

Joint ICTP-IAEA Workshop on Open-Source Nuclear Codes for Reactor Analysis August 7-11 2023

### **Introduction to GeN-Foam – Using the code**

### **Carlo Fiorina**

## **About this lecture**

What to expect

• An introduction to using GeN-Foam

What not to expect

- A full course on the use of GeN-Foam
- A hands-on exercise on the use of GeN-Foam

Objectives

- How to approach GeN-Foam
- References, keywords, best practices that can simplify an autonomous learning of GeN-Foam

## **About this lecture**

- Recap of learning resources for OpenFOAM
- Additional background
  - Multi-mesh
  - Multi-material
- How to get and install GeN-Foam
- What's inside
  - Tools
  - Documentation
    - $\circ$  How to use it
  - Source code
    - How to use it
  - Tutorials
    - $\circ$  How to use them
    - o List
- Summary of suggested approach and resources



# How to approach GeN-Foam: prerequisites








First go through the OpenFOAM learning resources!



<u>https://www.openfoam.com/documentation/user-guide</u>

| Open <mark></mark> ∇FOAM® |              |                     | Search                          | Q                      |              |            | 8      | ess<br>get it right |  |
|---------------------------|--------------|---------------------|---------------------------------|------------------------|--------------|------------|--------|---------------------|--|
|                           | Industries 🔻 | Products & Services | <ul> <li>Trainings •</li> </ul> | Documentation <b>*</b> | Governance 🔻 | Download 🔻 | News 🔻 | Contact us          |  |
| Home Documentation        |              |                     |                                 |                        |              |            |        |                     |  |
|                           |              |                     |                                 |                        |              |            |        |                     |  |





### <u>https://www.openfoam.com/documentation/tutorial-guide</u>

| Open VFOAM®        |              |                     | Search                          | Q               |                     |                   | 8      | es<br>get it right |
|--------------------|--------------|---------------------|---------------------------------|-----------------|---------------------|-------------------|--------|--------------------|
|                    | Industries 🔻 | Products & Services | <ul> <li>Trainings •</li> </ul> | Documentation * | Governance <b>*</b> | Download <b>*</b> | News 🕶 | Contact us         |
| Home Documentation | >            |                     |                                 |                 |                     |                   |        |                    |

#### Tutorial Guide

| Co           | intents                                                     | Tuto                                      |
|--------------|-------------------------------------------------------------|-------------------------------------------|
| 11           | ntroduction                                                 | Tuto                                      |
|              | 1.1 Getting started                                         |                                           |
| 21           | ncompressible flow                                          | Contents                                  |
|              | 2.1 Lid-driven cavity flow                                  | 1 Introduction<br>1.1 Getting             |
|              | 2.2 Flow around a cylinder                                  | 2 Incompress<br>2.1 Lid-dri               |
|              | 2.3<br>Magnetohydrodynamic<br>flow of a liquid              | 2.2 Flow a<br>2.3 Magne<br>3 Compressib   |
| hare         | Iompressible flow                                           | 3.1 Steady<br>3.2 Supers                  |
| f<br>y<br>in | 3.1 Steady turbulent flow<br>over a backward-facing<br>step | 3.3 Decom<br>4 Multiphase<br>4.1 Breaking |
|              | 3.2 Supersonic flow over<br>a forward-facing step           | 5 Stress analy<br>5.1 Stress              |

### **Tutorial Guide**

Contents
1 Introduction
1.1 Getting started
2 Incompressible flow
2.1 Lid-driven cavity flow
2.2 Flow around a cylinder
2.3 Magnetohydrodynamic flow of a liquid
3 Compressible flow
3.1 Steady turbulent flow over a backward-facing step
3.2 Supersonic flow over a forward-facing step
3.3 Decompression of a tank internally pressurised with water
4 Multiphase flow
4.1 Breaking of a dam
5 Stress analysis
5.1 Stress analysis of a plate with a hole



#### https://wiki.openfoam.com/Main\_Page ٠

|                                     |                                                                                                                  |             |              |                      | Log in |
|-------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------|--------------|----------------------|--------|
|                                     | Main page Discussion Read                                                                                        | View source | View history | Search OpenFOAM Wiki | Q      |
| V                                   | Main Page                                                                                                        |             |              |                      |        |
|                                     | Welcome to the OpenFOAM Wiki                                                                                     |             |              |                      |        |
| Main page                           | This wiki is sponsored and managed by OpenFOAM.com and members of the OpenFOAM community.                        |             |              |                      |        |
| Recent changes<br>Random page       | To sponsor this wiki, please contact ust                                                                         |             |              |                      |        |
| Help about MediaWiki                | All proceeds are guaranteed towards the future maintenance and development of OpenFOAM.                          |             |              |                      |        |
| Tools                               |                                                                                                                  |             |              |                      |        |
| What links here                     | Contents [hide]                                                                                                  |             |              |                      |        |
| Related changes                     | 1 Getting started<br>2 OpenFOAM Governance                                                                       |             |              |                      |        |
| Special pages                       | 3 Tutorials                                                                                                      |             |              |                      |        |
| Printable version<br>Permanent link | 4 Literature                                                                                                     |             |              |                      |        |
| Page information                    |                                                                                                                  |             |              |                      |        |
| Cite this page                      | Getting started                                                                                                  |             |              |                      |        |
|                                     | When getting started with OpenFOAM coding and installation, the following locations are useful:                  |             |              |                      |        |
|                                     | • The OpenFOAM Code Wikie, which provides build instructions and upgrade information as well as migration inform | nation      |              |                      |        |

- The OpenFOAM Code README , which provides general information and cross-links to build requirements etc.
- The OpenFOAM repository @ (issue tracker@) and the ThirdParty repository @ (issue tracker@)

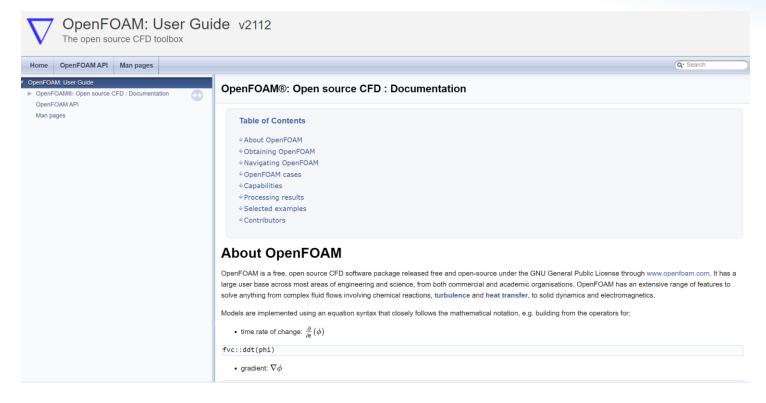
#### **OpenFOAM** Governance

ESI-OpenCFD and its partners launched the OpenFOAM Governance initiative in 2018 to bring the OpenFOAM Community together and participate within a welcoming, co-operative framework, to ensure the project's longevity and maintain its core values of being freely-available and open-source. Follow the links to find out more about the Technical Committees and their current projects.

- Technical Committees
- Special Interest Groups

#### Tutorials<sup>®</sup>

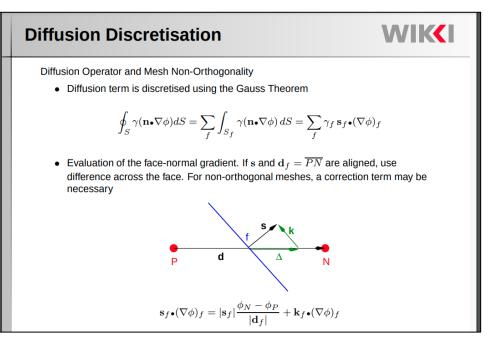



### https://wiki.openfoam.com/index.php?title=%223\_weeks%22\_series

| Day 1                     | Day 2                   | Day 3                 | Day 4            | Day 5                             |
|---------------------------|-------------------------|-----------------------|------------------|-----------------------------------|
| install - first steps ନ୍ୟ | steps - visualization 🖗 | introductory course & | discretization 🗗 | theory - fun simulations - tips៤? |
| Day 6                     | Day 7                   | Day 8                 | Day 9            | Day 10                            |
| geometry and meshing &    | turbulence 1@           | turbulence 2 ଜ        | multiphase 🗟     | parallelization &                 |
| Day 11                    | Day 12                  | Day 13                | Day 14           | Day 15                            |
| programming 1&            | programming 2 &         | programming 3┏        | programming 4&   | programming 5&                    |

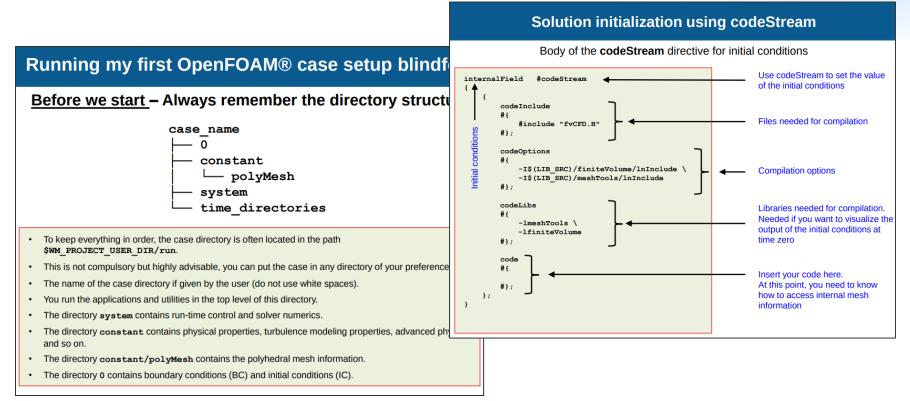
#### 3-weeks-series




### <u>https://www.openfoam.com/documentation/guides/v2112/doc/</u>



### Learn OpenFOAM - Overview of Finite Volume Method from H. Jasack




### https://www.youtube.com/watch?v=a4B\_oXR5Kzs&ab\_channel= KennethHoste



### Learn OpenFOAM -Presentations from Wolf Dynamics





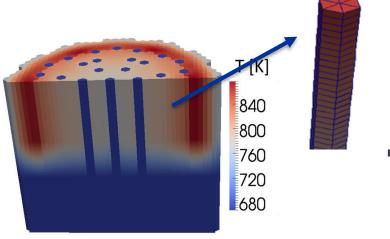
### Learn OpenFOAM - Plenty of additional resources



- Tutorials/lectures (have a look on Google or YouTube)
- Master/PhD thesis etc.
- Forums (including ours: <u>https://foam-for-nuclear.org/phpBB/</u>)
- (Often) direct communication with solver developers

### And remember:

- Don't get frustrated: there is always a way out with OpenFOAM and, most likely, someone who had your same problem and will be happy to help
- Don't get discouraged: the entry barrier may seem steep, but skills you'll learn will allow you to tackle any kind of problems
- If possible, do not do it alone!


## Additional background: multi-mesh



• 8.0e+02 - 750 for coupling) - 700 S - 650 - 600 5.7e+02

- 1.0

- Problem: need for different meshes for different "physics"
- Solution: multi-mesh (called multiregion in OpenFOAM)
  - One mesh for each "physics"
  - (Projection of fields from one mesh to the other

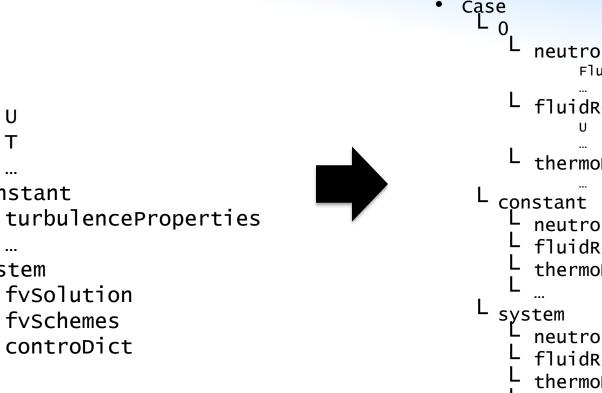


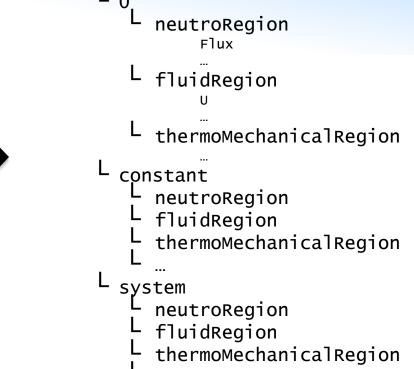
# Additional background: multi-mesh in practice

Case

U

constant


system

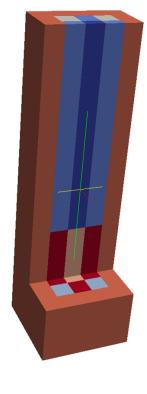

fvSolution

L fvSchemes

<sup>L</sup> controDict

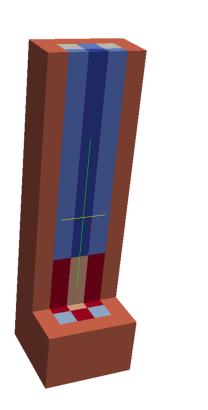







## Additional background: multi-material




- Problem: one mesh, multiple material
- Solutions: cellZones
  - associate a label to each cell in polymesh/cellZones

```
FoamFile
   version
             2.0;
   format
             ascii;
   class regIOobject;
location "constant/fluid/polyMesh";
   object
            cellZones;
    controlRod
   type cellZone;
cellLabels
             List<label>
5994
0
1
2
```



## Additional background: multi-material





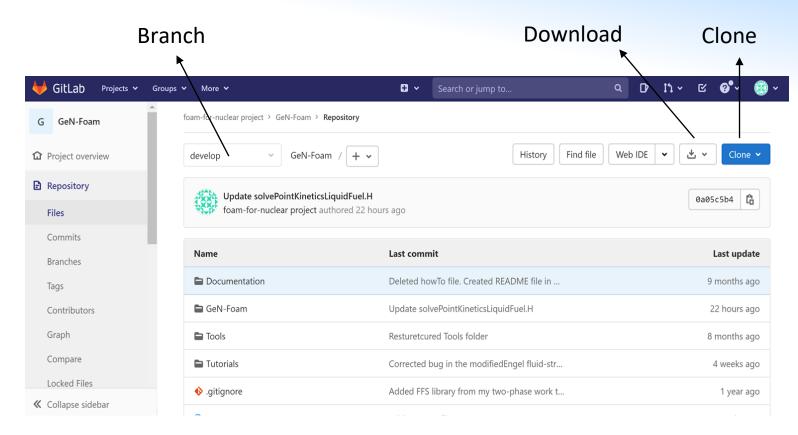
Then, for each physics, an input file (dictionary) is used that associates each of these labels with a set of properties. For instance in /constant/neutroRegion/nuclearData

# Additional background: multi-material - in practice

- How to create a multi-zone mesh:
  - All mesh generators allows for the option to generate "cellZones"
  - NB: cellZones are called in different ways (physical volumes in gmsh, groups in Salome, etc.)
  - The mesh conversion tool (e.g., gmshToFoam) takes care of converting the format
- Case folder:
  - polymesh folder will include a cellZones file
  - Dictionaries will be used to associate a cellZone to some value of a field or property

# **GeN-Foam: how to get it**




• Free, online at <a href="https://gitlab.com/foam-for-nuclear/GeN-Foam/-/tree/develop">https://gitlab.com/foam-for-nuclear/GeN-Foam/-/tree/develop</a>

| $\biguplus$ $\equiv$ Q. Search GitLab | Z                                                             |                                               | • · · · · · · · • • • ·                           |
|---------------------------------------|---------------------------------------------------------------|-----------------------------------------------|---------------------------------------------------|
| G GeN-Foam                            | foam-for-nuclear project > GeN-Foam > Repository              |                                               |                                                   |
| Project information                   | develop v GeN-Foam / + v                                      | History Find file Web ID                      | DE 🗸 🕹 V Clone V                                  |
| P Repository                          | develop Generoant /                                           |                                               |                                                   |
| Files                                 | PArtial regression                                            |                                               | Ø 8fc3a1ce to |
| Commits                               | PArtial regression<br>foam-for-nuclear project authored 2 wee | eks ago                                       |                                                   |
| Branches                              |                                                               |                                               |                                                   |
| Tags                                  | Name                                                          | Last commit                                   | Last update                                       |
| Contributors                          | Documentation                                                 | First draft of user manual                    | 3 weeks ago                                       |
| Graph<br>Compare                      | 🛅 GeN-Foam                                                    | First draft of user manual                    | 3 weeks ago                                       |
| Locked Files                          | Tools                                                         | Finally started some real documentation. It's | 2 months ago                                      |
| D Issues 3                            | Tutorials                                                     | PArtial regression                            | 2 weeks ago                                       |
| Merge requests                        | ♦ .gitignore                                                  | Merge branch 'docs' into develop. Added fir   | 3 weeks ago                                       |
| Security & Compliance                 | 😝 .gitlab-ci.yml                                              | First draft of user manual                    | 3 weeks ago                                       |
| Deployments                           | COPYRIGHT                                                     | Preliminary doxygen documentation             | 9 months ago                                      |
| Packages and registries               | R LICENSE                                                     | Add LICENSE file                              | 1 year ago                                        |
| Infrastructure Monitor                | ₩ README.md                                                   | Update README.md                              | 1 month ago                                       |
| 💾 Analytics                           | 🖹 README.md                                                   |                                               |                                                   |
| 🖵 Wiki                                |                                                               |                                               |                                                   |
| Ø Settings                            | GeN-Foam README file                                          | #README}                                      |                                                   |

GeN-Foam is a multi-physics solver for reactor analysis based on OpenFOAM (ESI/OpenCFD distribution from www.openfoam.com, currently v2206). It can solve (coupled or alternatively) for:

# **GeN-Foam: how to get it**





### **GeN-Foam: branches**



- Several "working branches"
- Two main branches for distribution:
  - Develop: contain all recent tested developments. Normally stable. Full regression test before committing to the branch.
  - Master: most stable version. Merge from develop at every new OpenFOAM release (6 months)

# **GeN-Foam: how to install it**



- Download OpenFOAM at
  - https://www.openfoam.com/download/
  - Typically the latest release, but it may take us some few weeks to update to a new release each time. The correct version to use is in the README file
- Install OpenFOAM and prepare the environment
  - <u>https://www.openfoam.com/download/installation.php</u>
- Download or git clone GeN-Foam
- Enter the GeN-Foam/GeN-Foam folder and run:
  - Allwclean
  - Allwmake (or Allwmake -*j*, to compile in parallel)
- Testing enter any tutorial and run:
  - Allrun

# **GeN-Foam:** paraview

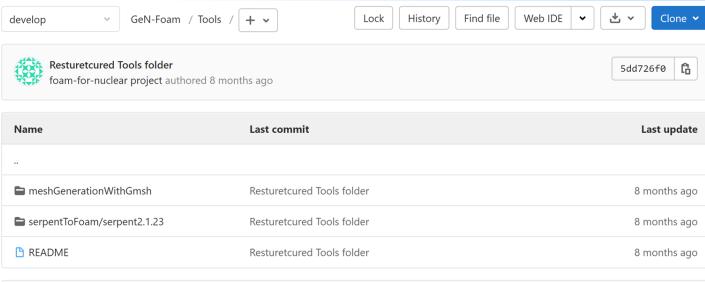


- Requires separate installation in the openfoam.com version of OpenFOAM
- Just install the latest version from paraview.org

*Why isn't ParaView included in the precompiled packages? This would be much more convenient than having to compile it myself!* 

We would prefer to focus on extending and improving the OpenFOAM support in ParaView/VTK directly since this provides the best long-term and most universal solution

### **GeN-Foam: what's inside**




| develop     | ✓ GeN-Foam / 🕇 ✓                                                                   | History Find file Web IDE 🗸 🗸 🗸 | Clone 🗸  |
|-------------|------------------------------------------------------------------------------------|---------------------------------|----------|
| Upo<br>foal | date solvePointKineticsLiquidFuel.H<br>m-for-nuclear project authored 22 hours ago | 0a0                             | 95c5b4 🔓 |

| Name          | Last commit                                  | Last update  |
|---------------|----------------------------------------------|--------------|
| Documentation | Deleted howTo file. Created README file in   | 9 months ago |
| 🖨 GeN-Foam    | Update solvePointKineticsLiquidFuel.H        | 22 hours ago |
| E Tools       | Resturetcured Tools folder                   | 8 months ago |
| Tutorials     | Corrected bug in the modifiedEngel fluid-str | 4 weeks ago  |
| ♦ .gitignore  | Added FFS library from my two-phase work t   | 1 year ago   |
| LICENSE       | Add LICENSE file                             | 3 months ago |
| C README      | Update README                                | 3 months ago |

• README file often present to describe what's in a subfolder

### What's inside: Tools



#### E README

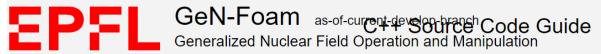
.

This folder contains helper tools that have been developed throughout the years by GeN-Foam users to simplify the us

- Helper tools to (try to) make life of users easier
  - Example of a mesh creation with gmsh
  - Script to convert an output of Serpent into an input for GeN-Foam



# What's inside: Documentation




|                                 | develop                                                                                | + ~ Lock Hist              | ory Find file Web IDE 🖌              | ⊥ × Clone × |
|---------------------------------|----------------------------------------------------------------------------------------|----------------------------|--------------------------------------|-------------|
|                                 | <b>First draft of user manual •••</b><br>foam-for-nuclear project authored 3 weeks ago |                            |                                      | dc1a0885    |
|                                 | Name                                                                                   | Last commit                |                                      | Last update |
|                                 |                                                                                        |                            |                                      |             |
|                                 | 🗅 doxygen                                                                              | First draft of user manual |                                      | 3 weeks ago |
|                                 | someUsefulDocumentsAndPResentations                                                    | updated documentation      | Name                                 | ths ago     |
|                                 | 🕒 README                                                                               | New general saturation mod |                                      | ths ago     |
|                                 | b documentation.desktop                                                                | added link to documentatio | 1-IntroToOpenFoamForMultiPhysics.pdf | ths ago     |
|                                 |                                                                                        |                            | 😫 GeN-Foam_practice.pdf              |             |
|                                 | d documentation:                                                                       |                            | 📙 GeN-Foam_statusMay2022.pdf         |             |
| <ul> <li>Can be comp</li> </ul> | piled locally on your machine                                                          |                            | 😫 GeN-Foam_theory_v1.pdf             |             |
| • Pre-compile                   | d version available at:                                                                |                            | GeN-Foam_theory_v2.pdf               |             |
| https://foam-fo                 | r-nuclear.gitlab.io/GeN-Foam/ir                                                        | <u>idex.html</u>           | OpenFOAMUserGuide-A4.pdf             |             |

OpenFOAM\_installationAndLearningResources....

• Link available in the main README file

## What's inside: Documentation - doxygen



| Main Page                                 | Related Pages                                                                      | Namespaces -    | Classes - | Files -        |                      | Q          | Bearch |         |       |
|-------------------------------------------|------------------------------------------------------------------------------------|-----------------|-----------|----------------|----------------------|------------|--------|---------|-------|
| GeN-Foa                                   | m Documei                                                                          | ntation         |           | ·              |                      |            |        |         |       |
|                                           | ction to GeN-Foa<br>Compiling GeN-Fo                                               | m - README file | \ '       |                |                      |            |        |         |       |
| • F                                       | Preprocessing<br>Running GeN-Foa                                                   |                 |           |                |                      |            |        |         |       |
| • User m                                  |                                                                                    |                 | ∖<br>St   | anda           | rd Dox               | ∳<br>ygen: |        |         |       |
| • ]                                       | <sup>-</sup> hermal-hydraulic<br><sup>-</sup> hermal-mechanic<br>Coupling and time | cs              | •         | Struc<br>class | cture and<br>ses     | d inter    | depend | dencies | s of  |
| <ul><li>Tutoria</li><li>Tips ar</li></ul> | ls                                                                                 |                 | •         |                | iments ii<br>ogress) | n code     | and He | eaders  | (work |

# What's inside: Documentation - doxygen

| EPFL GeN-Foa<br>Generalized N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | am as-of-current-develop-bran他++ Source Code Guide<br>uclear Field Operation and Manipulation |                                                      |           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------|-----------|
| Main Page Related Pages Namespace                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Classes * iles *                                                                              | Rehme                                                | Q* Rehm 📀 |
| Class List                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Browse                                                                                        | RehmeFSDragCoefficient.C<br>RehmeFSDragCoefficient.H | Or use    |
| Here are the classes, structs, unions and interfaces                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | with brief descr <del>iptions.</del>                                                          |                                                      |           |
| ▼ 🕅 Foam<br>► 🔃 compressible                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                               |                                                      | the       |
| <ul> <li>In contactPartitionModels</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                               |                                                      | search    |
| Image: |                                                                                               |                                                      | Search    |
| M dispersionModels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                               |                                                      |           |
| ► 🚺 externallOObject                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                               |                                                      | function  |
| ► N FFDragCoefficientModels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                               |                                                      |           |
| ► N FFHeatTransferCoefficientModels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                               |                                                      |           |
| ► <b>N</b> flowEnhancementFactorModels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                               |                                                      |           |
| ► <b>N</b> fluidDiameterModels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                               |                                                      |           |
| FSDragCoefficientModels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                               |                                                      |           |
| G BaxiDalleDonne                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Drag coefficient in the form fd = coeff*Re^exp with Kd = 0.5*fd*alpha*rho*magU                | /Dh                                                  |           |
| Churchill                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Drag coefficient in the form fd = coeff*Re^exp with Kd = 0.5*fd*alpha*rho*magU                | /Dh                                                  |           |
| C Engel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Engel correlation for pressure drop                                                           |                                                      |           |
| modifiedEngel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ModifiedEngel correlation for pressure drop                                                   |                                                      |           |
| C NoKazimi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NoKazimi correlation for fluid-structure pressure drop https://dspace.mit.edu/ha              | indle/1721.1/60581                                   |           |
| C Rehme                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Rheme correlation for pressure drop                                                           |                                                      |           |
| C ReynoldsPower                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Drag coefficient in the form fd = coeff*Re^exp with Kd = 0.5*fd*alpha*rho*magU                | /Dh                                                  |           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                               |                                                      |           |

SteatTransferCoefficientModels

## What's inside: Documentation - doxygen



|                                                                                                            | Main Page | Related Pages                                               | Namespaces - | Classes - | Files • | Q• Search |  |  |  |
|------------------------------------------------------------------------------------------------------------|-----------|-------------------------------------------------------------|--------------|-----------|---------|-----------|--|--|--|
|                                                                                                            | GeN-Foa   | m Docume                                                    | ntation      |           |         |           |  |  |  |
| <ul> <li>Introduction to GeN-Foam - README file         <ul> <li>Compiling GeN-Foam</li> </ul> </li> </ul> |           |                                                             |              |           |         |           |  |  |  |
| Additional                                                                                                 | -         | <ul> <li>Preprocessing</li> <li>Running GeN-Foam</li> </ul> |              |           |         |           |  |  |  |
| ages 🔸                                                                                                     | 0         | Postprocessing                                              |              |           |         |           |  |  |  |
| uges                                                                                                       | User m    | User manual                                                 |              |           |         |           |  |  |  |
|                                                                                                            | 0         | leutronics                                                  |              |           |         |           |  |  |  |
|                                                                                                            | 0         | Thermal-hydrauli                                            | cs           |           |         |           |  |  |  |

- Thermal-mechanics
- Coupling and time stepping
- Tutorials
- · Tips and tricks
- Important notes

### What's inside: Documentation – how to us it





| Ма | ain Page | Related Pages | Namespaces • | Classes - | Files • | Qr Search |
|----|----------|---------------|--------------|-----------|---------|-----------|
|----|----------|---------------|--------------|-----------|---------|-----------|

### **GeN-Foam Documentation**

- Introduction to GeN-Foam README file
  - Compiling GeN-Foam
  - Preprocessing
  - Running GeN-Foam
  - Postprocessing
- User manual
  - Neutronics
  - Thermal-hydraulics
  - Thermal-mechanics
  - Coupling and time stepping
- Tutorials
- · Tips and tricks
- Important notes

## What's inside: Documentation – how to us it





| Main Page | Related Pages | Namespaces • | Classes - | Files - | Q• Search |
|-----------|---------------|--------------|-----------|---------|-----------|
|-----------|---------------|--------------|-----------|---------|-----------|

### **GeN-Foam Documentation**

- Introduction to GeN-Foam README file
  - Compiling GeN-Foam
  - Preprocessing
  - Running GeN-Foam
  - Postprocessing

#### User manual

- Neutronics
- Thermal-hydraulics
- Thermal-mechanics
- Coupling and time stepping

#### Tutorials

- Tips and tricks
- Important notes





| Main Page Related Pages Namespaces - Classes - Fi | Files - Q- Search |
|---------------------------------------------------|-------------------|
|---------------------------------------------------|-------------------|

### **GeN-Foam Documentation**

- Introduction to GeN-Foam README file
  - Compiling GeN-Foam
  - Preprocessing
  - Running GeN-Foam
  - Postprocessing
- User manual
  - Neutronics
  - Thermal-hydraulics
  - Thermai-mechanics
  - Coupling and time stepping
- Tutorials
- Tips and tricks
- Important notes





Q. Search



Generalized Nuclear Field Operation and Manipulation

Related Pages Main Page Namespaces • Classes -Files •

#### **Thermal-hydraulics**

### Introduction

Both single- and two-phase simulations can be performed using GeN-Foam. All sub-solvers were developed for a coarse-mesh porous-medium treatment of complex structures such as core and heat exchanger, and for a standard RANS treatment of clear-fluid regions. The sub-solvers automatically switch from a porous-medium (coarse-mesh) treatment to a standard CFD (fine-mesh) treatment when the colume fraction of the sub-scale structures is set to zero. This allows for an implicit coupling of porous-medium (sub-channel-like in 2D and 3D, or system-code-like) treatment of compelex structures (e.g., core and heat exchnagers) with a standard CFD treatment of clear-fluid regions (e.g., plena and pools).

A coarse-mesh porous-medium treatment of the core implies that the core is modeled without resolving the sub-scale structure (e.g., the fuel rods or the heat exchanger tubes). As a matter of fact, in principle and for consistency, the finest radial mesh chosen by a user should not finer than one cell per pin cell. A porous-medium formulation derives from a volume averaging of the Navier-Stokes equations. The volume averaging results in source terms that describe the interaction (drag and heat transfer) of the fluid with the sub-scale structure. In GeN-Foam, these source terms are modeled using user-selectable correlations for drag (e.g., correlations for the Darcy friction factor) and heat transfer (e.g., correlations for the Nusselt number). In this sense, a porous-medium model can be associated with a 3-D version of a system code.

With regards to the modelling of the sub-scale structures, GeN-Foam allows to model simultaneously in the same region both a "power model" and a "passive structure". Power models are used to model to instance the nuclear fuel (based on a 1-D approximation), electrically heated rods, or a fixed temperature body (which can be used to approximate a heat exchanger). Passive structures are structures that passively heats up or cool down based on their own heat capacity, volumetric area, and heat tranfer with the coolant. This can be used to model structures like the assembly wrappers or the reflectors.

All thermal-hydraulics functionalities are handled by the class thermalHydraulicsModel.H. the derived classes for the various sub-solvers (see below), and a thermal-hydraulic library that can be found under \*/GeN-Foam/classes/thermalHydraulics/src\*.

### Sub-solvers

Thermal-hydraulics calculations are performed by classes derived from thermalHydraulicsModel.H that contain specific sub-solvers:

- onePhase for single-phase calculations, using the formulation proposed in Refs. [8] [9] [10] (see onePhase.H)
- onePhaseLegacv for single-phase calculations, using the formulation proposed in Ref. [2] (see onePhaseLegacv.H)
- twoPhase for adjoint diffusion calculations, using the formulation proposed in Refs. [8] [9] [10] (see twoPhase H) For the user, the derived classes translate into runtime selectable models. The specific sub-solver to be used in a





Generalized Nuclear Field Operation and Manipulation

Related Pages Namespaces • Main Page Classes -Files •

#### **Thermal-hydraulics**

### Introduction

Both single- and two-phase simulations can be performed using GeN-Foam. All sub-solvers were developed for a coarse-mesh porous-medium treatment of complex structures such as core and heat exchanger, and for a standard RANS treatment of clear-fluid regions. The sub-solvers automatically switch from a porous-medium (coarse-mesh) treatment to a standard CFD (fine-mesh) treatment when the colume fraction of the sub-scale structures is set to zero. This allows for an implict coupling of porous-medium (sub-channel-like in 2D and 3D, or system-code-like) treatment of compelex structures (e.g., core and heat exchnagers) with a standard CFD treatment of clear-fluid regions (e.g., plena and pools).

A coarse-mesh porous-medium treatment of the core implies that the core radial mesh chosen by a user should not finer than one cell per pin cell. A interaction (drag and heat transfer) of the fluid with the sub-scale structure correlations for the Nusselt number). In this sense, a porous-medium mod



ger tubes). As a matter of fact, in principle and for consistency, the finest ns. The volume averaging results in source terms that describe the g (e.g., correlations for the Darcy friction factor) and heat transfer (e.g.,

Q- Search

With regards to the modelling of the sub-scale structures. GeN-Foam allo

ure". Power models are used to model fo instance the nuclear fuel

(based on a 1-D approximation). electrically heated rods, or a fixed temperature body (which can be used to approximate a heat exchanger). Passive structures are structures that passively heats up or cool down based on their own heat capacity, volumetric area, and heat tranfer with the coolant. This can be used to model structures like the assembly wrappers or the reflectors.

All thermal-hydraulics functionalities are handled by the class thermalHydraulicsModel.H. the derived classes for the various sub-solvers (see below), and a thermal-hydraulic library that can be found under \*/GeN-Foam/classes/thermalHydraulics/src\*.

### Sub-solvers

Thermal-hydraulics calculations are performed by classes derived from thermalHydraulicsModel.H that contain specific sub-solvers:

- onePhase for single-phase calculations, using the formulation proposed in Refs. [8] [9] [10] (see onePhase.H)
- onePhaseLegacy for single-phase calculations, using the formulation proposed in Ref. [2] (see onePhaseLegacy.H)
- twoPhase for adjoint diffusion calculations, using the formulation proposed in Refs. [8] [9] [10] (see twoPhase H) For the user, the derived classes translate into runtime selectable models. The specific sub-solver to be used in a



### **Turbulence properties**

#### The turbulenceProperties dictionary

The turbulenceProperties dictionary can be found under constant/fluidRegion/. It is a standard OpenFOAM dictionary that allows defining the turbulence model to be used.

When clear-fluid simulations (i.e., without porous zones) are performed, on can used the standard kEpsilon model of OpenFOAM.

When porous zones are present in the simulation, it is reccomended to use *porousKEpsilon* (see *porousKEpsilon.H*). The only difference w.r.t. the standard k-epsilon model is that it forces k and epsilon to equilibrium values inside the porous zones. These equilibrium values can be set in the *porousKEpsilonProperties* sub-dictionary. Please notice that a porous medium simulation using the equilibrium values of k and epsilon for the sub-scale structure (viz., the values inside a fuel sub-channel) would entail the risk of an unstable solution. This is due to the fact that the turbulent viscosity will be that of the sub-scale structure, and thus potentially not enough to stabilize a solution on the length scale of the coarse mesh. To address this problem, one can define the keyword DhStruct in *constant/fluidRegion/phaseProperties/dragModels.(nameOfPhase).structure.(nameOfCellZones)*. This keyword defines the hydraulic diameter of the whole porous structure (viz., the dimension of the assembly, if using baffles to model wrappers, or of the entire core). The code uses it to make sure the turbulent viscosity results in a laminar Reynolds number (defaulted to 500).

While some approaches to model k and epsilon for two-phase flow simulations are presently included in the code. In particular, the Lahey model (see *LaheyKEpsilon.H*) and a mixture model (see *mixtureKEpsilon.H*) can be uses for clear-fluids, or for mixed clear-fluid and porous-medium simulations when in case of strongly advective two-phase flow scenarios where turbulent mixing mat be neglected. In addition, as simple extension of the *porousKEpsilon* model has been implemented that allows to correct the turbulent intensity using a term that is proportional to the fraction of the other phase (see *porousKEpsilon2PhaseCorrected.H*).

One can find a detailed, commented example for a porous one-phase simulation in the tutorial 3D\_SmallESFR.



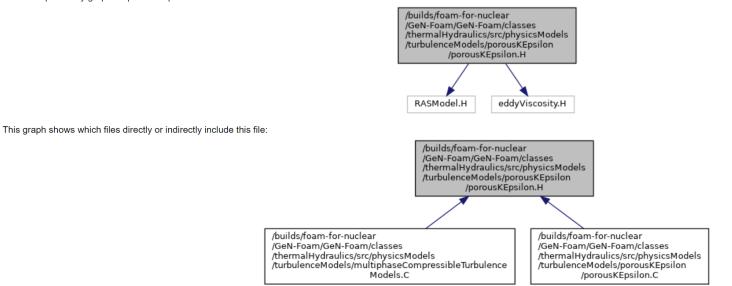
### **Turbulence properties**

#### The turbulenceProperties dictionary

The turbulenceProperties dictionary can be found under constant/fluidRegion/. It is a standard OpenFOAM dictionary that a

When clear-fluid simulations (i.e., without porous zones) are performed, on can used the standard kEpsilon model of Open




When porous zones are present in the simulation, it is reccomended to use *porousKEpsilon* (see *porousKEpsilon.H*). The only difference w.r.t. the standard k-epsilon model is that it forces k and epsilon to equilibrium values inside the porous zones. These equilibrium values can be set in the *porousKepsienBropartice sub* dictionary. Please notice that a porous medium simulation using the equilibrium values of k and epsilon for the sub-scale structure (viz., the values inside a fuel sub-channel) would entail the risk of an unstable solution. This is due to the fact that the turbulent viscosity will be that of the sub-scale structure, and thus potentially not enough to stabilize a solution on the length scale of the coarse mesh. To address this problem, one can define the keyword DhStruct in *constant/fluidRegion/phaseProperties/dragModels.(nameOfPhase).structure.(nameOfCellZones)*. This keyword defines the hydraulic diameter of the whole porous structure (viz., the dimension of the assembly, if using baffles to model wrappers, or of the entire core). The code uses it to make sure the turbulent viscosity results in a laminar Reynolds number (defaulted to 500).

While some approaches to model k and epsilon for two-phase flow simulations are presently included in the code. In particular, the Lahey model (see *LaheyKEpsilon.H*) and a mixture model (see *mixtureKEpsilon.H*) can be uses for clear-fluids, or for mixed clear-fluid and porous-medium simulations when in case of strongly advective two-phase flow scenarios where turbulent mixing mat be neglected. In addition, as simple extension of the *porousKEpsilon* model has been implemented that allows to correct the turbulent intensity using a term that is proportional to the fraction of the other phase (see *porousKEpsilon2PhaseCorrected.H*).

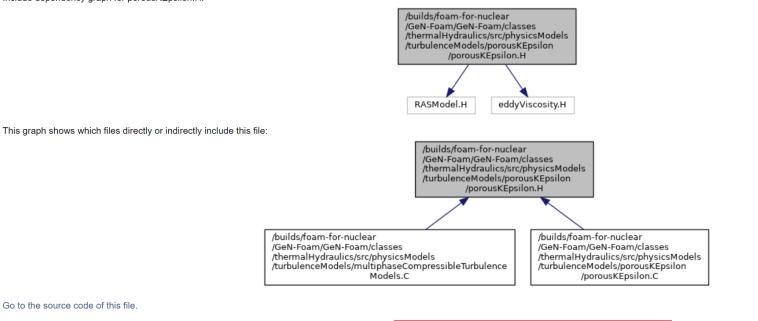
One can find a detailed, commented example for a porous one-phase simulation in the tutorial 3D\_SmallESFR.



Include dependency graph for porousKEpsilon.H:



Go to the source code of this file.


#### Classes

#### class porousKEpsilon< BasicTurbulenceModel >

Same as standard OpenFOAM. **porousKEpsilon** is provided as additional model. The only difference is that it forces k and epsilon to equilibrium values inside the porous zones. These equilibrium values can be set in the porousKepsionProperties sub-dictionary here below. k and epsilon are determined based on correlations for tubulent intensity (I) and lengh scale (L). Turbulent intensity correlation in the form turbulenceIntensityCoeff\*Reynolds^turbulenceIntensityExp, with Reynolds number calculated by the thermal-hydraulic class, according to the input data in phaseProperties. More...



Include dependency graph for porousKEpsilon.H:



Classes

#### class porousKEpsilon< BasicTurbulenceModel >

Same as standard OpenFOAM. porousKEpsilon is provided as additional model. The

porousKepsionProperties sub-dictionary here below. k and epsilon are determined bas

turbulenceIntensityCoeff\*Reynolds^turbulenceIntensityExp, with Reynolds number calculated by the thermal-hydraulic class, according to the input data in whaseProperties. More...

**Click here** 

side the porous zones. These equilibium values can be set in the

ent intensit



### **Detailed Description**

### template<class BasicTurbulenceModel> class Foam::RASModels::porousKEpsilon< BasicTurbulenceModel >

Same as standard OpenFOAM. porousKEpsilon is provided as additional model. The only difference is that it forces k and epsilon to equilibrium values inside the porous zones. These equilibrium values can be set in the porousKepsionProperties sub-dictionary here below. k and epsilon are determined based on correlations for tubulent intensity (I) and lengh scale (L). Turbulent intensity correlation in the form tubulenceIntensityCoeff\*Reynolds^turbulenceIntensityExp, with Reynolds number calculated by the thermal-hydraulic class, according to the input data in phaseProperties.

Please notice that a porous medium simulation using the porousKEpsilon model entails the risk of an unstable solution. This is due to the fact that the turbulent viscosity will be that of the sub-scale structure, and thus not enough to stabilize a solution on the length scale of the coarse mesh. To address this problem, one can define the keyword DhStruct in constant/fluidRegion/phaseProperties/dragModels.(nameOfPhase).structure. (nameOfCellZones). This keyword defines the hydraulic diameter of the whole porous structure. The code uses it to make sure the turbulent viscosity results in a laminar Reynolds number (defaulted to 500).

#### Usage

The following sub-dictionary should be included in the turbulenceProperties dictionary:

#### Source files

- porousKEpsilon.H
- porousKEpsilon.C

### How to use the documentatio

- Embedded documentation still under construction
- But often the code itself is enough to understand

```
// * * * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * * //
Foam::FSHeatTransferCoefficientModels::Nusselt::Nusselt
    const FSPair& pair,
    const dictionary& dict,
    const objectRegistry& objReg
.
    FSHeatTransferCoefficientModel
        pair,
        dict.
        obiReg
    Re (pair.Re()),
    kappa_(pair.fluidRef().kappa()),
    Pr_(pair.fluidRef().Pr()),
        (pair.fluidRef().Dh()),
       dict.get<scalar>("const")
       dict.get<scalar>("coeff"
       (dict.get<scalar>("expRe")
    D_(dict.get<scalar>("expPr"))
    usePeclet (C == D
{}
             * * * * * * * * * * Member Functions
                                                   * * * * * * * * * * * * //
Foam::scalar Foam::FSHeatTransferCoefficientModels::Nusselt::value
    const label& celli
) const
   //- I am creating a scalar on return to (hopefully) force Return Value
    // Optimizations (RVOs, C++ performance stuff)
    if(B != 0)
    ſ
        if (usePeclet )
            return
                scalar
                    (kappa_[celli]/Dh_[celli])*
                    (A_ + B_*pow(Re_[celli]*Pr_[celli], C_))
                );
        else
            return
                scalar
                    (kappa [celli]/Dh [celli])*
                    (A_ + B_*pow(Re_[celli], C_)*pow(Pr_[celli], D_))
                );
    }
else
        return scalar((kappa [celli]/Dh [celli])*A );
```

### How to use the documentatio

- Embedded documentation still under construction
- But often the code itself is enough to understand

Get some constants from a dictionary

Correlation in the form: Nu = A\_+B\_\*(Re^C\_)\*(Pr^D\_)

```
// * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * * //
Foam::FSHeatTransferCoefficientModels::Nusselt::Nusselt
    const FSPair& pair.
    const dictionary& dict,
    const objectRegistry& objReg
.
    ESHeatTransferCoefficientModel
        pair,
        dict.
        obiReg
    Re (pair.Re()).
    kappa_(pair.fluidRef().kappa()),
       (pair.fluidRef().Pr()),
        (pair.fluidRef().Dh()),
       dict.get<scalar>("const")
      (dict.get<scalar>("coeff")
      (dict.get<scalar>("expRe")
    D (dict.get<scalar>("expPr"))
    usePeclet (C == D
{}
// * *
                       * * * * * Member Functions * * * * *
Foam::scalar Foam::FSHeatTransferCoefficientModels::Nusselt::value
    const label& celli
 const
    //- I am creating a scalar on return to (hopefully) force Return Value
    // Optimizations (RVOs, C++ performance stuff)
    if(B != 0)
    -{
        if (usePeclet )
            return
                scalar
                     (kappa_[celli]/Dh_[celli])*
(A + B *pow(Re [celli]*Pr [celli], C ))
                );
        else
            return
                scalar
                     (kappa [celli]/Dh [celli])*
                     (A_ + B_*pow(Re_[celli], C_)*pow(Pr_[celli], D_))
    }
else
        return scalar((kappa [celli]/Dh [celli])*A );
```



### **Turbulence properties**

### The turbulenceProperties dictionary

The turbulenceProperties dictionary can be found under constant/fluidRegion/. It is a standard OpenFOAM dictionary that allows defining the turbulence model to be used.

When clear-fluid simulations (i.e., without porous zones) are performed, on can used the standard kEpsilon model of OpenFOAM.

When porous zones are present in the simulation, it is reccomended to use *porousKEpsilon* (see *porousKEpsilon.H*). The only difference w.r.t. the standard k-epsilon model is that it forces k and epsilon to equilibrium values inside the porous zones. These equilibrium values can be set in the *porousKEpsilonProperties* sub-dictionary. Please notice that a porous medium simulation using the equilibrium values of k and epsilon for the sub-scale structure (viz., the values inside a fuel sub-channel) would entail the risk of an unstable solution. This is due to the fact that the turbulent viscosity will be that of the sub-scale structure, and thus potentially not enough to stabilize a solution on the length scale of the coarse mesh. To address this problem, one can define the keyword DhStruct in *constant/fluidRegion/phaseProperties/dragModels.(nameOfPhase).structure.(nameOfCellZones)*. This keyword defines the hydraulic diameter of the whole porous structure (viz., the dimension of the assembly, if using baffles to model wrappers, or of the entire core). The code uses it to make sure the turbulent viscosity results in a laminar Reynolds number (defaulted to 500).

While some approaches to model k and epsilon for two-phase flow simulations are presently included in the code. In particular, the Lahey model (see *LaheyKEpsilon.H*) and a mixture model (see *mixtureKEpsilon.H*) can be uses for clear-fluids, or for mixed clear-fluid and porous-medium simulations when in case of strongly advective two-phase flow scenarios where turbulent mixing mat be neglected. In addition, as simple extension of the *porousKEpsilon* model has been implemented that allows to correct the turbulent intensity using a term that is proportional to the fraction of the other phase (see *porousKEpsilon2PhaseCorrected.H*).

One can find a detailed, commented example for a porous one-phase simulation in the tutorial 3D\_SmallESFR.



### **Turbulence properties**

### The turbulenceProperties dictionary

The turbulenceProperties dictionary can be found under constant/fluidRegion/. It is a standard OpenFOAM dictionary that allows defining the turbulence model to be used.

When clear-fluid simulations (i.e., without porous zones) are performed, on can used the standard kEpsilon model of OpenFOAM.

When porous zones are present in the simulation, it is reccomended to use *porousKEpsilon* (see *porousKEpsilon.H*). The only difference w.r.t. the standard k-epsilon model is that it forces k and epsilon to equilibrium values inside the porous zones. These equilibrium values can be set in the *porousKepsionProperties* sub-dictionary. Please notice that a porous medium simulation using the equilibrium values of k and epsilon for the sub-scale structure (viz., the values inside a fuel sub-channel) would entail the risk of an unstable solution. This is due to the fact that the turbulent viscosity will be that of the sub-scale structure, and thus potentially not enough to stabilize a solution on the length scale of the coarse mesh. To address this problem, one can define the keyword DhStruct in *constant/fluidRegion/phaseProperties/dragModels.(nameOfPhase).structure.(nameOfCellZones)*. This keyword defines the hydraulic diameter of the whole porous structure (viz., the dimension of the assembly,

if using baffles to model wrappers, or of the entire core). The code uses it to make sure the turbulent viscosity results in a laminar Reynolds number (defaulted to 500).

While some approaches to model k and epsilon for two-phase flow simulations are presently included in the code. In particu *mixtureKEpsilon.H*) can be uses for clear-fluids, or for mixed clear-fluid and porous-medium simulations when in case of s In addition, as simple extension of the *porousKEpsilon* model has been implemented that allows to correct the turbulent inte *porousKEpsilon2PhaseCorrected.H*).



del (see ng mat be neglected. phase (see

One can find a detailed, commented example for a porous one-phase simulation in the tutorial 3D\_SmallESFR.

|                                                                                                                                                                    | 30                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| master V GeN-Foam / Tutorials / 3D_SmallESFR / rootCase / constant / fluidRegion / turbulenceProperties                                                            | 31 simulationType laminar; //RAS                                                    |
|                                                                                                                                                                    | 32<br>33 <b>RAS</b>                                                                 |
| Update turbulenceProperties                                                                                                                                        | 34 {                                                                                |
| foam-for-nuclear project authored 1 year ago                                                                                                                       |                                                                                     |
|                                                                                                                                                                    | 35 RASModel porousKEpsilon; //laminar;//kEpsilon;                                   |
|                                                                                                                                                                    | 36                                                                                  |
| 🗅 turbulenceProperties 🛱 2.68 KiB                                                                                                                                  | 37 turbulence on;                                                                   |
|                                                                                                                                                                    | 38                                                                                  |
| 1 /**\                                                                                                                                                             | <pre>39 printCoeffs on;</pre>                                                       |
|                                                                                                                                                                    | 40 }                                                                                |
| 3   \\ / F ield   OpenFOAM: The Open Source CFD Toolbox                                                                                                            | 41                                                                                  |
| 4   \\ / 0 peration   Version: 2.2.1                                                                                                                               |                                                                                     |
| 5   \\ / A nd   Web: www.OpenFOAM.org                                                                                                                              | 42 porousKEpsilonProperties                                                         |
| 6   \\/ M anipulation                                                                                                                                              | 43 {                                                                                |
| 7 \**/                                                                                                                                                             | 44 "diagrid:axialReflector:radialReflector:follower:controlRod:innerCore:outerCore" |
| 8 FoamFile                                                                                                                                                         | 45 {                                                                                |
| 9 {                                                                                                                                                                | 46                                                                                  |
| 10 version 2.0;<br>11 format ascii;                                                                                                                                |                                                                                     |
| 12 class dictionary;                                                                                                                                               |                                                                                     |
| 13 object turbulenceProperties;                                                                                                                                    | 48 // converge to equilibrium according                                             |
| 14 }                                                                                                                                                               | 49 // to this exponent                                                              |
| 5 // *** *** *** *** *** **************                                                                                                                            | 50 // k and epsilon are determined based on correlations for tubulent               |
| 16                                                                                                                                                                 | 51 // intensity (I) and lengh scale (L)                                             |
| 17 // Same as standard OpenFOAM. porousKEpsilon is provided as additional model.                                                                                   | 52 // Turbulent intensity correlation in the form 0.16*Reynolds^-0.125              |
| 18 // The only difference is that it forces k and epsilon to equilibrium values                                                                                    | · · · · · · · · · · · · · · · · · · ·                                               |
| 19 // inside the porous zones. These equilibium values can be set in the                                                                                           |                                                                                     |
| 20 // porousKepsionProperties sub-dictionary here below.                                                                                                           | 54 // to the input data in phaseProperties                                          |
| 21 // Please notice that a porous medium simulation using the porousKEpsilon                                                                                       | 55 turbulenceIntensityCoeff 0.16;                                                   |
| 22 // model entails the risk of an unstable solution. This is due to the fact                                                                                      | 56 turbulenceIntensityExp -0.125;                                                   |
| 23 // that the turbulent viscosity will be that of the sub-scale structure, and                                                                                    | 57 turbulenceLengthScaleCoeff 0.07; // L = 0.07*Dh (Dh is the hydraulic             |
| 24 // thus not enough to stabilize a solution on the length scale of the coarse                                                                                    | 58 // diameter secificied in                                                        |
| 25 // mesh. To address this problem, one can define the keyword DhStruct in                                                                                        |                                                                                     |
| 26 // constant/fluidRegion/phaseProperties/dragModels.(nameOfPhase).structure. 27 // (nameOfCollZene) This knowed defines the budgelie director of the black       | 59 // phaseProperties)                                                              |
| 27 // (nameOfCellZones). This keyword defines the hydraulic diameter of the whole<br>28 // porous structure. The code uses it to make sure the turbulent viscosity | 60 }                                                                                |
| 28 // porous structure. The code uses it to make sure the turbulent viscosity<br>29 // results in a laminar Reynolds number (defaulted to 500).                    | 61 }                                                                                |
| 30                                                                                                                                                                 | 62                                                                                  |
|                                                                                                                                                                    |                                                                                     |

## What's inside: Documentation - rationale



- Documentation designed to promote:
  - Understanding of the source code
  - Integration of code use and development
- Necessary conditions for a proficient use of GeN-Foam
- Second objective:
  - Limit inconsistencies between code and documentation

### **What's inside: Documentation – references**

| Ξ    | Generalized Nuclear Field Operation and Manipulation                                                                                                                                                                                                                     |        |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Maii | age Related Pages Namespaces - Classes - Files -                                                                                                                                                                                                                         | t• Sea |
| Bib  | ography                                                                                                                                                                                                                                                                  |        |
| [1]  | Fiorina and K. Mikityuk. Application of the new GeN-Foam multi-physics solver to the European Sodium Fast Reactor and verification against available codes. In ICAPP 2015 Conference, Nice, France, 2015.                                                                |        |
| [2]  | rlo Fiorina, Ivor Clifford, Manuele Aufiero, and Konstantin Mikityuk. Gen-foam: a novel openfoam® based multi-physics solver for 2d/3d transient analysis of nuclear reactors. Nuclear Engineering and Design, 294:24–37, 2015.                                          |        |
| [3]  | rlo Fiorina, Nordine Kerkar, Konstantin Mikityuk, Pablo Rubiolo, and Andreas Pautz. Development and verification of the neutron diffusion solver for the gen-foam multi-physics platform. Annals of Nuclear Energy, 96:212–222, 2016.                                    |        |
| [4]  | rlo Fiorina, Mathleu Hursin, and Andreas Pautz. Extension of the gen-foam neutronic solver to sp3 analysis and application to the crocus experimental reactor. Annals of Nuclear Energy, 101:419–428, 2017.                                                              |        |
| [5]  | Fiorina, S. Radman, MZ. Koc, and A. Pautz. Detailed modelling of the expansion reactivity feedback in fast reactors using OpenFoam. In International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering, M and C 2019, 2019. | 9.     |
| [6]  | erman, Peter, Ragusa, Jean C., and Fiorina, Carlo. Application of multiphysics model order reduction to doppler/neutronic feedback. EPJ Nuclear Sci. Technol., 5:17, 2019.                                                                                               |        |
| [7]  | ristophe Geuzaine and Jean-François Remacle. Gmsh: A 3-d finite element mesh generator with built-in pre- and post-processing facilities. International Journal for Numerical Methods in Engineering, 79(11):1309–1331, 2009.                                            |        |
| [8]  | Radman, C. Florina, K. Mikityuk, and A. Pautz. A coarse-mesh methodology for modelling of single-phase thermal-hydraulics of ESFR innovative assembly design. Nuclear Engineering and Design, 355, 2019.                                                                 |        |
| [9]  | efan Radman, Carlo Fiorina, and Andreas Pautz. Development of a novel two-phase flow solver for nuclear reactor analysis: algorithms, verification and implementation in openfoam. Nuclear Engineering and Design, 379:111178, 2021.                                     |        |
| [10] | tefan Radman, Carlo Florina, and Andreas Pautz. Development of a novel two-phase flow solver for nuclear reactor analysis: Validation against sodium boiling experiments. Nuclear Engineering and Design, 384:111422, 2021.                                              |        |
| [11] | lessandro Scolaro, Ivor Clifford, Carlo Fiorina, and Andreas Pautz. The offbeat multi-dimensional fuel behavior solver. Nuclear Engineering and Design, 358:110416, 2020.                                                                                                |        |
|      |                                                                                                                                                                                                                                                                          |        |

### https://foam-for-nuclear.gitlab.io/GeN-Foam/citelist.html

### What's inside: Source code

| master | ~                                 | GeN-Foam / GeN-Foam / + 🗸                             | Lock History Find file Web IDE 🗸 | <b>↓</b> •     | Clone |
|--------|-----------------------------------|-------------------------------------------------------|----------------------------------|----------------|-------|
|        | Merge branch '<br>foam-for-nuclea | ' <b>develop'</b><br>ar project authored 2 months ago |                                  | <b>4</b> ec149 | a5 [b |

| Name       | Last commit                                                                  | Last update  |
|------------|------------------------------------------------------------------------------|--------------|
|            |                                                                              |              |
| 🗅 Make     | IPorted restructuring of FFSEulerFoam (as of commit 5fd0cfd7fbb32ec736dcfd31 | 1 year ago   |
| Classes    | Merge branch 'develop'                                                       | 2 months ago |
| 🗅 include  | Updated GeN-Faom to OpenFOAM v2006, which broke some aspects of FFSEule      | 2 years ago  |
| 🗅 main     | Re-implemented changes to GeN-Foam made up to commit c13be190 (develop)      | 1 year ago   |
| Allwclean  | IPorted restructuring of FFSEulerFoam (as of commit 5fd0cfd7fbb32ec736dcfd31 | 1 year ago   |
| 🗅 Allwmake | IPorted restructuring of FFSEulerFoam (as of commit 5fd0cfd7fbb32ec736dcfd31 | 1 year ago   |



### What's inside: Source code – how to use it GeN-Foam / GeN-Foam / Find file Web IDE 坐 $\sim$ Lock History $\sim$ Clone ~ master Merge branch 'develop' 4ec149a5 ß foam-for-nuclear project authored 2 months ago Last update Name Last commit The Make IPorted restructuring of FFSEulerFoam (as of commit 5fd0cfd7fbb32ec736dcfd31... 1 year ago Classes Merge branch 'develop' 2 months ago include Updated GeN-Faom to OpenFOAM v2006, which broke some aspects of FFSEule... 2 years ago 🖻 main Re-implemented changes to GeN-Foam made up to commit c13be190 (develop)... 1 year ago Allwclean IPorted restructuring of FFSEulerFoam (as of commit 5fd0cfd7fbb32ec736dcfd31... 1 year ago Allwmake IPorted restructuring of FFSEulerFoam (as of commit 5fd0cfd7fbb32ec736dcfd31... 1 year ago

- "Classes" contains all the physics and multi-physics controls "main" contains what glues them together "include" are folders that mainly contain chunks of code that are included (#include) in the code (this is done only to avoid very long .C files)

- Typical run-time selectable class
  - A parent class (powerModel)
  - A selector (newPowerModel)
  - Various derived classes that represent the runtime selectable models in OpenFOAM

| / thermal+                                                  | / GeN-Foam / classes Lock History Find file Web IDE ·<br>Aydraulics / src / phaseModels<br>Models / powerModels / + · | ✓ U ✓ Clone ✓ |
|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------|
| Updated to OpenFOAMv2206<br>foam-for-nuclear project author |                                                                                                                       | eb5d63e2      |
| Name                                                        | Last commit                                                                                                           | Last update   |
|                                                             |                                                                                                                       |               |
| 🗅 fixedPower                                                | Changed powerModels from constantPower and constantTemperature                                                        | 9 months ago  |
| 🗅 fixedTemperature                                          | Modified capitalization                                                                                               | 9 months ago  |
| 🗅 heatedPin                                                 | Updated to OpenFOAM 2106 (there where a few this that were suppos                                                     | 1 year ago    |
| 🗅 nuclearFuelPin                                            | Updated to OpenFOAM 2106 (there where a few this that were suppos                                                     | 1 year ago    |
| 🛅 timeDependentPower                                        | Changed powerModels from constantPower and constantTemperature                                                        | 9 months ago  |
| c newPowerModel.C                                           | Upgrade to OpenFOAM v2112                                                                                             | 8 months ago  |
| <b>C</b> powerModel.C                                       | Updated to OpenFOAMv2206                                                                                              | 2 months ago  |
| h powerModel.H                                              | IPorted restructuring of FFSEulerFoam (as of commit 5fd0cfd7fbb32ec                                                   | 1 year ago    |

- Typical C++
  - Header (.H) file with declaration of members, and description of class
  - C file that contain what the class really does

| master ~ | GeN-Foam / GeN-Foam / classes           |
|----------|-----------------------------------------|
|          | / thermalHydraulics / src / phaseModels |
|          | / structureModels / powerModels         |
|          | / heatedPin / 🕂 🗸                       |
|          |                                         |



Updated to OpenFOAM 2106 (there where a few this that were su foam-for-nuclear project authored 1 year ago

| Name                 | Last commit                             |
|----------------------|-----------------------------------------|
|                      |                                         |
| <b>c</b> heatedPin.C | Updated to OpenFOAM 2106 (there wh      |
| h heatedPin.H        | IPorted restructuring of FFSEulerFoam ( |

master

GeN-Foam / GeN-Foam / classes / thermalHydraulics / src / phaseModels / structureModels / powerModels

/ heatedPin / heatedPin.H

IPorted restructuring of FFSEulerFoam (as of commit... ••• Stefan Radman authored 1 year ago

h heatedPin.H 🔓 5.29 KiB

: | **~** 

### Description

Model for representing a heated pin with constant material properties that is coupled to the fluid(s) via a convective boundary condition. The equation is solved via the finite volume method

### namespace Foam

| namespace powerModels |                     |   |
|-----------------------|---------------------|---|
| /*                    | class bestadbin Des | * |

Class heatedPin Declaration

.----\*/

class heatedPin

public powerModel

### protected:

//- Field (over the global mesh) of scalarFields (over a 1-D mesh of size
// subMeshSize\_) representing the radial fuel temperature profile
// across fuel and cladding
IOField<Field, scalar> Trad\_;

//- Power density of the pin
volScalarField powerDensity\_;

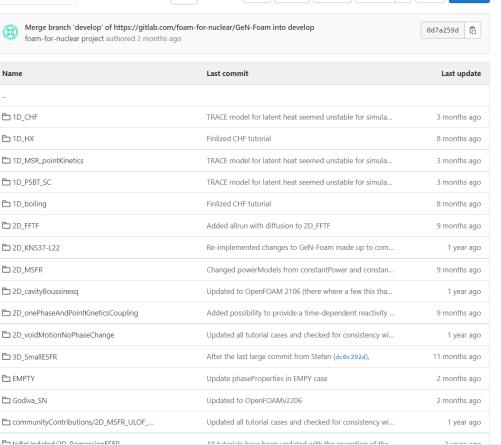
//- Fields representing inner and outer pin temperatures
volScalarField Ti\_;
volScalarField To;

//- Average temperature
volScalarField Tav\_;

//- Scalars that are input in the IOdictionary for passing min/max
// temperatures
scalar Tmax\_;
scalar Tmin;



```
void Foam::powerModels::heatedPin::correct
master
             GeN-Foam / .. / heatedPin / heatedPin.C
                                                                                                                  const volScalarField& HTSum, // == SUM j [htc j*T j*frac j]
                                                                                                                  const volScalarField& HSum // == SUM j [htc j*frac j]
      Updated to OpenFOAM 2106 (there where a few this that were supposed to be *this).
     foam-for-nuclear project authored 1 year ago
                                                                                                                  //- Reset min, max, fuel, clad temperatures
                                                                                                                  Tmax = 0.0;
C heatedPin.C [2] 15.95 KiB
                                                                                            Edit 🗸 🗸
                                                                                                                  Tmin = 1e69;
                                                                                                                  //- Update temperatures cell-by-cell and compute averages over the entire
             * * * * * * * * * * * * * * * Constructors * * * * * * * * * * * * * //
      48
                                                                                                                  // spatial extent of the heatedPin model (what I call global
                                                                                                                  // averages, opposed to local averages, which are the average temperature
          Foam::powerModels::heatedPin::heatedPin
                                                                                                                  // values, fuel and clad, of the local cell radial pin temperature
                                                                                                                  // profile)
              const structure& structureRef,
              const dictionary& dicts
                                                                                                                  const scalarField& V(mesh .V());
      54 )
                                                                                                                  scalar totV(0);
                                                                                                                  scalar Tavav(0);
              powerModel
                                                                                                                  forAll(this->cellList , i)
                  structureRef,
                                                                                                                      label celli(this->cellList [i]);
                  dicts
                                                                                                                      updateLocalTemperatureProfile(celli, HTSum[celli], HSum[celli]);
              ),
                                                                                                                      const scalar& dV(V[celli]);
              Trad
                                                                                                                      totV += dV;
                                                                                                                      Tavav += Tav [celli]*dV:
                  IOobject
                      "Trad."+typeName,
                                                                                                                  reduce(totV, sumOp<scalar>());
                     mesh .time().timeName(),
                                                                                                                  reduce(Tavav, sumOp<scalar>());
                     mesh ,
                                                                                                                  Tavav /= totV;
                     IOobject::READ_IF_PRESENT,
                     IOobject::AUTO WRITE
                                                                                                                  reduce(Tmax_, maxOp<scalar>());
                  ),
                                                                                                                  reduce(Tmin , minOp<scalar>());
                  mesh .cells().size()
              ),
                                                                                                                  Info<< "T.heatedPin (avg min max) = "</pre>
              powerDensity
                                                                                                                      << Tavav << " " << Tmin << " " << Tmax << " K" << endl;
                  *****
```


### What's inside: Tutorials

- Cover essentially all functionalities of GeN-Foam
- They include a README file, an Allrun file (sometimes Allrun\_parallel), an Allclean file, and some extensively commented inputs

| master      | GeN-Foam / Tutorials / 2D_MSFR / +  Lock History Find file Web IDE                             | ▼ ↓ ~ Clone ~ |
|-------------|------------------------------------------------------------------------------------------------|---------------|
|             | verModels from constantPower and constantTemperature •••<br>lear project authored 9 months ago | 0db99c23 [දී  |
| Name        | Last commit                                                                                    | Last update   |
|             |                                                                                                |               |
| 🗅 rootCase  | Changed powerModels from constantPower and constantTemperature                                 | 9 months ago  |
| 🕒 Allclean  | Clean up of Tutorial 2D_MSFR                                                                   | 2 years ago   |
| 🕒 Allrun    | Updated all tutorial cases and checked for consistency with previous thermal-hyd               | 1 year ago    |
| README      | Restored old mesh.                                                                             | 1 year ago    |
| 🎦 residuals | Updated all tutorial cases and checked for consistency with previous thermal-hyd               | 1 year ago    |

#### README

2D\_MSFR is a 2-D r-z model of a Molten Salt Fast Reactor. It solves for neutronics and thermal-hydraulics. The Allrun bash script can be used to run the tutorial. The Allclean bash script can be used to clean it up. The script will first run a steady-state case with fluid-dynamics only. Starting from the results of the simulation, a second steady-state is launched solving for neutronics and energy equations. Finally. a simple transient calculation is run.



History

Lock

Find file

Web IDE

GeN-Foam / Tutorials / + ~

master



₩ ~

Clone ~

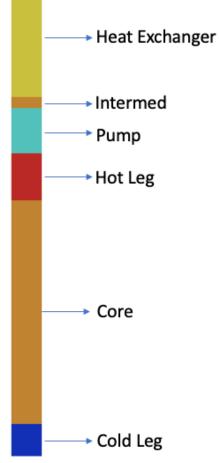
### What's inside: Tutorials

IAE

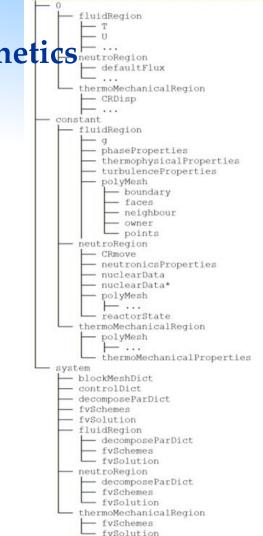
- Understanding the tutorial:
  - 1. README file
  - 2. Case folder
  - 3. Allrun file
  - 4. Run it and use paraview to see what happens
- N.B.
  - Very often we launch multiple simulations in the same tutorial
  - When that is the case, the case folder will contain a rootCase folder that will be duplicated multiple times

| master | ~ | GeN-Foam / Tutorials / 1D_MSR_                                             | pointKinetics    | Lock     | History | Find file | Web IDE | •   | Clone   | - |
|--------|---|----------------------------------------------------------------------------|------------------|----------|---------|-----------|---------|-----|---------|---|
|        |   | / + ~                                                                      |                  |          |         |           |         |     |         |   |
|        |   | or latent heat seemed unstable for sir<br>ar project authored 3 months ago | nulations around | d 75 bar | s 🚥     |           |         | 800 | e21c9 [ | ] |

| Name                                   | Last commit                                                 | Last update  |
|----------------------------------------|-------------------------------------------------------------|--------------|
|                                        |                                                             |              |
| 🖹 rootCase                             | TRACE model for latent heat seemed unstable for simulation  | 3 months ago |
| 🗅 Allclean                             | Added tutorials point kinetics MSR                          | 1 year ago   |
| 🕒 Allrun                               | Updated all tutorial cases and checked for consistency with | 1 year ago   |
| C README                               | Updated to OpenFOAM 2106 (there where a few this that w     | 1 year ago   |
| C checkSteadyStateAnalysticalResults.m | Added tutorials point kinetics MSR                          | 1 year ago   |
| 🔷 plotPK.py                            | Added tutorials point kinetics MSR                          | 1 year ago   |
| plotPKPower_Temp.py                    | Added tutorials point kinetics MSR                          | 1 year ago   |
| 🕏 plotPKlin.py                         | Added tutorials point kinetics MSR                          | 1 year ago   |
| 🗅 residuals                            | Updated all tutorial cases and checked for consistency with | 1 year ago   |


• Start from the README file

### DESCRIPTION


This tutorial displays how to use the point kinetics module of GeN-Foam for MSRs. It is a simple 1-D case with core, hot leg, pump, heat exchanger and cold leg. The geometry is one dimensional and salt recirculation is simulated by making use of a cyclic boundary condition between top and bottom boundaries.

Three simulations are performed:

- energy and fluid dynamics to obtain a steady state
- energy, fluid dynamics and point kinetics to simulate a loss-of-flow
- recalculate the reactivity loss due to recirculation of the delayed neutron precursors.

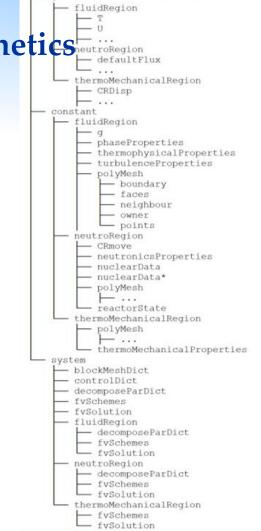


- Look at the case folder
  - 0 folder with three sub-folders containing the fields for each physics
  - constant folder with 3 sub-folders
    - 3 meshes (polyMesh folders)
    - 3 sets of dictionaries
  - system folder with:
    - 3 sub-folders with dedicated fvScheme and fvSolution for each physics
    - 1 controlDict
    - o 1 common fvSolution with some multi-physics controls



- Look at the dictionaries
  - All the dictionaries are explained in the user manual

### The nuclearData dictionaries


The *nuclearData* dictionary can be found under *constant/neutroRegion/*. It contains all basic nuclear properties for the reference reactor state. The other *nuclearData...* files in *constant/neutronics/* should include the cross-sections for perturbed reactor states. In addition, these files include information about the perturbed and reference (*nuclearData*) reactor state. For instance, *nuclearDataFuelTemp* must include *TfuelRef* and *TfuelPerturbed*, which represent the temperatures at which the reference (*nuclearData*) and perturbed (*nuclearDataFuelTemp*) cross sections have been calculated, respectively. Linear interpolation is performed by GeN-Foam between reference and perturbed reactor states, except for fuel temperature, for which a logarithmic or square root interpolation is provided (depending on the spectrum, which in turns is defined by the keyword *fastNeutrons*). If no data are provided with GeN-Foam (in the *Tools* folder) is an Octave script that automatically converts Serpent output files into the nuclear data files employed by GeN-Foam. The entry *discFactor* is used only if discontinuity factors have to be used. The term *integralFlux*, is used only if the automatic adjustment of discontinuity factors is performed [3]. Nonetheless, these entries should always be present.

One can find detailed, commented examples of nuclearData in the tutorials 3D\_SmallESFR (for diffusion or SP3), Godiva\_SN (for discrete ordinates) and 2D\_onePhaseAndPointKineticsCoupling (for point kinetics).

N.B.: cross sections must be expressed according to the International System of Units (so m, not cm).

N.B.2: defaultPrec has 1/m3 units except for the adjoint solver that needs 1/m2/s.

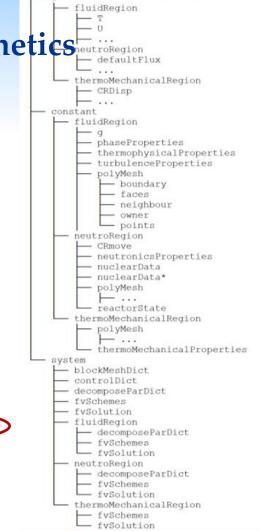
N.B.3: the *nuclearData...* files must always be present, even when not parametrizing cross-sections. If no parametrization is needed, the "zone" card must be left "blank" as: zones();



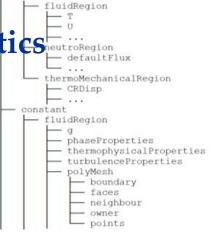
- Look at the dictionaries
  - All the dictionaries are explained in the user manual, which also contain links to tutorials where the dictionary is used and extensively commented

### The nuclearData dictionaries

The *nuclearData* dictionary can be found under *constant/neutroRegion/*. It contains all basic nuclear properties for the reference reactor state. The other *nuclearData...* files in *constant/neutronics/* should include the cross-sections for perturbed reactor states. In addition, these files include information about the perturbed and reference (*nuclearData*) reactor state. For instance, *nuclearDataFuelTemp* must include *TfuelRef* and *TfuelPerturbed*, which represent the temperatures at which the reference (*nuclearData*) and perturbed (*nuclearDataFuelTemp*) cross sections have been calculated, respectively. Linear interpolation is performed by GeN-Foam between reference and perturbed reactor states, except for fuel temperature, for which a logarithmic or square root interpolation is provided (depending on the spectrum, which in turns is defined by the keyword *fastNeutrons*). If no data are provided with GeN-Foam (in the *Tools* folder) is an Octave script that automatically converts Serpent output files into the nuclear data files employed by GeN-Foam. The entry *discFactor* is used only if discontinuity factors have to be used. The term *integralFlux*, is used only if the automatic adjustment of discontinuity factors is performed [3]. Nonetheless, these entries should always be present.


One can find detailed, commented examples of nuclearData in the tunorials 3D\_SmallESFR (for diffusion or SP3), Godiva\_SN (for

discrete ordinates) and 2D\_onePhaseAndPointKineticsCoupling (for point kinetics).


N.B.: cross sections must be expressed according to the International System of Units (so m, not cm).

N.B.2: defaultPrec has 1/m3 units except for the adjoint solver that needs 1/m2/s.

N.B.3: the *nuclearData...* files must always be present, even when not parametrizing cross-sections. If no parametrization is needed, the "zone" card must be left "blank" as: zones();



- Look at the dictionaries
  - All the dictionaries are explained in the user manual, which also contain links to tutorials where the dictionary is used and extensively commented
  - Also the Preprocessing section of the documentation contains the same links, all in the same documentation page



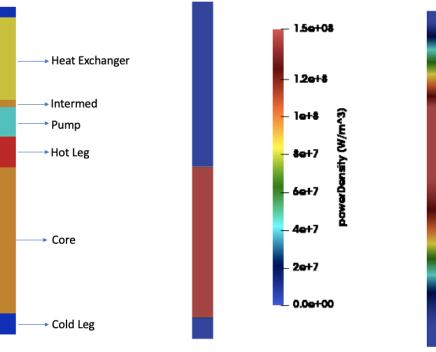
### **Physical properties**

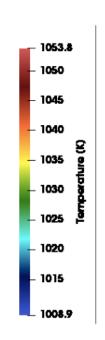
All the data for the GeN-Foam simulations can be filled in the following input files (dictionaries):

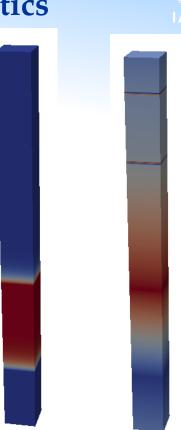
- constant/thermoMechanicalRegion/thermoMechanicalProperties thermo-mechanical properties of structures, subdivided according to the cellZones of the thermoMechanicalRegion mesh. One can find a detailed, commented example in the tutorial 3D\_SmallESFR.
- constant/fluidRegion/g gravitational acceleration.
- constant/fluidRegion/turbulenceProperties standard OpenFOAM dictionary to define the turbulence model to be used. One can find a detailed, commented example in the turbrial 3D\_SmallESFR.
- constant/fluidRegion/thermophysicalProperties (for single-phase simulations) standard OpenFOAM dictionary to define the thermo-physical properties of the coolant. One can find a detailed, commented example in tutorial 3D\_SmallESFR (single phase)
- constant/fluidRegion/thermophysicalProperties.(name of fluid) (for two-phase simulations) standard OpenFOAM dictionaries to define the thermo-physical properties of various phases. The name of fluid is defined in constant/fluidRegion/phaseProperties. One can find a detailed, commented example in the tutorial 1D\_boiling (liquid), (vapour).
- constant/fluidRegion/phaseProperties large dictionary that can be used to: determined whether the simulation is single-phase or two-phase; set various properties of the phases (beside the thermo-physical properties defined in constant/fluidRegion/thermophysicalProperties); set the properties of the sub-scale structures (fuel pins, heat exchangers, etc) in the porous zones, including the possibility to assign a *powerModel* for power production (e.g., nuclear fuel, or constant power) and the *passiveProperties* of another sub-structure that interacts thermally with the fluid (for instance the wrappers in sodium fast reactors). The name of the porous zones must coincide with that of the cellZones of the fluidRegion mesh. Anisotropic pressure drops can be set by using the keywords *transverseDragModel* (Blasius, GunterShaw, same) and *principalAxis*(localX, localY, localZ) in the sub-dictionary *dragModels*. (*nameOfPhase).structure.(nameOfCellZones). principalAxis* sets the axis on which the nominal dragModel is used. *transverseDragModel* sets the model to be used on the two directions that are perpendicular to *principalAxis*. If *same* is chosen as *transverseDragModel*, the code will use the nominal model in all directions, but with the possibility of an anisotropic hydraulic diameter. The anisotropy of the hydraulic diameter can be set using the keyword *localDhAnisotrpy* and assign to it a vector of 3 scaling factors (one for each local directions). One can find detailed, commented examples in the tutorials 3D\_SmallESFR (single phase) and 1D\_boiling (two phases).



### • Look at the Allrun file


. . .


```
cases="steadyState transient transientEnd "
. . .
setSteadyState()
           runCloneCase $1 $2
           foamDictionary steadyState/system/fvSolution -entry tightlyCoupled -set false
           foamDictionary steadyState/system/controlDict -entry startTime -set 0
           foamDictionary steadyState/system/controlDict -entry endTime -set 100
           foamDictionary steadyState/system/controlDict -entry adjustTimeStep -set true
           foamDictionary steadyState/system/controlDict -entry solveFluidMechanics -set true
           foamDictionary steadyState/system/controlDict -entry solveEnergy -set true
           foamDictionary steadyState/system/controlDict -entry solveNeutronics -set false
           foamDictionary steadyState/system/controlDict -entry solveThermalMechanics -set false
=
. . .
setTransient()
           foamDictionary transient/system/controlDict -entry startTime -set 100
           foamDictionary transient/system/controlDict -entry endTime -set 400
           foamDictionary transient/system/controlDict -entry solveNeutronics -set true
```

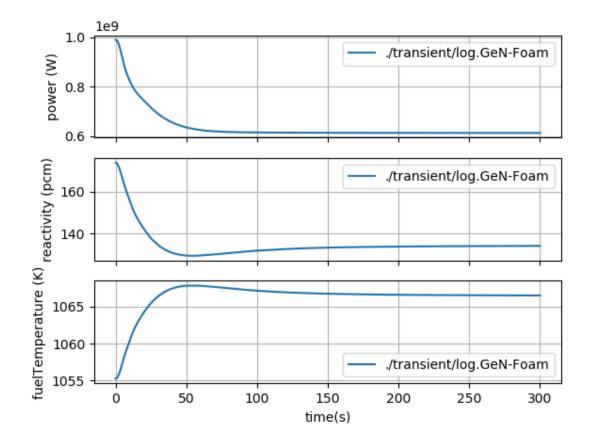



- Run the tutorial -> ./Allrun
- Check the results:
  - Choose a folder: steadyState, transient, transientEnd
  - Use:
    - o paraFoam
    - o log.GeN-Foam: standard OpenFOAM log
    - GeN-Foam.dat: quick overview of time behavior of main quantities (power, keff, min/max/average fuel and clad temp.)
    - constant/uniform/reactorState for keff
    - $\circ~$  in some tutorials, a python script to extract info from log file

• paraFoam





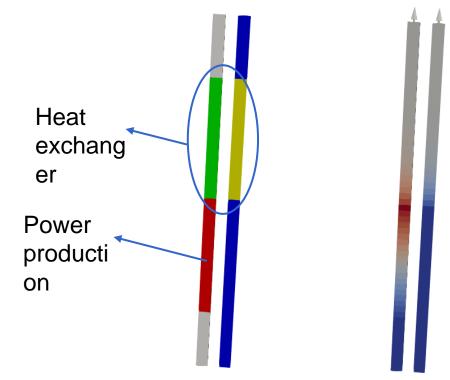



Precursors, group 0 and 7

 python script (extract data from log). Type in terminal:

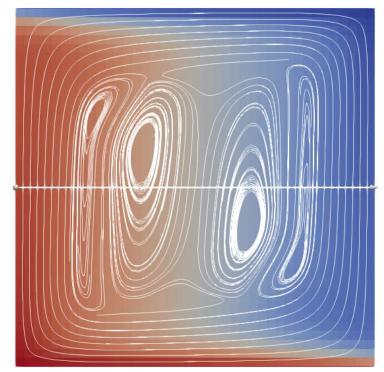
> Python3 plotPKlin.py ./transient/log.GeN-Foam

 GeN-Foam.dat
 (contains evolution of main fields over time)






## What's inside: other tutorials - 1D\_HX




• Example on how to set up a heat exchanger



## What's inside: other tutorials - 2D\_cavityBoussinesq

• Example of how to use of the Boussinesq approximation for buoyancy based on the standard buoyancy-driven cavity



## What's inside: other tutorials - 1D\_boiling




• Example of two-phase simulation. 1D channel with a pressure-driven flow of liquid sodium, with power source turned on at time 0, eventually leading to boiling. After a certain time the power is turned off



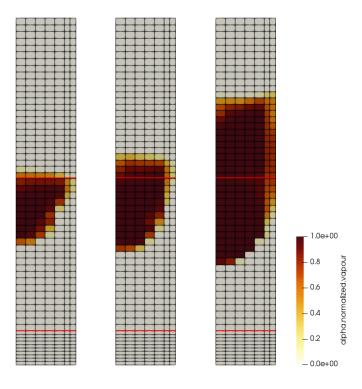
## What's inside: other tutorials - 1D\_PSBT\_SC and 1D\_CHF

- Example of use for water boiling, based on the NEA PSBT benchmark
- Example of use for water boiling, including boiling crisis (not yet validated!)



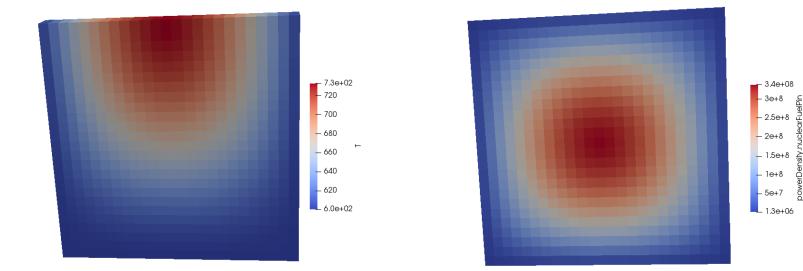
### What's inside: other tutorials - 2D\_voidMotionNoPhaseChange




• Simple two-phase case without mass transfer between phases

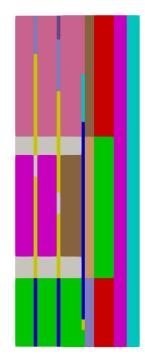


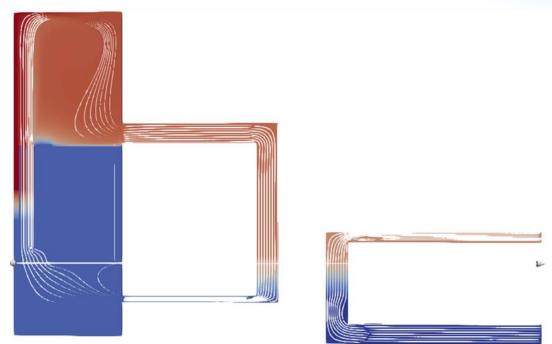
## What's inside: other tutorials - 2D\_KNS37-L22




• Example of use for sodium boiling, based on the KNS experiment



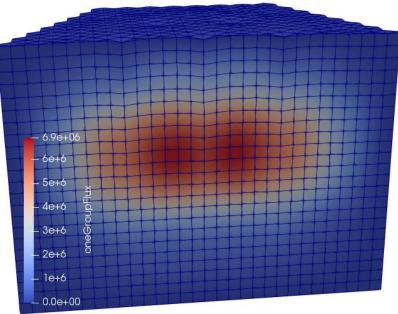

### What's inside: other tutorials -2D\_onePhaseAndPointKineticsCoupling


• Simple case with coupling of thermal-hydraulics and point-kinetics



## What's inside: other tutorials - 2D\_FFTF

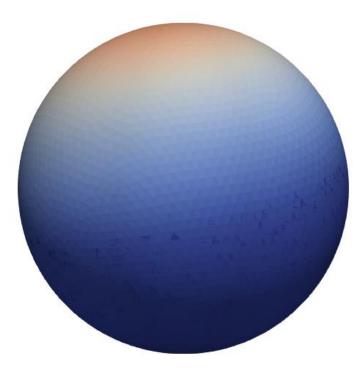
• 2-D model of the FFTF. Simulation of a ULOF. Thermal-hydraulics plus neutronics






## What's inside: other tutorials - 3D\_SmallESFR




- Slightly smaller version of the European Sodium Fast Reactor
- Example of a 3D full multi-physics simulation, including core deformation



## What's inside: other tutorials - Godiva\_SN



• Example of a discrete ordinate calculation of Godiva



## What's inside: other tutorials - EMPTY



- GeN-Foam requires a minimal set of inputs (incl. mesh) for all physics, even when not solving for them
- EMPTY contains a minimal set of dummy inputs
  - Warning: dummy meshes are small. If you need to run in parallel on many cores, you'll have to refine the meshes so that they have at least the same number of cells as the number of parallel processes
- EMPTY can be uses as starting point for new cases

## **Correct way of approaching GeN-Foam**



- 1. Learn OpenFOAM
- 2. Read the doxygen documentation (it won't take more than a few hours and it will spare one weeks of possible frustration)
- 3. If unfamiliar with some aspects (e.g., porous-medium thermal-hydraulics), one can start by looking at the papers referenced in the online documentation
- 4. If unfamiliar with OpenFOAM-related aspects (meshing, schemes, linear solvers, etc.), one can refer to the various OpenFOAM resources
- 5. Try and understand a few tutorials that are close to your application
- 6. Start familiarizing with the source-code (doxygen documentation helps a lot...)
- 7. Pick the tutorial that is closer to your one's own and start from there. If no tutorial close enough, start from the EMPTY case.
- 8. Accompany use with development/understanding of source code. This is the key to a proficient use

## Summary of available resources



- General OpenFOAM resources (GeN-Foam is just a high-level application of a much larger library)
- Theory papers
  - https://foam-for-nuclear.gitlab.io/GeN-Foam/citelist.html
  - End of last lecture
- Doxygen documentation: standad doxygen, introduction, user manual, tutorials, tips and tricks, important notes, **recent changes in the case folder** 
  - Online (<u>https://foam-for-nuclear.gitlab.io/GeN-Foam/index.html</u>)
  - Local (can be built with doxygen)
- Tutorials
  - Cover essentially all functionalities
  - All dictionaries commented in at least one tutorial (link in the documentation)
- Source code
  - Normally well written and commented
  - Important to improve understanding
- Forum
  - <u>https://foam-for-nuclear.org/phpBB/</u>



Joint ICTP-IAEA Workshop on Open-Source Nuclear Codes for Reactor Analysis August 7-11 2023

# Thank you!

### *Contact: <u>ONCORE@iaea.org</u>*

<u>Course Enrolment : Multi-physics modelling and simulation of nuclear reactors using OpenFOAM</u> <u>ONCORE: Open-source Nuclear Codes for Reactor Analysis</u>