of this lecture. Further info in the EPFL PhD thesis of Stefan Radman

Neutronics

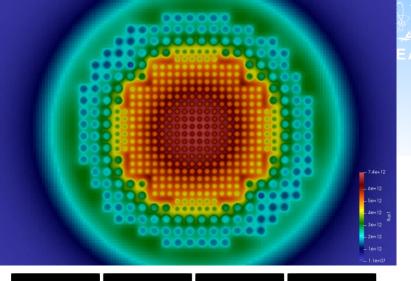

- Models for fluxes/power
 - Diffusion
 - Adjoint diffusion
 - SP3
 - Discrete ordinates (only steady-state)
 - Point-kinetics

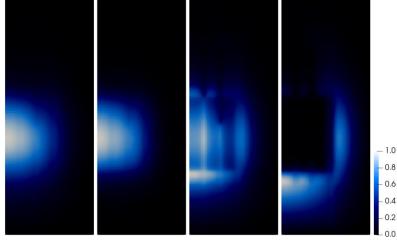

fvm::ddt(IV,flux_i])- fvm::laplacian(D,flux_i])= S

- Models for precursors
 - Standard balance
 - Precursor transport for MSRs

fvm::ddt(prec_i)

- + fvm::Sp(lambda[precI], prec_i)
- neutroSource_/keff_*Beta_i
- + fvm::div(phi, prec_i)
- fvm::laplacian(diffCoeff_, precStar_i)
- Eigenvalue or time-dependent
- Multi-group in energy

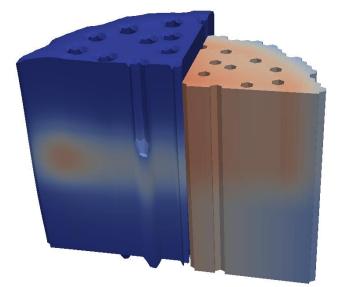


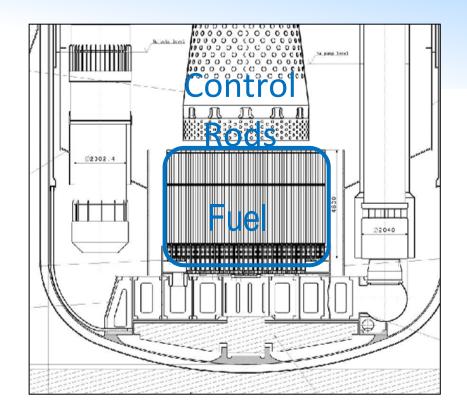


Neutronics

- Dimensionality
 - 1D, 2D, 3D
 - 1D and 2D can be obtained using the empty or wedge boundary condition
 - Exceptions:

 - Point kinetics will adapt...
 Discrete ordinates: periodic obtained using cyclic BC. Wedge and symmetry won't work.
- Boundary conditions •
 - Usual fixed value and zero gradient available
 - Additional albedo BC for diffusion and SP3
 - For discrete ordinates:
 - Specific inlet-outlet BC to model void
 - Dedicated albedo and symmetry under development
- **Discretization schemes**
 - Gauss harmonic recommended for diffusion and SP3
 - Upwind necessary for discrete ordinates

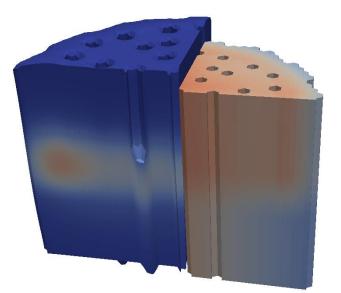

Neutronics

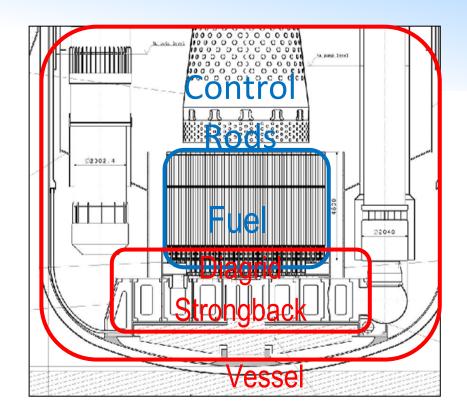


master ~ GeN-Foam / Tutorials / 2D_MSFR / rootCase / system / controlDict	master · GeN-Foam / Tutorials / Godiva_SN / constant / neutroRegion / neutronicsProperties
Restored old mesh. Peter German authored 1 year ago	All tutorials have been updated with the exception of the regression test •••• Stefan Radman authored 2 years ago
ControlDict [^o ₁ 2.04 KiB	heutronicsProperties [928 bytes
<pre>1 /**- C++ -**- *\ 2 ====== 3 \\ / Field OpenFOAM: The Open Source CFD Toolbox 4 \\ / O peration Version: 2.2.1 5 \\ / A nd Web: www.OpenFOAM.org 6 \\/ M anipulation 7 **/ 8 FoamFile 9 { 10 version 2.0; 11 format ascii; 12 class dictionary; 13 location "system"; 14 object controlDict; 15 } 16 17 18 19 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10</pre>	<pre>/** C++ -** / ====================================</pre>

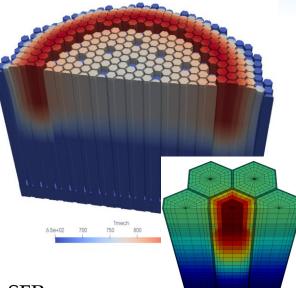
Thermal-mechanics (and mesh deformation)

Fuel and CR driveline expansion based on $v_f \cdot \nabla D_f = \alpha_{f/c} (T_{f/c} - T_{f/c,ref})$



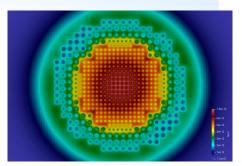


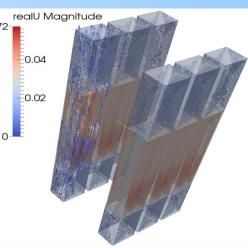
Thermal-mechanics (and mesh deformation)

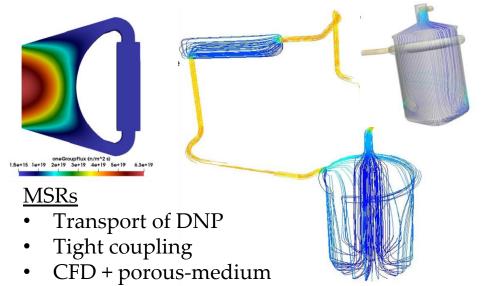

Fuel and CR driveline expansion based on $v_f \cdot \nabla D_f = \alpha_{f/c} (T_{f/c} - T_{f/c,ref})$

Thermo-elastic solver for other structures

GeN-Foam: examples




<u>SFRs</u>


- Multi-dimensional boiling
- Coupling of pools and core
- Direct simulation of deformations

Experimental reactors (ex, CROCUS, Argounaut)

• Geometric flexibility

GeN-Foam: what else can be modeled?

- LWRs
 - TRACE boiling models implemented and tested
 - Under validation (PSBT)
- HTRs and FHRs
 - Only needs sub-scale model for temperature in pebbles or graphite blocks
- Micro reactors
 - Mainly needs modelling skills
- Heat pipes
 - Under development

GeN-Foam: what else can be modeled?

- LWRs
 - TRACE boiling models implemented and tested
 - Under validation (PSBT)
- HTRs and FHRs
 - Only needs sub-scale model for temperature in pebbles or graphite blocks
- Micro reactors
 - Mainly needs modelling skills
- Heat pipes
 - Under development
- ... the limit is your imagination :)

GeN-Foam: Usability

- Complex solver (multi-physics, general finite-volume methodologies on unstructured meshes, linux, ...)
 - A background on CFD calculations has been observed to greatly reduce the initial barrier
 - Familiarity with OpenFOAM is necessary
- Somewhat limited documentation
 - Users must be familiar with what they are modelling
- Flexible solver
 - Unstructured meshes, several existing sub-solvers, possibility of tailoring
- Particularly suitable for PhD students and researchers that wish to experiment on methods, address particularly complex problems, or investigate non-traditional reactors
- An expanded documentation and set of tutorials have recently made it possible to use GeN-Foam in the frame of shorter projects such as Master Thesis, as well as a tool for education and training.

Computational requirements

- CPU cores
 - Rule of thumb: 30'000 mesh cells per CPU core
 - CFD
 - 2D RANS-> several hundred thousand cells -> 10 CPU cores
 - 3D RANS -> several hundred millions cells -> 5000 CPU cores
 - Coarse-mesh thermal-hydraulics and neutron diffusion
 - Full-core models -> few hundred thousand to few million cells -> workstations or laptops
- Runtime
 - Steady-state simulations on the optimal number of CPU cores: several minutes to several hours
 - Long-running time-dependent problems: up to a week
 - In some specific applications, such as detailed containment simulations: up to a month
- Memory requirements
 - Single-phase RANS CFD simulation -> order of 10 fields -> 1 GB of memory per million cells
 - 3D discrete ordinates neutron transport -> several thousand solution fields -> 200 GB of memory per million cells

Resources

Publications

- C. Fiorina and K. Mikityuk. Application of the new GeN-Foam multi-physics solver to the European Sodium Fast Reactor and verification against available codes. In ICAPP 2015 Conference, Nice, France, 2015.
- Carlo Fiorina, Ivor Clifford, Manuele Aufiero, and Konstantin Mikityuk. Gen-foam: a novel openfoam® based multiphysics solver for 2d/3d transient analysis of nuclear reactors. Nuclear Engineering and Design, 294:24–37, 2015.
- Carlo Fiorina, Nordine Kerkar, Konstantin Mikityuk, Pablo Rubiolo, and Andreas Pautz. Development and verification of the neutron diffusion solver for the gen-foam multi-physics platform. Annals of Nuclear Energy, 96:212–222, 2016.
- Carlo Fiorina, Mathieu Hursin, and Andreas Pautz. Extension of the gen-foam neutronic solver to sp3 analysis and application to the crocus experimental reactor. Annals of Nuclear Energy, 101:419–428, 2017.
- C. Fiorina, S. Radman, M.-Z. Koc, and A. Pautz. Detailed modelling of the expansion reactivity feedback in fast reactors using OpenFoam. In International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019, 2019.
- German, Peter, Ragusa, Jean C., and Fiorina, Carlo. Application of multiphysics model order reduction to doppler/neutronic feedback. EPJ Nuclear Sci. Technol., 5:17, 2019.
- S. Radman, C. Fiorina, K. Mikityuk, and A. Pautz. A coarse-mesh methodology for modelling of single-phase thermalhydraulics of ESFR innovative assembly design. Nuclear Engineering and Design, 355, 2019.
- Stefan Radman, Carlo Fiorina, and Andreas Pautz. Development of a novel two-phase flow solver for nuclear reactor analysis: algorithms, verification and implementation in openfoam. Nuclear Engineering and Design, 379:111178, 2021.
- Stefan Radman, Carlo Fiorina, and Andreas Pautz. Development of a novel two-phase flow solver for nuclear reactor analysis: Validation against sodium boiling experiments. Nuclear Engineering and Design, 384:111422, 2021.

• Documentation and source code

- <u>https://foam-for-nuclear.gitlab.io/GeN-Foam/index.html</u>
- <u>https://gitlab.com/foam-for-nuclear/GeN-Foam/-/tree/master/</u>
- Forum
 - <u>https://foam-for-nuclear.org/phpBB/viewforum.php?f=6&sid=476fa69210b09c168ade3099f5a8c100</u>

Joint ICTP-IAEA Workshop on Open-Source Nuclear Codes for Reactor Analysis August 7-11 2023

Thank you!

Contact: <u>ONCORE@iaea.org</u>

<u>Course Enrolment : Multi-physics modelling and simulation of nuclear reactors using OpenFOAM</u> <u>ONCORE: Open-source Nuclear Codes for Reactor Analysis</u>