TerraPower.

ARMI™ Workshop

Joint ICTP-IAEA Workshop on Open-Source Nuclear Codes for Reactor Analysis | (smr 3865) 2023-08-10 TerraPower, LLC armi-devs@terrapower.com

Welcome

- Brief ARMI[™] introduction presentation
- Installation of ARMI[™]
- Check-in: checking installation
- Additional high-level introduction while people finish get installed
- Open up the gallery and go through a few examples.
- Check-in: Gallery help from chat questions
- Presentation about the ARMI Data Model
- Walkthrough data tutorial but with FFTF inputs
- Check-in: Answer Q&A questions from chat
- If time: Given H5 database, make a VTK or XDMF file
- View output in Paraview
- Q&A and Discussion

What to expect

- Command line
- Python programming
- Non-coders: there will be pretty pictures!
- ARMI is a <u>framework</u> with a built-in nuclear reactor specific data model
- ARMI is good at integration and automation
- Your team needs *developers* working with ARMI to make gainful use of ARMI at this point
- Later: We hope an "off-the-shelf" set of plugins exists sufficient to do meaningful work without much extra development
- The TerraPower ARMI plugins are largely proprietary at this point
- ARMI has had a SFR-dominant focus

Teaser of what we'll do today

TR IRS ORS ORS ORS

Input File

Grid Editor GUI

Output (VTK file)

What is ARMI[™]?

Copyright© 2021 TerraPower, LLC. All Rights Reserved.

Improving reactor performance

Decision making

In the old days, we built <u>exceedingly</u> exotic reactors, but we had to use *physical* models/analogs

A Milling-Yellow solution exhibits an optical property called *flow double refraction*

The Aircraft Reactor Experiment (1954)

The Power Demonstration Reactor Program

Today, we run 1000s of models on one piece of hardware

- Better understanding of physical data
 - Nuclear cross sections
 - Previous experiments
- Higher-power digital computers
 - 3D fine mesh
 - Monte Carlo
 - CFD

New tech still requires experimental validation, but this can be very <u>targeted</u>

TerraPower, with its small team, sought to leverage software to a new degree

ARMI provides Reactors at your fingertips

Advanced Reactor Modeling Interface (ARMI ™)

A system for reactor design & analysis

- Enables efficient *communication* and *coupling* between codes and the analysts that use them.
- Automates detailed and complex modeling workflows
- Accommodates development of new tools

TerraPower

https://github.com/terrapower/armi

Traditional workflow is slow, laborious, and error-prone

Traditional communication and coupling

ARMI workflow is streamlined

ARMI automation enables consistency in complex systems

ARMI's differentiators

- Unapologetically nuclear specific –Reactor data model
- Made by reactor analysts for reactor analysts
- 14 years of advanced reactor industrial use
- High-level programming language: low barrier for 'regular' engineers
- Open source

Other benefits of a universal reactor model

- Collaborative benchmark models for V&V
 - -Capture widest knowledge to best preserve degrading experimental data
- Reduce data management burden of nuclear development
 - Plug your new code into a ecosystem, leverage entire community's efforts
- New opportunities in collaborative reactor <u>design</u> projects

 Less institutional friction to collaborate
 Projects could be more robust against hardship
- Collaboratively develop and approve automated analysis <u>methodologies</u>
 - –Identify mistakes early ("fail fast")
 - -Regulator could become familiar, have more faith

Additional use cases for research institutions

- ARMI can help facilitate open science
 - -Fully-defined reactor models (not just tables of highlights)
 - -Fully-defined methodologies (equations + *implementation!*)
- ARMI can improve research efficiency
 - -High-level, nuclear-specific data management
 - -Architecture as "training wheels" for newbs
 - -Temporal continuity

Workshop Interactivity Review (and help)

• Make sure your computer has Python 3.9-3.11

> python -V
Python 3.11.4

- Make a virtual environment (also: what is a virtual environment)
 > python -m venv C:\users\yourusername\venvs\armi-venv
- Activate Virtual Environment

> C:\users\yourusername\venvs\armivenv\scripts\activate

Shortcut to instructions: 2ran.net/armi

More intro

Statistical analysis and optimization

Successes

- TWR fuel management
- Driven core design and analysis of the project for past decade
- Investments in *methodologies* live on
 - Resilient to design changes
 - Resilient to staffing changes
- MCFR uses ARMI
- Medical isotopes team
- VTR model built in 2 days; could perform preliminary design-level analysis
- Executed contract with INL to couple one of their flagship physics tools (BISON) to ARMI
- Other successes?

Some SFR ARMI highlights with TerraPower plugins

ZPPR Models

List of existing plugins (mostly not open source)

- DRAGON
- Windows HPC
- Crucible
- Depletion
- DIF3D
- Economics
- Equilibrium fuel cycle
- Fluxrecon
- Gamma transport
- Intrinsic source

- MC2-3
- MCNP
- NJOY
- Nuclear Data UQ
- PARTISN
- Reactivity control
- REBUS
- Reactivity Coefficients
- SASSYS
- Stability
- SFR T/H
- VirDenT

For details/descriptions, see: https://github.com/terrapower/armi-plugin-directory

Installing ARMI

Installing ARMI

(armi-venv) \$ pip install https://github.com/terrapower/armi/archive/main.zip

(armi-venv) \$ armi

Exploring the Gallery!

https://terrapower.github.io/armi/gallery

First, run this:

> pip install ipython

The FFTF input files

https://github.com/terrapower/fftf-isothermal-model

Try out the grid editor

Windows/Linux: pip install wxpython Mac: brew install wxpython Linux if compiling: apt install python3-wxgtk4.0

Then run:

armi grids FFTF-blueprints.yaml

ARMI ARCHITECTURE

Framework, Plugin, Application

ARMI Framework Concepts

The ARMI Framework is comprised of the following concepts:

Flags

- Composite Reactor Model
- Parameters
- Database I/O
- Interfaces
- Operator
- Blueprints
- Settings
 USER INPUT

Composite Reactor Model

* Object types do not necessarily need to be the same at each level of the hierarchy, but in practice they are, at least for Core models.

Composite Reactor Model

Interactive Exploration of the Reactor Model

The Operator Interface Stack

Shuffling	Move fuel			
Cross-sections	Update			
Flux/power	Compute	Compute	Compute	Compute
Temp./pressure	Compute	Compute	Compute	Compute
Fuel performance				Update
Database	Save state	Save state	Save state	Save state

Example Interface Stack

Index	Туре	Name	Function	Enabled	EOL order	BOL forced
01	Main	main		Yes	Reversed	No
02	FissionProductModel	fissionProducts		Yes	Normal	No
03	CrossSectionGroupManager	xsGroups		Yes	Normal	No
04	EquilibriumShuffler	fuelHandler		Yes	Normal	No
05	Depletion	depletion		Yes	Normal	Yes
06	Mc2v3	mc2v3	latticePhysics	Yes	Normal	No
07	Dif3d	dif3d	globalFlux	Yes	Normal	Yes
80	HistoryTracker	history		Yes	Normal	No
09	Report	report		Yes	Normal	No
10	Database	database		No	Normal	No
11	MemoryProfiler	memoryProfiler		Yes	Normal	No
12	Snapshot	snapshot		Yes	Normal	No

Interactive state modifications

Simple fuel management input leads to rich reload optimization capabilities

from armi.physics.fuelCycle import fuelHandlers

```
fh = fuelHandlers.fuelHandlerFactory(o)
```

```
moved = []
for n in range(10):
    high = fh.findAssembly(param="power", compareTo=1.0e6, blockLevelMax=True, exclusions=moved)
    low = fh.findAssembly(param="power", compareTo=0.0, blockLevelMax=True, exclusions=moved)
    fh.swapAssemblies(high, low)
    moved.extend([high, low])
```


Interactive fuel management

Database I/O

- The database maps reactor state (parameters) to persistent storage
- HDF5 format
- User can restore state from any time node from a database for followon analysis
- Data can be visualized using Paraview (VTK or XDMF) or VisIT (VTK only)

Interactive DB writing

Loading output in Paraview

VTK and XDMF output support

Once again with the FFTF isothermal benchmark model

https://github.com/terrapower/fftf-isothermal-model

Grid Editor GUI

Output (VTK file)

Our plans, hopes, and dreams

- Release FFTF isothermal model (done)
- Release global flux plugin to interface with DONJON (in progress)
- Build open source DIF3D plugin (done)
- Build open source MC2 plugin (planned)
- What we hope others might do with ARMI:
 - -Make plugin for other codes
 - -Make ARMI model for BEAVRS LWR (maybe better for us to do)
 - -Do awesome research
- Shout-out: Lots of other open-source nuclear work going on

List here: https://github.com/paulromano/awesome-nuclear

Summary and Next Steps

ARMI's differentiators:

- Unapologetically nuclear specific –Unique reactor data model
- Made by reactor analysts for reactor analysts
- 14 years of professional use (mostly targeting SFR)
- High-level language
- Open source

Getting started:

- Try out the other online ARMI tutorials
- Obtain or make a ARMI reactor model you care about
- Make an ARMI plugin for your favorite physics code
- Make your own ARMI app for your specific needs
- Make a PR!!! 🙂

Getting help:

- Github issue
- Email us (armi-devs@terrapower.com)
- (We'll make a forum soon)

https://terrapower.github.io/armi

Thank you for your time!

Discussion/Q&A

