

Joint ICTP-IAEA Workshop on Open-Source Nuclear Codes for Reactor Analysis (smr 3865)

Exercise 1: Assignments

- The provided startingCase contains everything done on Monday, except that in GeN-Foam we do not use fvOptions, but the phaseProperties file. And of course the controlDict is different.
- So, up to you to set them! Try to replicate the simulation we did on Monday for fluid-dynamics only (no energy solution, no neutronics, no thermal-mechanics). Run it for 10 seconds. To simulate the pump, you will need a momentum source set to -300000 $kg/m^2/s^2$ in z direction.
- Compare it with the case done Monday.

Carlo Fiorina, Stefano Lorenzi, Alessandro ScA crash introduction to GeN-Foam: simulatic

Exercise 1: Tips

3/15

- Always try to open your case in paraFoam. What do you notice compared to Monday?
- To learn how to set a momentum source for a pump, try to browse the documentation or the tutorials. The "grep -ir pump" command in the terminal can be helpful. Or, you can ask chatGPT to create a linux command to specifically search for the keyword "pump" in files named "phaseProperties" in Tutorials
- Always take a look at fvSchemes, fvSolution. They define how a numerical solution is obtained.
- Be careful with the time-step setting(s) in controlDict

4/15

Exercise 1 – Setting the case

constant/fluidRegion/phaseProperties:

"pump"

volumeFraction 0; Dh 1; momentumSource (0 0 -300000);

• system/controlDict;

endTime 20; deltaT 1e-3; solveFluidMechanics true; adjustTimeStep true;

Exercise 1 - Results

GeN-Foam

Monday's exercise - simpleFoam

L. Cattoni et al., Multiphysics Topology Optimization with Application to Molten Salt Fast Reactor, NENE 2021

Exercise 2: Assignments

- Starting from the previous case (copy-paste it, and keep the previous), clean up the time steps and set up a GeN-Foam case to be able to solve for diffusion-based neutronics. The nuclearData* files and the mesh are provided in the "inputs" folder. We want the power of the reactor to be 20MW.
- Spend some time trying to understand the nuclearData* files. How many energy groups? How many precursors groups? How are cross-sections parameterized?
- Try to solve for neutronics only, eigenvalue, from time zero. Use both Dirichlet (zero) and Neumann (zero) BC.

< ロ > < 日 > < 三

August 8, 2023

5/15

• Try to visualize the distribution of power/flux and of precursors groups 0 and 7, and look at keff.

Carlo Fiorina, Stefano Lorenzi, Alessandro ScA crash introduction to GeN-Foam: simulation

Exercise 2: Tips

- GeN-Foam allows using a defaultFlux field to initialize initial and boundary conditions for all the energy groups.
- Why 20MW when the MSFR should be 3GW?
- Be careful about the boundary conditions for the fluxes.
- Think about the meaning of doing "time-steps" in an eigenvalue calculation. What are, in fact, the time steps? Do we need to adjust time steps?

6/15

Exercise 2 – Setting the case

- Starting from the previous case
- Copy nuclear data to constant/neutroRegion
- system/controlDict;
 - endTime 10; deltaT 1e-1;

 - solveFluidMechanics false;
 - solveNeutronics true;
 - adjustTimeStep false;
 - liquidFuel true;

• 0/neutroRegion/defaultFlux + defaultFlux2:

front { type wedge; }
back { type wedge; }
"(bottomwall|topwall|reflector|hx)" { type fixedValue; value uniform 0; }

• 0/uniform/reactorState:

pTarget 20.0e+06;

• Constant/neutroRegion/neutronicsProperties:

eigenvalueNeutronics true;

Exercise 2 - Results

kEff = 0.94390716

Precursor 7

_ 2.6e-01

Exercise 3: Assignments

- Now we want to see if the velocity field has an influence on neutronics.
- Try to run a coupled solution of fluid-dynamics and eigenvalue neutronics
- Try to plot the distribution of power/flux and of precursors groups 0 and 7 and compare with the previous exercise. What do you notice?

August 8, 2023

7/15

• Try also to look at the keff for the 2 cases. How does it change?

Carlo Fiorina, Stefano Lorenzi, Alessandro ScA crash introduction to GeN-Foam: simulatic

Exercise 3: Tips

- What is changing physically for neutronics compared to previous case?
- Is there something that we are solving now, and that we were not solving for before? Do we need new initial and boundary conditions?
- It might also be worthwhile looking at fvSchemes in neutronics in some details this time. Is there a scheme that is always bounded? Maybe it is worth using it for div(phi_, precStar_) :)
- Can we start from a good guess for the fluid dynamics and limit the computational time? (Do we have a one-way or two-way coupling?)

8/15

Exercise 3 – Setting the case

- Starting from previous case
- Copying results from Exercise 1 (\$lastTimeStep/fluidRegion) to 0/fluidRegion
- system/controlDict;

deltaT 1e-3; solveFluidMechanics true; solveNeutronics true; adjustTimeStep true;

• System/neutroRegion/fvSchemes:

divSchemes

```
default Gauss linear;
"div(facePhi_,angularFlux_)" Gauss upwind;
"div(phi_,precStar_)" Gauss upwind;
```

Exercise 3 - Results

kEff = 0.94196475

Precursor 0

Precursor 7

Exercise 4: Assignments

- Now we want to add the solution for energy.
- Copy-paste the previous case.
- Try to solve also for temperatures till the achievement of a steady-state. Assume that fluid-dynamics is not affected by temperature. Is that really the case?
- You'll need a heat exchanger to evacuate the heat produced by the neutronics. Assume an average temperature on the secondary side of 900K and a volumetric area of 200 m^{-1} .
- Try to plot prec7 and temperature and think about differences and similarities, and where they came from.
- How does keff change compared to a case without solution of temperature? Can you tell why?

August 8, 2023

9 / 15

Carlo Fiorina, Stefano Lorenzi, Alessandro ScA crash introduction to GeN-Foam: simulatic

Exercise 4: Tips

- A simple way to emulate a heat exchanger is a fixed-temperature sub-scale structure.
- In GeN-Foam, sub-scale structures with special properties are called "powerModels."
- What boundary conditions do we use for temperature?
- Is this one-way or two-way coupling?
- Do we need to solve for fluid-dynamics again?
- Can we (do we need to) keep the neutronics solution as eigenvalue?
- Three (physical) minutes should be enough for the reactor to get to an approximate steady state.
- Avoid excessive writing of results to disk.

Exercise 4 – Setting the case

- Starting from previous case
- system/controlDict;

endTime 180; deltaT 1e-1; writeInterval 10; solveFluidMechanics false; solveEnergy true; solveNeutronics true; adjustTimeStep false;

Constant/fluidRegion/phaseProperties:

Exercise 4 - Results

Z

× ×

kEff = 0.92740091 (in previous exercise 0.94196475)

T(fuel)

- 1150

1100

1050

9.9e+02

Precursor 7

Exercise 4 - Results

Exercise 5: Assignments

- Now we want to study the transient behavior of the reactor.
- Starting from the steady state of Exercise 4, run a transient with an increase of 30 pcm in reactivity.
- Analyze the results (you can read from the log, use paraview, or use the GeN-Foam.dat file).

August 8, 2023

11/15

Carlo Fiorina, Stefano Lorenzi, Alessandro ScA crash introduction to GeN-Foam: simulatic

Exercise 5: Tips

- Note that diffusion solvers usually require a keff to run a transient (do you know why?). GeN-Foam stores it in reactorState and use the value from previous simulation if available. Or you can give the value you prefer.
- What dictionary do we need to change to set the neutronics to transient?
- It could be useful to start tightening up the coupling. Where can we find this option? In which dictionary numerical things usually are in OpenFOAM? Is this related to a specific physics or not?
- Always be careful about initial time step. This is not adjusted by OpenFOAM.

Exercise 5 – Setting the case

- Starting from previous case (Exercise 4)
- system/controlDict:
 - deltaT 1e-3; solveFluidMechanics true; solveEnergy true; solveNeutronics true; adjustTimeStep true;
- system/fvSolution;
 - tightlyCoupled true;
- constant/neutroRegion/neutronicsProperties:
 - eigenvalueNeutronics false;

$$\Delta k_{eff} = \frac{1}{1-\rho}$$

- 0/uniform/reactorState:
 - keff 0.927701; // 0.92740091

Exercise 6: Assignments

- Starting from the case of Exercise 4, run a transient with an exponential reduction in the pump momentum source with a time constant of 5 seconds, for 10 seconds. After 10 seconds, the reduction stops. But keep the transient going for 20 seconds.
- Analyze the results.

Carlo Fiorina, Stefano Lorenzi, Alessandro Sc A crash introduction to GeN-Foam: simulatic August 8, 2023 13/15

Exercise 6: Tips

 How to impose a change in the momentum source? Always look at the documentation, source code, tutorials, etc. And do not forget the grep.

Exercise 6 – Setting the case

- Starting from previous Exercise 4
- system/controlDict:

а

endTime	25;	
deltaT	1e-3;	
solveFluidM	lechani	cs true;
solveEnergy	/	true;
solveNeutro	onics	true;
djustTimeSte	ep tru	ue;

- constant/neutroRegion/neutronicsProperties:
 eigenvalueNeutronics false;
- constant/fluidRegion/phaseProperties:

on1 types :	"pump" { volumeFraction 0; Dh 1; momentumSource (00-300000);
tTrigger tValue pp pper Ramp mp	<pre>momentumSourceTimeProfile { type table; //- Time after which the time table is applied startTime 5; //- Left column is time elapsed since the startTime defined // above table table (</pre>
	;

/alid Functi

onstan

osine svFile

cale

able ableFil niform

Exercise 6 - Results

T(fuel) @ t = 0 s

T(fuel) @ t = 20 s

				230 0 handling head [1]	bp end plug
			JpenMC	470.0 upper tabelding	sping(3) 10
TABLE 9 MAIN PARAMETERS OF	CORE SUB-AS	SEMBLIES*	0.15 mm	60.0 penue	
TABLE 7. MAINTARAMETERS OF	Fuel SA				450.0
	Fuel	Blanket		2592.0	
Number of SAs in core	79		E 1mm	1350.0	20.9
Length of SA [mm]	2592		J.11111	rod bundle	
Mass of SA [kg]	29~31				
Number of rods	6	51	1 6		250
Rod lattice pitch [mm]	6.95		1.6		250.0 lower blanket
Outer diameter of rod/cladding [mm]	6.00				mn
Inner diameter of cladding [mm]	5.40				
Diameter of spacer wire [mm]	0.95			87.0 lower connector	
Screw pitch of spacer wire [mm]	100				450.0 gas plenum[4]
Effective material and enrichment	UO ₂				
Encenve materiar and emfemment	64.4±0.5 wt%	0.3~0.72 wt%		o plugged into grid plate	35 0 bottom end plug
Total mass of UO ₂ or B ₄ C in each SA [kg]	5.30±0.13	1.28/3.23 ⁽¹⁾	6 mm	395.0 nozzle sector [2]	
	1	100/050(2)			

Two cases

20 C^o

250 C°

$$A_i = A_{i,1} \cdot f_{i,1} + \dots + A_{i,n} \cdot f_{i,n} \qquad \rho_i = \rho_j \cdot w \%_i$$

 $ND_i = \frac{\rho_i}{A_i} \cdot N_{Avo}$ $ND_{i,1} = ND_i \cdot f_{i,1}$

ISOTOPIC COMPOSITION OF STEEL MATERIALS (15-15TI)

	Flom	Rel. mass, w%	lsot	Natural abundance,	tural abundance, ND, #/barn • cm	
	Elem.			%	20 °C	250 °C
TOT. Fe			Fe-54	0.05845	3.2138E-03	3.2006E-03
	Fe	64.24	Fe-56	0.91754	5.0450E-02	5.0242E-02
	re	64.24	Fe-57	0.02119	1.1651E-03	1.1603E-03
			Fe-58	0.00282	1.5505E-04	1.5442E-04
/		16.25	Cr-50	0.04345	6.4906E-04	6.4639E-04
	Cr.		Cr-52	0.83789	1.2517E-02	1.2465E-02
	Cr		Cr-53	0.09501	1.4193E-03	1.4134E-03
			Cr-54	0.02365	3.5329E-04	3.5183E-04
		14.75	Ni-58	0.68077	8.1775E-03	8.1437E-03
			Ni-60	0.26223	3.1499E-03	3.1369E-03
Ni	Ni		Ni-61	0.011399	1.3693E-04	1.3636E-04
			Ni-62	0.036346	4.3659E-04	4.3479E-04
			Ni-64	0.009255	1.1117E-04	1.1071E-04
		2.2	Mo-92	0.1453	1.5923E-04	1.5857E-04
			Mo-94	0.0915	1.0027E-04	9.9856E-05
			Mo-95	0.1584	1.7358E-04	1.7287E-04
	Мо		Mo-96	0.1667	1.8268E-04	1.8192E-04
			Mo-97	0.096	1.0520E-04	1.0477E-04
			Mo-98	0.2439	2.6728E-04	2.6617E-04
			Mo-100	0.0982	1.0761E-04	1.0717E-04
	Mn	1.5	Mn-55	1	1.3051E-03	1.2997E-03
с	C	C 0.06	C-12	0.9893	2.3622E-04	2.3525E-04
	Ľ		C-13	0.0107	2.5549E-06	2.5444E-06
	ті	0.35	Ti-46	0.0825	2.8834E-05	2.8715E-05
			Ti-47	0.0744	2.6003E-05	2.5896E-05
			Ti-48	0.7372	2.5765E-04	2.5659E-04
			Ti-49	0.0541	1.8908E-05	1.8830E-05
			Ti-50	0.0518	1.8104E-05	1.8030E-05
	Si		Si-28	0.92223	7.0629E-04	7.0338E-04
		0.45	Si-29	0.04685	3.5880E-05	3.5732E-05
			Si-30	0.03092	2.3680E-05	2.3583E-05
	V	0.2	V-50	0.0025	4.6915E-07	4.6722E-07

Two cases

Thank you for your attention